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Abstract

To render an object from multiple viewpoints by ray tracing,
each frame is computed by tracing one or more rays from the
viewpoint through every pixel of the image plane. For reflective
and refractive objects, especially if multiple reflections and/or
refractions occur, this requires many expensive intersection cal-
culations. For complex objects, such as Bezier or NURBS sur-
faces, the intersection computations are even more expensive.
This paper presents a new method for accelerating ray trac-
ing of complex reflective and refractive objects by substituting
accurate-but-slow intersection calculations with approximate-
but-fast interpolation computations. Our approach is based on
modeling the reflective/refractive object as a function that maps
input rays entering the object to output rays exiting the object.
As preprocessing, a quadtree-based two level data structure is
built, storing discrete samples of this function. Sampling is
done adaptively from multiple viewpoints in various directions.
During rendering, rather than tracing each input ray through
the object, we interpolate the collection of nearby ray samples
to compute an approximate output ray. In most cases, object
boundaries and other discontinuities are handled by applying
various heuristics. We also rely on dense sampling in discon-
tinuity regions, due to our adaptive sampling mechanism. In
cases where we cannot find sufficient evidence to interpolate,
we perform ray tracing as a last resort. We provide perfor-
mance studies to demonstrate the efficiency of this method.

1 Introduction

High quality, physically accurate rendering of complex
illumination effects such as reflection, refraction, and spec-
ular highlights is highly desirable in computer-generated
imagery. The most popular technique for generating these
effects is ray tracing [25]. However, ray tracing remains a
computationally expensive technique. The primary expense
in ray tracing lies in the intersection calculations, partic-
ularly for the scenes that contain complex objects, and in
case of multiple reflections and/or refractions. Early re-
search concentrated on accelerating ray tracing by reduc-
ing the cost for intersection computations using bounding
volume hierarchies [13, 21], space partitioning structures
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[8, 12], and methods exploiting ray coherence [3, 4, 10, 19].

In this paper, we present a method to accelerate ray trac-
ing of reflective and refractive objects. Our method would
be most useful when the same object is rendered from mul-
tiple viewpoints in a sequence of frames. Our approach is
based on modeling the reflective/refractive object as a func-
tion f that maps input rays entering the object to output rays
exiting the object. We are interested in computing the out-
put ray without actually tracing the input ray through the
object. This is achieved by adaptively sampling rays from
multiple viewpoints in various directions, as a preprocess-
ing phase, and then interpolating the collection of nearby
samples to compute an approximate output ray for any in-
put ray. By this method, the object can be rendered from
any viewpoint.

Recent research has focused on interactive ray tracing
[20] and accelerating animation sequences. This requires
fast generation of ray traced images from multiple view-
points. These systems exploit frame-to-frame coherence.
Other systems reuse pixels from the previous frame by re-
projection and only recompute or possibly refine the poten-
tially incorrect pixels [2, 22]. Walter,et al. cache the results
while rendering a frame and reproject previously cached
samples to approximate the current frame [24]. Similarly, in
Larson’s Holodeck system, rays are computed, cached and
reused for subsequent frames by utilizing a 4D data struc-
ture [14].

Besides using reprojection to accelerate visibility, the
Interpolant Ray Tracer system described by Bala, Dorsey
and Teller in [5] introduced the concept ofradiance
interpolant—shading is accelerated by quadrilinearly inter-
polating radiance samples cached in an adaptive 4D data
structure while conservatively bounding the error. Simi-
lar to our system, they rely on the fact that radiance is a
smoothly varying function over the ray space most of the
time, and a sparse set of samples can be interpolated to ap-
proximate radiance. However, we differ in that we are pri-
marily interested in fast rendering of reflective and refrac-
tive objects from multiple viewpoints. Our data structure is
designed to map rays to rays rather than mapping rays to ra-
diance, and we interpolate among rays. With ray interpola-
tion, handling textures does not require any extra effort. To
render reflected textures, the Interpolant Ray Tracer system
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shoots additional reflection rays, which can be expensive
especially for multiple reflections/refractions. Their quadri-
linear interpolation requires that the ray trees of all sixteen
samples used for interpolation be identical to constitute a
valid interpolant. For reflective/refractive objects this strong
requirement significantly reduces the cases where interpo-
lation could be substituted for ray tracing. Instead, we ap-
ply heuristics that would allow us to use interpolations in
more cases while trading off quality to some extent. Also,
in addition to simple objects, our method supports render-
ing bicubic patches, and this creates a variety of other issues
which will be described in detail later.

Image-Based Rendering (IBR) methods constitute an-
other line of research to support interactive rendering of
scenes. A good survey can be found in [17]. These systems
capture and store a database of reference images of a scene
from a set of viewpoints, and use them to render the scene
from new positions. Among the IBR methods, the most rel-
evant to our work is the Lumigraph [9] and Light Field Ren-
dering [15] techniques. Both systems are based on dense
sampling of theplenoptic function[1]. The plenoptic func-
tion is a 5D quantity describing the flow of light at every
position(x, y, z) for every direction(θ, φ). By considering
only the light leaving a bounded object (or scene), the do-
main of the plenoptic function can be reduced to 4D, since
the radiance along a ray is constant. Each ray is represented
by its intersection points(s, t) and (u, v) on two parallel
planes, and hence as a 4D quantity. These systems have a
preprocessing phase where the 4D function is sampled by
uniformly subdividing in all four dimensions, resulting in a
regular grid structure on both planes. The radiance along
any ray from any viewpoint can then be approximated by
quadrilinearly interpolating the radiance values for the near-
est sixteen ray samples. To have reasonable quality of com-
plex effects such as reflection, refraction and specular high-
lights, these methods should sample very densely.

Camahort,et al. proposed alternative ray parameteriza-
tions to acquire and reconstruct light fields in a nearly uni-
form fashion [7]. Sloan,et al. considered a taxonomy of
methods to improve the performance of lumigraph render-
ing trading off quality for time [23].

Heidrich,et al. proposed a light field method focusing on
rendering refractive objects [11]. Their method has similar-
ities to ours in that they use a mapping from rays to rays, and
interpolate among rays. However, since their system is built
on a lumigraph/light field structure, it relies on dense sam-
pling of the rays for capturing clear object boundaries and
handling discontinuities. This results in the main problem
with the light field methods: large storage requirements.
Our method, on the other hand, samples rays adaptively
and applies a variety of heuristics to achieve high quality
discontinuity rendering at lower sampling rates. Moreover,
we store normal vectors and intersection points for sampled

rays and approximate normals and intersection points for
the query rays by using similar interpolation mechanisms in
order to compute the local illumination for the object.

