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Abstract. This paper analyzes the number of samples required for an approxi-
mate Monte-Carlo least median of squares (LMS) line estimator. We provide a
general computational framework, followed by detailed derivations for several
point distributions and subsequent numerical results for the required number
of samples.

1. Introduction and Problem Definition

We are given a set of n observations in the plane (xi, yi), for i = 1, . . . , n, and
consider the linear regression model (with intercept)

yi = (axi + b) + ri,

where a and b are the slope and y-intercept of the regression line and ri is the
residual associated with the observation (xi, yi). We consider robust regression, in
which the goal is to estimate the line parameters (a, b) that fit the bulk of the data,
even when outliers are present. We assume that an upper bound on the fraction
of outliers q, 0 ≤ q < 0.5, is known, so that the number of outliers is at most qn.
We make no assumptions about the distribution of these outliers. The remaining
points, of which there are at least (1 − q)n are called inliers, and are assumed to
lie near the line (see further specifications below).

A popular approach for robust estimation of this type is Rousseeuw’s least
median of squares (LMS) line estimator [9]. The estimator computes the line of
fit that minimizes the median squared residual (or any order statistic). Define a
strip to be the region bounded between two nonvertical, parallel lines, and define
the vertical width of a strip to be the vertical distance between these lines. LMS
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is computationally equivalent to determining a strip of minimum vertical width
that contains at least 50% of the points. Thus, LMS estimation problem can be
reduced into a geometric optimization problem.

A number of algorithms have been derived for the computation of the LMS
estimator. Stromberg [12] gave an exact algorithm for computing the LMS hy-
perstrip in d-dimensional space. His algorithm runs in O(n4 log n) time for simple
regression. A slightly improved algorithm which runs in O(n4) time is due to Ag-
ulló [1]. The best algorithm known for finding the LMS strip (in the plane) is the
topological plane-sweep algorithm due to Edelsbrunner and Souvaine [3]. It runs
in O(n2) time and requires O(n) space. However, even quadratic running time is
unacceptably high for many applications involving large data sets.

In practice, simple Monte-Carlo approximation algorithms are often used.
The feasible solution algorithm due to Hawkins [5] is one such algorithm. Additional
Monte-Carlo-based algorithms are described in Rousseeuw and Leroy [11] and
Rousseeuw and Hubert [10]. Some number of pairs of distinct points are sampled at
random. Each pair of points determines the slope of a line. The optimal intercept
is then computed by a process called intercept adjustment, where the optimal
intercept is determined by reducing the simple regression problem to an LMS
location estimation problem. This can be done in O(n log n) time (see [11]). Thus
for a fixed number of subsamples, it is possible to determine the best LMS line
approximation in O(n log n) time. This is equivalent to finding the narrowest strip
containing (at least) half of the points over all the strips of slopes defined by the
subsamples. The midline of the narrowest strip is the LMS line approximation.

Although inliers are usually assumed to lie exactly on the line, this is rarely
the case in practice. We assume that the distribution of residuals is known and is
independent of the x-coordinate. The main issue considered is how many pairs of
points should be sampled to guarantee that, with sufficiently high probability, this
Monte-Carlo estimate returns a sufficiently close approximation to the LMS line of
fit? The meaning of “sufficiently close” is based on the formulation given by Mount
et al. [6]. Let w∗ denote the vertical width of the narrowest strip containing (at
least) 50% of the points. Given an approximation error bound, ε ≥ 0, we say that
any strip that contains (at least) 50% of the points and is of vertical width at most
(1 + ε)w∗ is an ε-approximate solution to the LMS problem. Given a confidence
probability pc, our goal is to compute the minimum number of random samples
needed, so that the Monte-Carlo algorithm returns an ε-approximate solution to
the LMS problem with probability at least pc. This analysis is based on some
assumptions about the distribution of inliers, which are given in the next section.

2. Assumptions on the Point Distribution

Suppose that the line in question is given by y = ax + b. As previously noted, we
make some concrete assumptions about the distribution of the inliers. Specifically,
we assume that the x-coordinates of the points are uniformly distributed over an
interval [x0, x1], and that the y-coordinate for a point with x-coordinate x is ax+b+
z, where the deviate z is a random variable having a certain probability density
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function (pdf). In Section 4 we consider specifically Gaussian and exponential
pdf’s.1 In the full paper we also consider the uniform pdf [7].

Because the approximation bound is based on the ratio of vertical widths of
two parallel strips, we may apply any affine transformation to the plane that pre-
serves such ratios. In particular, in order to simplify the analysis, we transform the
x-coordinates to lie within the interval [0, 1], and we transform the y-coordinates
by subtracting ax−b, so that the line of fit is mapped to the x-axis, and finally we
scale the y-coordinates so that the standard deviation of residuals is some desired
value. After this transformation, the optimal slope is zero. It is easy to verify that
all these transformations preserve the ratio of vertical widths of parallel strips.
Our analysis holds in the limit as n tends to infinity.