There have been approaches other than ray tracing to ren-
der fast approximations of reflective/refractive objects. The
oldest such method is environment mapping [6]. It is based
on the assumption that the environment is sufficiently far
away from the reflective object. We do not impose such re-
strictions in our system. Another novel method explained
in [18] is based on mirroring the scene objects with respect
to a reflector. These virtual objects are rendered as ordinary
objects to generate a reflection image which is later blended
with the primary image. Their method works for curved
reflectors relying on high resolution tesselation of both the
reflector and the reflected objects and focuses on a single
level of reflection. See also [16] on mirroring the scene ob-
jects with respect to planar reflectors.

The rest of the paper is organized as follows. In the next
section we give a brief overview of our algorithm. In Sec-
tion 3, the sampling phase is presented explaining the con-
struction of our data structure. Section 4 outlines the render-
ing phase describing our ray interpolation mechanism and
heuristics used for handling discontinuities. In Section 5,
the other details of our algorithm such as extrapolation and
local illumination interpolation are described. The results
of the experiments are presented in Section 6. Finally, we
conclude with Section 7.

2 Algorithm Overview

To render an object from multiple viewpoints, each
frame is computed by tracing rays from the viewpoint
through every pixel of the image. For reflective and refrac-
tive objects, especially if multiple reflections and/or refrac-
tions occur, this requires many expensive intersection cal-
culations. For complex objects, such as Bezier or NURBS
surfaces, the intersection computations are even more ex-
pensive. Our algorithm aims to accelerate ray tracing of
complex reflective and refractive objects by eliminating in-
tersection calculations, and facilitates fast, approximate ren-
dering of the object from any viewpoint.

Ray-to-ray mapping and ray coherence:The key in-
sight to our method is that a ray intersecting a reflective or
refractive object goes through a set of reflections or refrac-
tions, and finally exits the object as an output ray. There-
fore, we can think of the object as a functionf that maps
input rays to output rays. (Currently, our method assumes
that there is a single output ray for each input ray, so we can-
not handle objects that are both reflective and refractive. We
leave this as a future enhancement.) For many real world
objects which have large smooth surfaces,f is expected to
vary smoothly. This is due to ray coherence, that is, nearby
rays follow similar reflection/refraction patterns in smooth
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regions, and so output rays corresponding to nearby input
rays are also close to each other. This leads to the idea that,
rather than computing each and every output ray by tracing
the input ray through the object, we can precompute and
store sparse samples of rays in a data structure, and interpo-
late these samples to get an approximate output ray for any
given input ray. Basically,f is discretized by means of a
data structure, and an approximationf∗ to the actual func-
tion f is reconstructed by interpolating the nearby samples
during rendering.

For discontinuous regions, however, nearby rays are re-
flected/refracted in very different directions. In these cases
where we cannot rely on the smoothness off , we sample
more densely in the preprocessing phase. We also apply var-
ious heuristics while interpolating in the rendering phase.
In cases where we cannot find sufficient evidence to inter-
polate, we perform ray tracing as a last resort.

Data structure: We construct a two-level hierarchical
data structure, calledRI-Tree, which stores adaptively sam-
pled rays from all possible viewpoints in all possible direc-
tions. The first level corresponds to the viewpoints from
which rays are sampled and it consists of six quadtrees im-
posed onto the faces of an axis-aligned bounding box en-
closing the object. This follows from the fact that sampling
the set of viewpoints on the bounding box is sufficient to
sample the space of all viewpoints seeing the object. Each
viewpoint sample contains a second level of quadtrees cor-
responding to the hemisphere of possible directions through
which rays originating from that particular viewpoint are
sampled. These directional quadtrees are adaptively subdi-
vided to provide dense sampling at the regions of disconti-
nuity.

Rendering: Consider the case of rendering an image
from a particular viewpoint. We compute an input rayR
through each pixel of the image. First, we determine which
face of the bounding box is intersected byR. We search for
the four closest viewpoints in the quadtree corresponding to
the intersected face. Then, in the directional quadtrees of
each of the four viewpoints, we locate the ray samples cor-
responding to the four directions closest to the direction of
R. This results in sixteen samples to be used in the interpo-
lation.

Our interpolation method works bottom-up, first inter-
polating on the directional level, and then on the viewpoint
level using the propagated results from the directional level.
In the simplest case, all the sixteen samples are usable in the
interpolation and our interpolation method is similar to the
quadrilinear interpolationof the sixteen output rays—four
bilinear interpolations on the directional level and one bilin-
ear interpolation on the viewpoint level. However, for the
discontinuity regions, some of these sixteen samples are in-
validated by various heuristics to avoid interpolation among
the rays that are not close to each other. In many cases, we

can still interpolate using fewer than sixteen rays. If there
are not enough usable ray samples remaining, we simply
use the ray tracer to compute the output ray. The output
ray is then shot through the rest of the environment to get
the reflected/refracted color. Ray interpolation allows us to
capture the reflections/refractions of textured environments
correctly.

We also store the surface normal vectors and the inter-
section points along with each sample. These are used to
interpolate normal vectors and intersection points for any
rayR, so that we can compute the local illumination for the
object. The reflected/refracted color and the local illumina-
tion are blended using the reflection/refraction coefficients
of the object.

The performance gain is achieved at the potential ex-
pense of quality. However, slight degradation in quality
for reflected/refracted environments is tolerable in many
cases. Besides, our system detects and deals with the ob-
ject boundaries and other strong discontinuities where the
artifacts are more likely to be noticed.

3 Sampling Phase

3.1 Representation of Rays as 5D points

In ray tracing implementations, a common way to repre-
sent a ray is by its origin and direction vector. Thus, a ray in
3 dimensional space can be viewed as a 6D point. However,
geometrically a ray has only five degrees of freedom since
two spherical angles are sufficient to define a unique direc-
tion vector. This means that we can represent a ray as a 5D
point, consisting of its origin and two spherical angles.

We prefer a low dimensional representation, but also we
need a representation that will allow us to subdivide the di-
rection space easily. So, instead of using spherical angles,
we employ thedirection cubeconcept as described by [4]
in order to map the 3D direction vector of any given ray to
2D coordinates.

Let r = (P, ~d) denote a ray with its originP , and direc-
tion vector~d. Suppose thatr is enclosed by an axis aligned
cube of side length 2 centered atP . It will hit one of the six
faces of the cube depending on itsdominant axis. The dom-
inant axis of a ray is the axis of largest absolute value com-
ponent of~d, and can be one of+X,−X,+Y,−Y,+Z,−Z.
Each face of the cube is labeled by its corresponding domi-
nant axis.

Note that among the rays hitting a single face of the cube,
each distinct direction corresponds to a unique intersection
point on the cube face. So, once it is determined which face
the ray intersects,~d can be mapped to a 2D point,(u, v) ∈
[−1, 1]×[−1, 1], which is the intersection point on that cube
face. The direction coordinates,(u, v) are calculated by the
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Figure 1. Subdivision in the viewpoint tree

following equations:

~w =
~d

max[|dx|, |dy|, |dz|] ,

(u, v) =




(wy, wz) if wx = ±1
(wx, wz) if wy = ±1
(wx, wy) if wz = ±1.

By this method, the ray space is partitioned into six direc-
tional groups, and a one-to-one mapping is established be-
tween each partition and[−1, 1] × [−1, 1]. Consequently,
a ray is represented by its origin,P , its direction group,g,
and its direction coordinates(u, v). For a fixed number of
direction groups, this can be thought of as a point in 5D
space.

3.2 The RI-Tree

In this section, we introduce the main data structure used
in our algorithm, theRI-Treewhich stands for Ray Inter-
polant Tree. It is a two-level quadtree.

The idea is to enclose our reflective or transparent object
within a bounding box, and sample rays originating from
viewpoints located on the bounding box in various direc-
tions. This is equivalent to sampling rays that originate from
any viewpoint in the space and intersect the bounding box.
Any such ray can be projected onto the bounding box and
the origin of the ray can be reset to the point of intersection
with the box. In this way, the space of viewpoints—and so
space of rays to be sampled—is reduced.

The viewpoint space consists of all possible viewpoints
on the bounding box. The first level of our data structure
consists of six independent quadtrees, corresponding to the
faces of the bounding box. They recursively decompose the
space of viewpoints. We will refer to combination of these
six quadtrees as theviewpoint tree.

As shown in Figure 1 each leaf cell in the quadtree con-
tains viewpoints corresponding to its four corners. Neigh-
boring cells share viewpoints, but they are not sampled
more than once. From each viewpoint, rays will be sam-
pled in various directions. The space of all possible direc-
tions from any viewpoint towards the object enclosed by the
box constitutes a hemisphere of directions. The hemisphere

can be replaced by adirection hemicubecreating five sepa-
rate viewing frustums. Independent direction hemicubes for
nearby viewpoints are able to better capture the variations in
rays that are viewpoint specific, which is important for our
approach. Since we already represent the directions as 2D
coordinates on a direction cube, we can impose five sepa-
rate quadtrees on the five faces of the hemicube, thus we
have the means to apply subdivision in the direction space.

So, each viewpoint in the viewpoint tree contains five di-
rectional quadtrees as a second level of trees. We will refer
to the combination of these five trees as thedirection tree.
The 2D coordinates of the four corners of each leaf cell in
the direction tree represents the directions of the rays we
sample. That is, each cell contains four directions corre-
sponding to its four corners. The rays are sampled in the
discrete set of directions covered by the direction tree, and
the output of sampling, referred to as theoutput ray, corre-
sponding to each direction is stored in the leaf cell contain-
ing that particular direction.

3.3 Building the RI-Tree via Adaptive Subdivision

The six quadtrees constituting the viewpoint tree are
built independently in the same way. We will describe the
construction of one of the quadtrees, let’s say the one corre-
sponding to the+X face of the bounding box. In our cur-
rent model, we apply a uniform subdivision while building
the viewpoint tree, so the viewpoint tree is actually a grid
structure. However, the quadtree representation will allow
us to apply nonuniform subdivision if desired.

We start with a single cell which covers the whole+X
face of the bounding box. Initially wesamplefour view-
points located at the four corners of this cell. These are
referred to asVPNW ,VPNE ,VPSW and VPSE . We
will explain what is meant bysampling a viewpointlater.
Then, we start recursively subdividing the leaf cells until a
termination condition is reached. The subdivision works
as follows: Divide the cell into four equal-sized quad-
rants. Sample new viewpoints at the locations labeled as
VPMid,VPNorth,VPSouth,VPEast andVPWest in Fig-
ure 1. Each new leaf cell inherits one viewpoint from its
parent, and uses three of the newly sampled viewpoints to
assign to its four corners.

What is meant by sampling a viewpoint? As mentioned
before, each viewpoint contains five direction quadtrees
representing the space of possible directions to sample rays
in. Sampling a viewpointVP refers to constructing the di-
rection tree of thatVP . The direction tree construction pro-
ceeds in an adaptive manner. To construct a quadtree cor-
responding to a single face of the hemicube, we start with
one cell that covers the whole face. Consider the case of
the quadtree for the opposite face of the hemicube. For that
face,(u, v) ∈ [−1, 1] × [−1, 1]. We sample the rays orig-
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Figure 2. Subdivision in the direction tree

inating fromVP in the directions represented by the four
corners. To sample a ray—which is referred to as the input
ray, we shoot it through our enclosed object and compute an
output ray as the final ray that comes out of the object after
a possible series of reflections/refractions. We store the out-
put ray in the cell associated with the corner that generated
the input ray. In short, our data structure can be thought of
as storing associations between the input and output rays.
The output rays are stored as 5D points whereas the input
rays are deduced from the structure of the quadtree.

After all the four corners have been sampled, we deter-
mine whether there is a need for further subdivision. This
is where the adaptive nature of subdivisions in the direc-
tion tree comes into the picture. The reason for applying
adaptive subdivisions is the fact that rays need to be sam-
pled more densely in some regions than others. These are
the regions where strong discontinuities exist, causing the
reflection/refraction patterns of the nearby input rays differ
substantially.

We decide whether to subdivide a cell as follows: We
sample the ray with the direction coordinates that coincide
with the midpoint of the cell, i.e. (0,0) for the root cell.
This gives us the actual output ray computed by ray tracing.
Then, we compute an approximated output ray by interpo-
lation of the four already sampled rays which are labeled as
RNW , RNE , RSW andRSE in Figure 2 (We describe the
interpolation mechanism in the next section). If the out-
put ray and the approximate output ray are close enough,
we assume that it is possible to compute a reasonably good
output ray for any input ray direction within that cell by
interpolation of the output rays corresponding to the cell
corners, and we stop subdividing. Otherwise, we divide

the cell into four equal-sized quadrants, sample four more
rays with the direction coordinates at locations labeled as
RNorth, RSouth, REast, andRWest in Figure 2. Then, we
assign the appropriate output rays to the the corners of the
four new quadrants. We continue this process recursively
until no more subdivisions are needed or some termination
condition is satisfied.

4 Rendering Phase

4.1 Overview of the Simple Two-level Interpolation

Our objective is to compute the output ray for any input
ray without actually tracing the input ray through the object.
Instead, we try to utilize the coherence of rays, and use al-
ready sampled rays to compute an approximate output ray.

3R

R1

4R

R2
)= f(R1

’
1R

= f(R 3 )R3
’ R4 = f(R 4 )’

= f(R 2 )R2
’

Input space Output space
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Figure 3.

In Figure 3, letR1, R2, R3 andR4, represent input rays
that were sampled in the preprocessing step. Recall that the
rays are modeled as 5D points, but for visualization pur-
poses, we give a 2D illustration of the concept. Our sam-
pling function mappedR1, R2, R3 andR4 to R1

′, R2
′, R3

′

and R4
′ respectively. Intuitively, for any input ray,R,

within the cell formed byR1, R2, R3 andR4 in the input
space, we can compute an approximate output ray,R′, by
bilinear interpolation ofR1

′, R2
′, R3

′ andR4
′ in the output

space using the bilinear coefficients derived from the input
space.