3. Sketch of Computational Procedure

Our analyses for the various residual distributions are all based on a common
approach. Any sampled pair of points defines a line with some slope s. Based on
our knowledge of the distributions of the x- and y-coordinates of the inliers, it will
be possible to derive the pdf of s, for pairs of inliers. In later sections we provide
this derivation, but for now, let fS(s) denote this slope pdf.

Consider a parallel strip whose sides are of slope s, whose central line has
y-intercept b, and whose vertical width is w. Let Ab(s, w) denote the probability
mass of this strip relative to the given point distribution. We will omit b when
it is clear from context. The algorithm computes a strip of slope s that contains
at least half of the points. Since we know nothing about outliers, if we want to
guarantee that at least half of all the n points lie within a given strip, the strip
should contain a fraction of at least 1/(2(1−q)) of the (1−q)n inliers. Throughout,
we let FI = 1/(2(1−q)) denote this fraction of inliers. (Recall that q < 0.5.) Define
the slope-width function, w(s), to be the vertical width of the narrowest strip that
has this fraction of the inlier probability mass. That is,

(3.1) w(s) = argminw ∃b (Ab(s, w) ≥ FI) .

For most reasonable residual distributions, we would expect that w(s) in-
creases monotonically relative to its optimum value of w(0), denoted w∗. (See Fig-
ure 1.) This can be shown for the distributions presented here, by a straightforward
perturbation argument, which will be presented in the full version of the paper
[7]. Let [smin, smax] denote the largest interval such that, for all s ∈ [smin, smax],
w(s) ≤ (1+ ε)w∗. A slope s is ε-good if it lies within this interval. A sampled point
pair is ε-good if the line passing through this pair has an ε-good slope. Recalling
the fS(s) is the slope pdf, the probability of randomly sampling an ε-good point
pair, denoted pg, is

(3.2) pg =
∫ smax

smin

fS(s)ds.

1Assuming normally distributed residuals is fairly common. The exponential pdf was chosen as
a case study for a one-sided distribution.
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Figure 1. An illustration of the slope-width function w(s) and
minimum and maximum allowable slopes.

Finally, given that with probability pc at least one good sample should be
chosen, it follows that if N is the number of point pairs to be sampled, the prob-
ability of generating no good pair in N trials should be at most 1 − pc. Since
we assume that sampling is performed independently, and since the probability of
selecting a pair of inliers is (1 − q)2, N should be selected such that

(1 − (1 − q)2pg)N ≤ 1 − pc.

Solving for N , we obtain the desired bound on the number of samples.

N ≥ log(1 − pc)
log(1 − (1 − q)2)pg)

.

The remainder of the analysis reduces to computing the slope density function
fS(s), computing the slope-width function w(s), inverting this function to compute
smin and smax, and finally solving the integral of Eq. (3.2). In the rest of the paper
we will provide detailed derivations of these results for two common residual pdf’s.

4. Derivation of Slope Distribution

Let pi = (xi, yi), pj = (xj , yj) denote two distinct inlying points sampled at
random. According to the point distribution model described in Section 2, xi,
xj are independent, uniformly distributed in the interval [0, 1], that is, xi, xj ∼
U(0, 1) and yi, yj are independent, identically distributed (i.i.d.) according to some
specified pdf. We make the general position assumption that the x-coordinates of
the points are distinct. The slope of the line joining pi and pj is

(4.1) s =
yj − yi

xj − xi
.

Thus to find fS(s), it suffices to find the pdf’s of (yj − yi) and (xj − xi), and
then find the pdf of their quotient. The latter can be found, using the following
result from basic probability theory [4, 8]. Let S = V/U denote the quotient of two
random variables V and U . The pdf of S is given by fS(s) =

∫ ∞
−∞ fV U (us, u)|u|du,
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where fV U (.) is the joint pdf of V and U . Thus if V and U are independent,

(4.2) fS(s) =
∫ ∞

−∞
fV (us)fU (u)|u|du.

Let U and V denote, respectively, the random variables xj − xi and yj − yi.
The pdf of U is given by the convolution of the pdf’s corresponding to U(0, 1) and
U(−1, 0). It is easy to show that

(4.3) fU (u) =




1 + u −1 ≤ u ≤ 0
1 − u 0 ≤ u ≤ 1
0 otherwise.

In the following subsections we derive the pdf of V for two common distributions.
Also, we derive for each case the resulting pdf of the slope, using (4.2).