Since our data structure stores the origins and the direc-
tion coordinates of the input rays on two separate levels, we
apply a two-level interpolation scheme.

Consider the case of computing an approximate output
ray for an input ray,R = (P, ~d). First, we project this ray
onto the bounding box enclosing our object in order to set
its origin to a new point on the bounding box face, that is,
to a point in our viewpoint space. Assume for the sake of
concreteness that, rayR intersects the+X face of the box at
point Q. Now, our query ray is represented asR = (Q, ~d).
Figure 4(a) illustrates this projection.

Next, we locate the quadtree leaf cell in whichQ lies.
This requires a traversal of the quadtree corresponding to
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Figure 4. Locating the leaf cells containing Q and
(u,v)

the+X face. LetQNode denote this leaf cell. As explained
in the previous section, viewpointsVPNW , VPNE , VPSW

andVPSE at the corners ofQNode were sampled in the
preprocessing phase.

Next, we convert~d to the direction cube representation,
consisting of the direction cube face,g, and the 2D di-
rection coordinates,(u, v). In the direction trees of view-
points VPNW ,VPNE ,VPSW and VPSE , we traverse
the quadtree corresponding to the faceg, and locate the
quadtree cell in which(u, v) lies. Let DQVP denote the
leaf cell in direction tree ofVP . As shown in 4(b), at
this point, we haveDQVPNW

, DQVPNE
, DQVPSW

and
DQVPSE

denoting the four leaf cells, one for each direc-
tion tree. These fourDQs provide us the output rays for
a total of sixteen sampled rays originating from the four
viewpoints surrounding the origin of the query ray,R, in
four directions surrounding the direction ofR.

The first phase of interpolations are done at the direction
tree level, and the results from that level are propagated up
to the viewpoint tree level for one more interpolation to get
the final interpolated output ray forR.
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Figure 5. Direction tree interpolation

Interpolation at the Direction Tree Level: For each
DQVP , we compute an approximate output ray for the ray
labeled asRVP in Figure 5(a). This is the ray originating

from VP and has the direction coordinates,(u, v), which
are the direction coordinates of the original query rayR. It
serves as an intermediate query ray. As shown in the fig-
ure, the rays corresponding to the four corners ofDQVP

surround the query ray,RVP . We expect that, due to the co-
herence of rays,RVP would follow a similar path to these
four rays. Figure 5(b) gives a 2D illustration of how similar
rays originating from the same viewpoint are expected to
behave on a single refractive surface.R1, R2 andRVP are
all originating fromVP andR1 andR2 surround the query
ray,RVP . Assume thatR1 andR2 are sampled in the pre-
processing phase and returned the output rays,f(R1) and
f(R2). We assume that, ifRVP follows a path between the
paths of its surrounding rays,f(RVP ) would be surrounded
by f(R1) andf(R2). Our case is a 3D analog of this. The
rays corresponding to the corners ofDQVP form a pyra-
mid, andRVP lies within that pyramid.

To perform the interpolation, the bilinear coefficients
of (u, v) with respect to (uNW , vNW ), (uNE , vNE ),
(uSW , vSW ) and(uSE , vSE ) are determined. Then, using
these coefficients, the approximate output ray forRVP , de-
notedf∗(RVP ), is computed by standard bilinear interpo-
lation off(RNW ), f(RNE ), f(RSW ) andf(RSE ).

Interpolation at the Viewpoint Tree Level: After we
compute an interpolated output ray,f∗(RVP ) for each
DQVP , we propagate these intermediate output rays to
viewpoint tree level for the final interpolation. In Figure
6(a), these rays are labeled asRVPNW , RVPNE , RVPSW ,
andRVPSE

. These are parallel rays in the direction of our
original query ray,R, and originating from the four view-
points surrounding the origin ofR. This implies thatR
is surrounded by these fourRVPs. Now that we have the
f∗(RVP )s computed in the direction tree level, we can ap-
ply same kind of interpolation method on these parallel rays
to computef∗(R).

RVP SW

RVP NW

VPSE

VPNEVPNW

VPSW

(b) Refraction of parallel rays originating 
     from different but close viewpoints.

R

RVP NE

RVP SE

(Qz,Qy)

+y

+z
+x

(on +X face)(a) QNode

R1 f(R1 )

R2

f(R2 )

R
f(R)

Figure 6. Viewpoint tree interpolation

A 2D illustration of the idea is given in Figure 6(b),
whereR1, R2 and the query rayR are parallel rays orig-
inating from different viewpoints. SinceR is surrounded
by R1 andR2, it is expected thatR would follow a path be-
tween the paths followed byR1 andR2, and finally,f(R)
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would be surrounded byf(R1) andf(R2).
As in the direction tree level interpolation, we compute

the bilinear coefficients ofQ with respect to the four corners
of QNode. Then, using these coefficients, we compute the
output ray forR, f∗(R) by standard bilinear interpolation
of f∗(RVPNW

), f∗(RVPNE
), f∗(RVPSW

) andf∗(RVPSE
).

Consequently, an approximate output ray forR is computed
by the interpolation of sixteen output ray samples.

A Note on the Depth of the RI-Tree: As we have ex-
plained in the previous section, the viewpoint tree is a fixed
depth tree where the appropriate depth is determined em-
pirically. However, the direction tree grows adaptively, and
its depth varies at different places. For space efficiency, we
impose an upper limit on its depth to prevent the tree from
growing excessively. The deeper the tree, the more densely
the rays are sampled, so, the interpolation method would
produce higher quality images.

4.2 Advanced Interpolation for Discontinuities

The simple interpolation method makes no assumptions
about the structure of the object in the scene, and applies the
same interpolation procedure everywhere. When there are
no strong discontinuities in the scene, the simple interpo-
lation method performs well even when the RI-Tree is not
deep. On the other hand, if the ray input-output function
contains discontinuities, as may occur at the edges and the
outer boundary of the object, then we will observe bleed-
ing of the colors across the edges. This could be remedied
by building a deeper tree, which would involve sampling of
rays at pixel resolution in the discontinuity regions, but this
would result in unacceptably high memory requirements.

To keep the memory requirements reasonably low, in-
stead of building a deeper tree, we devised a series of inter-
polation heuristics to render the discontinuity regions. We
apply the interpolation methods at the smooth regions, and
we ray trace the rays at the discontinuity regions. In order to
minimize the number of the rays actually traced, we modi-
fied the simple interpolation algorithm to be able to use the
interpolation methods as much as possible.

Bezier Patches and Equivalence Classes:In order to
explain how the discontinuities are detected and handled,
we will describe the structure of our objects. Many real-
world objects are inherently smooth, so, our algorithm is
designed to handle the objects that are specified as a collec-
tion of smooth surfaces, referred to as “patches”. A patch
could be a simple polygonal surface, or a more complex one
such as a Bezier or NURBS surface. The patches that share
a common edge may or may not be joined with sufficiently
high continuity to permit interpolation across the bound-
ary. To provide this information, we use a simple method.
We group the patches into equivalence classes. Two ad-
jacent patches in the same equivalence class are assumed
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Figure 7.

to be connected continuously. If two patches are in differ-
ent classes, that means there is a noticeable edge between
them across which we do not want to interpolate. In our
object representation, we assign apatch-identifierto each
patch and we associate each patch-identifier with aclass-
identifierdenoting its equivalence class. Figure 7(a) shows
an example object made from patches that are in two differ-
ent equivalence classes.

Storing the Patch-identifiers in the RI-Tree: In order
to make use of patch grouping in our interpolation method,
for each ray sampled in the preprocessing phase we store the
patch-identifier of the first patch that the ray hits. If it does
not hit any patches, we store a special patch-identifier,−1,
for the outside environment. It is in an equivalence class by
itself.

3 3

3

3

11

1

2

2 3

QNode

DQNW DQNE

DQSW DQSE

2
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1

1

1

3

QNode
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2

1

1

1

1

1

11

1 1

1 1

1

22

1

(a) Not a two−patch case (b) Two−patch case

Figure 8. Two-patch case

Two-patch Condition: To compute the output ray for
any rayR, as in the case of the simple interpolation, we first
locate the four directional quadtree cells containing the six-
teen rays to be used as interpolants. Recall Figure 4. But, all
the sixteen rays might not be used for interpolation. More-
over, the interpolation method might not be applied at all.
The first step is to determine whether to compute the output
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ray by interpolation or by ray tracing the ray. At this point,
we introduce the concept of atwo-patch condition. Let p1,
p2,..., p16 denote the patch-identifiers associated with the
sixteen candidate rays, andc(pi) denote the class-identifier
of patchpi. If the cardinality of the set{c(pi)|1 ≤ i ≤ 16}
is greater than 2, then we conclude that there is more than
one discontinuity boundary in the region surrounded by the
intersection points of the sixteen rays with the object. This
case is shown in Figure 8(a). In this case, we ray trace
the ray, instead of interpolating the result. Otherwise, the
two-patch conditionis satisfied, implying that either all the
patches hit by the sixteen rays are in the same equivalence
class, or they are divided into two equivalence classes, say
c1 andc2. In the figure, each corner is labeled with the class-
identifier of the patch hit by the ray corresponding to that
corner. Note that, for simplicity the discontinuity bound-
ary is depicted on the input ray space. Also, we will use
the phrase “discontinuity crossing/overlapping the cell” to
mean the discontinuity crossing/overlapping the region sur-
rounded by the points hit by the rays corresponding to that
cell.

If all the sixteen patches are in the same equivalence
class, then it is reasonable to assume that the query ray
R would hit a patch in the same equivalence class as well,
so all of the sixteen candidate rays could be used as inter-
polants. If the patches are partitioned into classesc1 andc2,
then we assume that there is a single discontinuity boundary
dividing the region surrounded by the sixteen ray hits, into
two regions,c1 andc2. This case is shown in 8(b) and is
referred to as thetwo-patch case.

(a) (b) (c) (d) (e)
2

1

1

1

1

2

1

1

2 2

11 1

2 1

1 1

2

1

2

Figure 9. (a)-(c) Problematic cases (d)-(e) Good cases

Before we continue, let us mention a few problematic
cases that could arise. Since the knowledge of the “number
of different equivalence classes overlapped” is based on the
information obtained from the vertices, we might be mis-
taken. Consider the cases depicted in Figure 9(a), (b) and
(c). For simplicity, we illustrate the problematic cases on
the region surrounded by the four ray hits associated with
a singleDQ, but they can be generalized to the region sur-
rounded by the sixteen ray hits associated with aQNode. In
the case shown in Figure 9(a), just by looking at the four
corners of theDQ, we would decide that the cell is over-
lapped by two equivalence classes and overlook the third
one in between. Figure 9(b) depicts a case where we would
conclude that it is continuous region whereas there is a dis-
continuity boundary overlapping the cell. In the case shown

in Figure 9(c), the rays hit patches in two different equiv-
alence classes only, but there are two discontinuity bound-
aries crossing the cell. We do not detect these cases, and
assume that they arise very rarely. So, from this point on,
we will assume that if the patches hit by the rays associ-
ated with aDQ (or a QNode) are grouped in two equiva-
lence classes, there is a single discontinuity boundary be-
tween them. Then, we assume that we can approximate the
discontinuity with a line segment as explained later in this
section. The good cases are depicted in Figure 9(d) and (e).

In the two-patch case, suppose that we know which patch
the query rayR hits first. Letpr be the patch-identifier
of this patch. Ifpr is in the c1 equivalence class, among
the sixteen candidate rays, we want to use only the ones
whose first hits are in thec1 region. We avoid using the
ones in the other region since those rays are known to hit a
completely different surface and would possibly have very
different reflection/refraction directions, even if the input
rays are very close to each other. When a candidate ray hits
a patch that is in the same equivalence class aspr, we call it
ausable rayimplying that it could be used for interpolation
of the output ray of the query rayR.

However, since the query rayR is not ray traced, we
do not know which patch it hits first, that is, we do not
know which side of the discontinuity boundary it falls.
But, we assume that it should hit one of the patches in
PS = {pi|1 ≤ i ≤ 16}. At this point, we compute the exact
first intersection point ofR with the object, but we check for
the intersections only with the patches inPS . Computing
an exact intersection point is an expensive operation, but,
typically only a few patches are involved (certainly never
more than sixteen), and we compute only the first level in-
tersections of a ray tracing procedure. So, this is not as
expensive as a general ray tracing of the ray. Besides, this
computation is required only in the two-patch cases.

Since we cannot use all of the sixteen rays, and at least
three interpolants are required to perform an interpolation, it
is possible that some nodes cannot be used for interpolation
at all.

The algorithm given in Figure 10 summarizes the two-
patch case interpolation. If it is a two-patch case, we pro-
ceed with the direction tree interpolation as follows. For
eachDQ, if at least three of the four rays corresponding to
the corners are associated with a patch-identifier that is in
the same equivalence class aspr, we can use thatDQ for
interpolation. Otherwise, we eliminate it from the interpo-
lation process.