4.1. The Gaussian Case

We assume, without loss of generality, that yi, yj ∼ N (0, 1). Thus −yi ∼ N (0, 1),
as well. Based on the fact that the sum of (two) independent, normally distributed
random variables has a normal pdf whose expected value is the sum of the expected
values and whose variance is the sum of the variances, we have yj −yi ∼ N (0,

√
2).

In other words, fV (v) = (1/(2
√

π)) exp(−v2/4). Employing (4.2) we thus obtain

(4.4) fS(s) =
1

2
√

π

∫ 1

−1

e−k(s)u2
fU (u)|u|du,

where k(s) ≡ s2/4. Since in view of (4.3) the integrand is an even function of u,
we may rewrite the above equation as:

(4.5) fS(s) =
1√
π

∫ 1

0

e−k(s)u2
(1 − u)udu.

Solving the definite integral yields the following bottom-line expression:

(4.6) fS(s) =
1

2
√

πk(s)

(
1 − 0.5

√
π/k(s) erf(

√
k(s))

)
,

where erf(x) = (2/
√

π)
∫ x

0
e−t2dt. (See [7], for a detailed derivation.) Figure 2(a)

gives a plot of fS(s) for the Gaussian case. Note that although the denominator
of fS(s) approaches zero as s → 0, the function is well defined. Specifically, it can
be shown that the limit of fS(s) as s → 0 is equal to 1/(6π).

4.2. The Exponential Case

We now consider the exponential case. Without loss of generality, we assume that
yi, yj ∼ E(1), that is, yi, yj are independent, exponentially distributed with λ = 1.
(This one-sided distribution is a special case of the gamma and Weibull distribu-
tions.) In other words, yj ∼ e−yH(y) and −yi ∼ eyH(−y), where H(y) denotes a
step function, such that H(y) = 1 for y ≥ 0 and H(y) = 0 otherwise. It can be
shown that the convolution of these pdf’s results in a Laplace pdf (see [7]):

(4.7) yj − yi ∼ 1
2
e−|v|.
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Employing (4.2) we now obtain

(4.8) fS(s) =
1
2

∫ 1

−1

e−|us|fU (u)|u|du.

As before, since the integrand is an even function of u, we may rewrite this as:

(4.9) fS(s) =
∫ 1

0

e−|s|u(1 − u)udu.

Solving the definite integral yields the desired slope pdf:

(4.10) fS(s) =
1
|s|3

(
(|s| + 2)e−|s| + |s| − 2

)
.

(See [7], for a detailed derivation.) Although the denominator is equal to zero at
s = 0, fS(s) is well-defined at the origin. In particular, it can be shown (by a
Taylor expansion of the numerator up to terms of degree 4) that the limit of fS(s)
as s → 0 is equal to 1/6. Figure 2(b) gives a plot of fS(s) for the exponential case.
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Figure 2. Slope pdf: (a) Gaussian case, (b) exponential case.

5. Derivation of the Slope-Width Function

In this section we compute the slope-width function w(s), defined in Section 3.

5.1. The Gaussian Case

We consider first the special case s = 0 for which w(s) = w(0) = w∗. We make the
observation that the desired parallelogram (a horizontal rectangle of width w∗ in
this case) must be symmetric with respect to the x-axis. By definition of the pdf
of the y-coordinates, it is easy to show that the “area” (that is, probability mass)
of any other horizontal rectangle of width w∗ will be smaller than A(0, w∗) =
A0(0, w∗). Thus

(5.1) A(0, w∗) =
∫ w∗/2

−w∗/2

∫ 1

0

fY (y)dxdy =
1√
2π

∫ w∗/2

−w∗/2

e−y2/2dy,
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that is,

(5.2) A(0, w∗) =

√
2
π

∫ w∗/2

0

e−y2/2dy.

Given FI , we can find w∗ (the solution to the implicit equation A(0, w∗) = FI), by
using standard numerical analysis techniques [2], such as the Gaussian quadrature
(to approximate the various definite integrals) and the iterative bisection method
for root-finding of an equation. For FI = 0.5, for example, we obtain w∗ ≈ 1.349.

We now assume, without loss of generality, that s > 0, and consider a parallel-
ogram of slope s and width w. It can be shown that among all such parallelograms,
the one that is symmetric with respect to the line y = sx − s/2 has maximum
area. Specifically this implies that y = sx−s/2 is also the midline of the narrowest
strip containing half of the data points.2 Henceforth, let A(s, w) = A−s/2(s, w).
The non-vertical sides of the desired parallelogram are thus given by the line equa-
tions: yI = sx− (s−w)/2 and yII = sx− (s + w)/2. We distinguish between two
cases: (1) s ≤ w and (2) s > w (see Figures 3(a) and 3(b), respectively). Due to
space limitations, we only discuss here the first case. (See [7] for further details.)

0 01

(a) (b)

ww

1

Figure 3. The low and high slope cases for the Gaussian distribution.