There are two cases. When all four rays could be used as
interpolants, we apply the same direction tree interpolation
as in the simple interpolation method. In the case where
only three of the rays could be used as interpolants, instead
of bilinear interpolation, barycentric interpolation is used.
Consider the case in Figure 11(a), where only NW, NE and
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if (QNodeis a two-patch case) then
determine the patchRhits;
NumberOfSuccessfulDQs= 0;
for each of the fourDQs do

if (number of usable rays≥ 3) then
/∗ interpolate theDQ ∗/
NumberOfSuccessfulDQs++;
compute intermediate output ray

by interpolating usable rays;
if ( NumberOfSuccessfulDQs≥ 3) then

/∗ interpolateQNode∗/
computef∗(R) using the intermediate

output rays from successfulDQs;
returnf∗(R);

else
returnfailure;/∗ ray trace the ray∗/

Figure 10. Advanced interpolation algorithm
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Figure 11. Three-interpolant interpolations

SE corners could be used to interpolate the output ray for
RVP . Barycentric coefficients of(u, v) are computed with
respect to the coordinates of the NW, NE and SE corners,
and the intermediate output ray is calculated by barycen-
tric interpolation off(RNW ), f(RNE ) andf(RSE ) using
these coefficients. However, there is an issue we have to
point at. If (u, v) lies outside the triangular region formed
by the NW, NE, and SE corners, this is not an interpolation
anymore—it becomes an extrapolation. In this case, espe-
cially when(u, v) is very close to the SW corner, the output
ray approximation might not be very good. We will explain
our strategy on the extrapolations issue later.

After all theDQs are processed, eachDQ is either elim-
inated from the interpolation, orf∗(RVP ) is computed for
it. If at least three of theDQs are successfully interpolated,
the intermediate output rays are propagated to the view-
point tree level and the final interpolation is done using the
f∗(RVP )s. Similar to the case of the direction tree interpo-

lation, if there are only three interpolants, barycentric coor-
dinates ofQ are computed and used in the interpolation to
getf∗(R).

Fig 11(b) illustrates the three-interpolant viewpoint tree
interpolation. Four-interpolant case is same as the simple
interpolation at the viewpoint tree level. If there are less
than three interpolants, we give up interpolation, and ray
traceR.

4.3 One- and Two-interpolant Cases and Extra Sam-
pling

We can reduce the number of rays raytraced if we can
make use of theDQs with less than three interpolants in-
stead of eliminating them. Some of theDQs could be made
usable by sampling extra rays at certain points in the pre-
processing phase in order to get three usable rays.

In the preprocessing phase, if a leaf cell is not going to be
split any further, but the rays corresponding to the four cor-
ners hit patches that are in two different equivalence classes,
two cases might arise. The first one is when one of the cor-
ners is in one equivalence class by itself where as the other
three are in another class. The second one is when two of
them are in one equivalence class while the other two are
in another equivalence class. In this case, if the two cor-
ners which are in the same class are not neighbors, theDQ
remains unusable, so we eliminate it from consideration.
Cases like the one shown in Figure 9(c) are eliminated at
this stage.
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Figure 12. One- and two-interpolant cases

We call the first case the one-interpolant case and theDQ
is made usable as follows. Consider the example in Figure
12(a). LetpNW , pNE , pSW andpSE denote the patches hit
by the rays corresponding to the four corners. For concrete-
ness, assume thatc(pNW ) = 1, andc(pNE ) = c(pSW ) =
c(pSE ) = 2. In case this node is needed for rendering, and
if c(pr) = 2 (that is when the query ray hits a patch in
equivalence class 2) then there is no problem, and we can
proceed with the interpolation. However, ifc(pr) = 1, then
two more sampled rays are required to use with the NW cor-
ner to perform the interpolation. The dashed curve in the
figure depicts the actual discontinuity, and the line segment
labeled asl is the approximation we compute to represent
the discontinuity. In the preprocessing phase, in order to de-
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fine l, we find the two points labeled asv1 andv2. We use
binary search to locate the farthest point from the NW cor-
ner on the upper edge of the cell of which the corresponding
ray hits a patchp, wherec(p) = 1. That isv1. We compute
v2 similarly. Then, we sample the rays with the direction
coordinatesv1 andv2. During rendering, we use these ex-
tra sampled rays. To perform the interpolation, we simply
use the barycentric coordinates of(u, v) with respect to the
single corner that was already usable (as the NW corner in
Figure 12(a)),v1 andv2. Then, we compute the output ray
as in the three-interpolant case.

The second case is called the two-interpolant case. An
example is shown in Figure 12(b) wherepNW andpNE are
in the same equivalence class, whilepSW andpSE are in an-
other equivalence class. During the rendering phase, if we
want to use this node for interpolation, in either the case of
c(pr) = 1 or c(pr) = 2, at least one more point is required
to do the interpolation. In the figure, the dashed curve rep-
resents the actual discontinuity. We approximate it by a line
segmentl1 on one side of the curve and another line seg-
mentl2 on the other side. The points definingl1 are labeled
asv1 andv2 and the rays with the direction coordinates at
these points have to hit a patchp, wherec(p) = 1. The
points v3 and v4 define the line segmentl2 and the rays
with the direction coordinatesv3 andv4 should hit a patch
p, wherec(p) = 2. In the preprocessing phase, we locate
these four points by binary search to get the best approxima-
tion to the actual discontinuity. And then, we sample extra
rays corresponding to them. So, in the rendering phase, we
will be able to use the rays corresponding tov1 andv2 along
with the rays corresponding to the NW and NE corners for
interpolation whenc(pr) = 1. If c(pr) = 2 thenv3 and
v4 can be used with the SW and SE corners. To illustrate
the interpolation in a two-interpolant case, consider Figure
12(c). The cell is subdivided into three regions (denoted
Region 1, 2 and 3). Suppose thatc(pr) = 1. If (u, v) is in
Region 1, barycentric interpolation ofRNW , RNE andRv1

is used to interpolate the output ray. If(u, v) is in Region
2, barycentric interpolation ofRNE , Rv1 andRv2 are used.
And, if (u, v) is in Region 3, and we have the option of
using extrapolation with barycentric coordinates computed
with respect to the NE corner,v1 andv2.

5 Other Issues

5.1 Extrapolation

Extrapolation arises when we attempt to estimate output
rays for the points outside the convex hull of the sampled
points. In our algorithm, extrapolation might be required in
the one-, two- or three-interpolant cases. When the extra
sampled points are used, the one- and two-interpolant cases
boil down to a three-interpolant case where the interpola-

tion is performed using the barycentric coordinates with re-
spect to the three vertices of a triangle. When the point for
which we want to compute an interpolated value is outside
the triangular region, the value computed is an extrapolated
value. Since extrapolated values are less reliable, the user
is granted the option of tuning the extrapolation. Extrapo-
lation can be disabled in which case, if an extrapolation is
required in a particular cell during the rendering phase, the
cell is labeled as unusable. Alternatively, a threshold value
can be specified to control at what level the extrapolation
will be done. Basically, if the point to be extrapolated is far-
ther from the triangular region—in terms of its barycentric
coordinates—than a given threshold value, extrapolation is
not used and the cell cannot be used to compute an output
ray.

R 2
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n2R 1

R 1
R 2

1n

f(R )1

f(R 2)

f(R 2)

f(R )1

n2

f(R) = null ray(a) (b) R and R are close but f(R ) are not.) and f(R1 2 1 2

R

VP VP

Figure 13.

5.2 Handling Repeated Reflections and Refractions

Previously, we defined ausable rayas a ray that hits a
patch in the same equivalence class as the patch hit by the
query ray. This was the only constraint for a ray to be used
as an interpolant. Here, we introduce a new constraint. Till
now, we assumed that our functionf returns an output ray
for any input ray, however, it is possible that an input ray
gets trapped in the object, for example, consider a refractive
object in which a ray is repeatedly reflected due to total in-
ternal reflection and does not escape the object as depicted
in Figure 13(a). We handle this case by defining a special
ray called thenull ray. If an input ray does not escape the
object after a fixed number of reflections, the functionf
returns thenull ray instead of the output ray. During the
rendering phase we do not use such rays as interpolants.

So, we redefine ausable rayas a ray that hits a patch in
the same equivalence class as the patch hit by the query ray,
and its associated output ray is not thenull ray.

5.3 Handling High Curvature

Normally, we assume that the rays associated with the
same cell and that are usable for interpolation are localized
to a small area and their reflection/refraction patterns would
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be similar. However, there might be cases where we have
two input rays that are close to each other, but the corre-
sponding output rays are very distant from each other. This
case arises especially when the input rays hit at those ar-
eas of high curvature—or more generally under any circum-
stance in which the surface normals vary rapidly for nearby
input rays causing them to be reflected/refracted in very dif-
ferent directions. In that case, we do not interpolate among
those rays. We use two measures to determine the distance
between two output rays. The first one is the Euclidean dis-
tance between the origins of the rays. If it is greater than
a given threshold, those rays are not usable as interpolants.
The second measure is the angle between the direction vec-
tors of the rays. Similarly, if this angle is greater than a
given threshold, this signifies that nearby input rays are re-
flected/refracted in very different directions. Examples of
this case are shown in Figure 13(b).

After usable rays are determined by the previous con-
straints, we apply the distance measures pairwise among the
interpolants, and if any pair fails then the interpolation can-
not be done.

5.4 Intersection Point and Normal Interpolation for
Local Illumination Computations

In the framework described up to now, to render a pixel
through which an input rays passes, we have only the means
to determine the reflected/refracted color component. The
output ray is used to access the environment, and the color
of the point it hits constitutes the reflected/refracted color.
However, to render realistic images, the object itself has to
be shaded. For local illumination computations though, we
need the intersection point and the surface normal at that
point. Since, we do not actually compute intersections dur-
ing the rendering phase, we calculate the interpolated values
for the intersection point and the normal as well. For this
reason, for each ray sampled in the preprocessing phase, we
store the first intersection pointP of the ray with the object
and the normal vectorn at that point. Then, during the ren-
dering phase, we apply the same interpolation method that
is used for interpolating the output ray. Only the intersec-
tion points and normals that are associated with the usable
rays are used as interpolants. By using the interpolated val-
ues of the intersection point and the normal we can compute
an approximate color of the object and the final color is the
weighted sum of the object color and the reflected/refracted
color.

6 Results

In this section, we present preliminary results of our al-
gorithm. The images are generated on a 400 MHz sparc
processor.

Our system is built on a basic ray tracer which is uti-
lized when rays are being sampled during preprocessing,
and when interpolation cannot be performed during ren-
dering. Our models are constructed from bicubic Bezier
patches. A Bezier patch is subdivided into smaller patches
until the patches are flat enough. Each patch is stored as a
bounding sphere hierarchy. This simulates a bounding vol-
ume hierarchy acceleration method for the ray tracer so that
we are fair to the basic ray tracer in our comparisons.

A ray tracedimage is generated by ray tracing each in-
put ray through the reflective/refractive object to compute
the output ray. The output ray is then shot through the rest
of the environment. In our example images, an “interesting”
object is placed in a relatively simple environment. Anin-
terpolatedimage is generated by computing the output ray
using our interpolation algorithm. We compare the num-
ber of floating point operations(FLOPs) and the CPU time
for the generation of the output rays and the computation
of the local illumination of the object, since that is the part
accelerated by our algorithm. These are labeled as “object-
only” in the performance tables given below. However, we
also provide the total number of FLOPs and CPU time for
the entire image. Since the output ray is ray traced through
the environment, the total FLOPs and CPU time are not im-
proved as much as those for the object-only case. If we had
used the output ray to access an environment map instead,
the improvement ratio for the total FLOPs and CPU time
would be similar to the object-only ratios. Since CPU time
is system dependent, we emphasize the number of FLOPs
in our comparisons.

For the images we present, the viewpoint tree has a
fixed depth of 5. The direction trees are adaptively divided,
and their depths vary between 1 and 6. All images are of
300× 300 resolution, and a single input ray is shot through
each pixel resulting in a total of 90K rays. For the above
depths, the preprocessing phase takes an hour to a few hours
depending on the complexity of the object and whether the
object is reflective or refractive. The size of the data struc-
ture (for a single face of the viewpoint cube) is 189 MB
for the reflective bowl, 175 MB for the reflective vase, and
191 MB for the refractive vase examples. In our current im-
plementation, the data structure has not been optimized for
space or preprocessing time.

For each image, we provide the correct ray traced image,
the image generated by our interpolation algorithm, and a
corresponding image showing which parts are successfully
interpolated and which parts were ray traced due to unus-
able interpolants. The white pixels correspond to the ray
traced regions.

Figure 15 shows a reflective closed bowl on a procedu-
rally textured table placed in a room. The walls of the room
are shaded in different gradient colors, or textures. Part
(b) shows the interpolated image during whose generation

11



no distance thresholds are imposed among interpolants (see
section 5.3). The image in part (c) is generated by imposing
an angle threshold between interpolants, resulting in more
ray traced pixels, but a better quality image. The artifacts
around the knob of the bowl which are visible in (b) are
remedied in (c) by ray tracing correct regions. Thus, we
allow the user to adjust the distance thresholds according
to the desired accuracy. Table 1 gives the performance re-
sults for the images in Figure 15. Our algorithm is twice
as fast in terms of the number of FLOPs. Since this is a
closed, reflective object, the actual ray tracer does not per-
form multiple reflections/refractions for a single ray. The
performance gain is higher in the case of refractive objects,
because the basic ray tracer does more work for each ray,
whereas our algorithm performs the same set of interpola-
tion calculations.

Recall that, the interpolation method proposed by Bala,
Dorsey and Teller [5] requires that all sixteen interpolants
have identical raytrees, whereas our method applies inter-
polation much more aggressively. To demonstrate the ad-
vantage of our method, we have simulated the case when
interpolation is not allowed unless the raytrees of all sixteen
interpolants are not identical. In Figure 15(d), white pixels
show the areas where interpolation cannot be done. For re-
flective/refractive objects, very few pixels could be interpo-
lated with this method. Obviously, since they use radiance
interpolants and adaptively sample with respect to radiance
in [5], they would have sampled more densely around ra-
diance discontinuities, therefore the white region would be
thinner. But, the white region would still exist around radi-
ance discontinuities, whereas in our algorithm these regions
are handled by ray interpolation and not considered as dis-
continuities.

Figure 16 shows a reflective vase placed in a similar envi-
ronment. The images are given in increasing detail, part (a)
is from far, (b) is a closer look, and in (c), a small section
of the vase is zoomed. Table 2 gives the corresponding per-
formance results for each set of images. Figure 17 shows
a refractive vase. Table 3 gives the corresponding perfor-
mance results. Our algorithm is at least three times faster
in terms of the number of FLOPs. In part (b), the angular
distance threshold is higher than part (c), so, the image in
(c) is of better quality providing a trade off in performance.
Note that in (c), the additional region ray traced is exactly
where the artifacts occur in (b).

Distance between the correct image and the interpo-
lated image:Recall that, the method of Bala,et al. [5] pro-
vides guarantees on maximum errors in radiance, but ours
does not. Since our method is based on estimating output
rays, the appropriate quality measure would be the distance
between the actual output ray and the interpolated output
ray. Figure 14 is presented to visualize the distance between
the correct output ray and the interpolated output ray corre-

(a) (b)

Figure 14.

sponding to each pixel of the image shown in Figure 15. We
provide diagrams only for the angular distance. The red pix-
els correspond to the ray traced areas. The angle between
the correct and the interpolated output rays corresponding
to the green pixels is greater than2◦. For the rest of the
pixels, the angular distance between the correct and the in-
terpolated output rays varies between0◦ to 2◦. These are
depicted in gray scale: lighter pixels correspond to smaller
angular distances. In part (a) the angular distance diagram
is given for a viewpoint tree of depth 5, in (b) for a view-
point tree of depth 6. Both have direction trees of maximum
depth 6. As seen in the figures, since (b) is generated from a
more densely sampled tree, the interpolated output rays are
closer to the correct output rays–the figure in (b) is much
lighter than the one in (a). Also, (b) has much less green
areas than (a).

Full sampling versus adaptive sampling: We have
sampled the direction trees adaptively to save space. For
example, the data structure used for the reflective bowl re-
quires 189 MB when sampled adaptively at a maximum
depth of 6. When the direction trees are sampled fully to
depth 6, the data structure requires 1,370 MB space, which
is more than six times as much as the adaptive tree. And,
the image generated from both trees do not differ in terms of
quality and performance, implying that adaptive sampling
is sufficient. Obviously, if we had built deeper viewpoint
and/or direction trees, we would have generated better qual-
ity images with a higher performance, since the ray traced
region would have been much thinner.

All images presented here are generated with the extrap-
olation option off. As explained in Section 5.1, allowing
extrapolation increases the number of cases where the out-
put ray is interpolated rather than ray traced, thus, the gain
in performance is much more. However, there would be
more artifacts around discontinuities.
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7 Conclusion

In this paper, we have explored a ray interpolation
method that accelerates ray tracing of complex objects that
are reflective or refractive. We have introduced theRI-Tree
data structure storing adaptively sampled ray interpolants
used to interpolate an approximate output ray for any in-
put ray that hits the object, instead of tracing the input ray
through the object. The RI-Tree allows the object to be ren-
dered from any viewpoint in any direction. Moreover, the
same RI-Tree could be used to render the object in different
environments.

According to the preliminary results, our algorithm
speeds up ray tracing for relatively complex objects. The
performance gain is significant, especially if an input ray
goes through multiple levels of reflections/refractions be-
fore escaping the object, since our algorithm performs a
fixed set of interpolations independent of the number of re-
flections/refractions. The gain in performance is achieved
at the potential expense of quality. However, slight artifacts
in reflected/refracted images are often tolerable. Moreover,
the user is granted the option to improve/reduce quality by
tuning a few parameters. Also, if a deeper RI-Tree is built,
both quality and performance would improve trading off
space.

Currently, the space required by our data structure is not
optimized. However, adaptive sampling reduced the space
requirements substantially, even though we exercised adap-
tivity only at the directional level. We will explore adaptive
sampling at the viewpoint level as well. Our interpolation
calculations are also open to further optimizations. We do
not impose any restrictions on the geometry of the object,
but, we do not support objects that are both reflective and
refractive. We leave this as a further extention.
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(a) (b)

(c) (d)

Figure 15. (a) Ray traced image (b) Interpolated image (no angle threshold) & corresponding image with white areas
showing ray traced rays (c) Interpolated image (angle threshold imposed) & corresponding image with white areas
showing ray traced rays (d) Interpolation by our implementation of the raytree approach [5].

RAYS TRACED FLOPS CPU TIME (sec) FLOPS CPU TIME (sec)
(object-only) (object-only) (total) (total)

Ray traced 90000 691 × 106 37.557 1115 × 106 73.898
Interpolated 6844 298 × 106 19.485 724 × 106 52.206

(no angle threshold)
Interpolated 12716 405 × 106 26.707 830 × 106 59.452

( angle threshold imposed)
Raytree Approach [5] 57781 613 × 106 36.211 1036 × 106 71.281

Table 1.
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(a)

(b)

(c)

Figure 16. In each row left to right :ray traced image, interpolated image, and the corresponding image where the white
pixels depict the ray traced region. (a) from far (b) closer look (c) zoomed section.

RAYS TRACED FLOPS CPU TIME (sec) FLOPS CPU TIME (sec)
(object-only) (object-only) (total) (total)

Ray traced (far) 90000 63 × 106 5.257 378 × 106 38.053
Interpolated (far) 378 27 × 106 2.007 342 × 106 30.656

Ray traced (close) 90000 1271 × 106 67.760 1851 × 106 111.702
Interpolated (close) 13423 612 × 106 35.290 1197 × 106 75.143

Ray traced (zoom) 90000 1407 × 106 75.956 1966 × 106 121.931
Interpolated (zoom) 5502 246 × 106 21.627 813 × 106 67.518

Table 2.
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(a)

(b)

(c)

Figure 17. (a) and (b) in each row left to right:ray traced image, interpolated image, and the corresponding image
where the white pixels depict the ray traced region. (c) for a smaller angle threshold: interpolated image, and the
corresponding image where the white pixels depict the ray traced region for the same zoomed section in (b).

RAYS TRACED FLOPS CPU TIME (sec) FLOPS CPU TIME (sec)
(object-only) (object-only) (total) (total)

Ray traced (close) 90000 2206 × 106 118.047 3343 × 106 191.994
Interpolated (close) 14237 685 × 106 39.649 1822 × 106 97.309

Ray traced (zoom) 90000 3602 × 106 189.725 4828 × 106 264.571
Interpolated (zoom) 5510 365 × 106 26.712 1576 × 106 100.273
Interpolated (zoom) 14725 715 × 106 42.717 1926 × 106 112.156

(smaller angle threshold)

Table 3.
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