We decompose the desired parallelogram into the horizontal rectangle whose
sides are y = ±(w − s)/2, and the triangles above and below this rectangle. The
area (i.e., probability mass) of the two triangles is clearly the same. Thus the total
probability mass of the parallelogram is given by

(5.3) A(s, w) =
∫ (w−s)/2

−(w−s)/2

fY (y)dy + 2
∫ −(w−s)/2

−(w+s)/2

xII(y)fY (y)dy,

where xII(y) = (1/s)y + (1 + w/s)/2, which yields

A(s, w) =
∫ (w−s)/2

−(w−s)/2

fY (y)dy +
2
s

∫ −(w−s)/2

−(w+s)/2

yfY (y)dy +

(
1 +

w

s

)∫ −(w−s)/2

−(w+s)/2

fY (y)dy.

2Moving any other strip in the direction of the above midline increases the probability mass; thus
the width of any other strip is not a local minimum, in the sense that if the probability mass
exceeds, say, 0.5, it is possible to locally shrink that strip so that it contains half of the data.



8 David M. Mount, Nathan S. Netanyahu, and Eliyahu Zuck

Solving the second definite integral leads to the following expression for A(s, w):

A(s, w) =

√
2
π

∫ (w−s)/2

0

e−y2/2dy −
√

8
π

(
1
s

)
e−(w2+s2)/8 sinh

(ws

4

)
+

(
1 +

w

s

) 1√
2π

∫ −(w−s)/2

−(w+s)/2

e−y2/2dy.

Using standard numerical analysis techniques, as before, we can obtain numerical
solutions for the implicit equation A(s, w(s)) = FI . That is, for a given FI and s,
we can look up w(s) and vice versa.

Figures 4(a), 4(b) show plots of the strip width as a function of slope, for the
Gaussian case and the exponential case, respectively, for various values of FI .
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Figure 4. Strip width as a function of slope for various FI values:
(a) Gaussian case, (b) exponential case.

5.2. The Exponential Case

We consider first the special case s = 0. Given the one-sided pdf of the y-
coordinates, it is obvious that the lower edge of the desired strip (of width w∗)
coincides in this case with the x-axis. Thus letting A(0, w∗) = A0(0, w∗) we have

(5.4) A(0, w∗) =
∫ w∗

0

e−ydy = 1 − e−w∗
,

that is, for a given FI , we have

(5.5) w∗ = ln
(

1
1 −FI

)
.

Because of the lack of symmetry, determining the optimal strip for s 6= 0 is
much less obvious than the Gaussian case. To do so, we will derive the probability
mass associated with a differential strip of slope s, that is, the probability density
of a line of slope s as a function of its y-intercept. Consider the family of lines
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y = sx+yint, where the intercept yint is a random variable. (Assume that s > 0. An
analogous analysis to the one below applies to s < 0.) To obtain the distribution
of yint, that is, F (z) = P(yint < z), we distinguish between the two cases: (1)
z ≥ 0 and (2) −s < z < 0. The distribution is 0 for z < −s, due to the underlying
exponential pdf of the y-coordinates, and is essentially equal to the probability
mass of the strip defined by y = sx + z and y = sx − s (see Figure 5). We have
for z > 0

1

w

−s

0

z

−s

0

(a) (b)

z
w1

x=−z/s

Figure 5. Regions for probability mass computation due to (a)
(5.6) and (b) (5.7).

F (z) = P(yint < z) =
∫ 1

0

(∫ sx+z

0

e−ydy

)
dx =

∫ 1

0

(
1 − e−sx−z

)
dx,

which yields

(5.6) F (z) = P(yint < z) = 1 +
1
s

(
e−z−s − e−z

)
.

For −s < z ≤ 0 we have

F (z) =
∫ 1

−z/s

(∫ sx+z

0

e−ydy

)
dx =

∫ 1

−z/s

(
1 − e−sx−z

)
dx,

which yields

(5.7) F (z) = 1 +
z

s
+

1
s

(
e−z−s − 1

)
.

Differentiating the above distribution with respect to z provides the probability
density of a line having a slope s and y-intercept z. We obtain

(5.8) fZ(z) =




1
s (1 − e−z−s) −s ≤ z ≤ 0

1
s (e−z − e−z−s) z ≥ 0.

It can easily be seen that the above pdf is unimodal. The mode occurs at z = 0
and its value is fZ(0) = m, where m = (1/s) (1 − e−s).

Having established (for a given slope s > 0) the pdf of a line’s intercept and
its unimodality, we make the observation that the width of the desired strip is
given by w(s) = y1 − y0, for some y0 < 0, y1 > 0, such that:
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(1) fZ(y0) = fZ(y1), and
(2) F (y1) − F (y0) = A(s, w(s)) = FI .

In this context, it is understood that A(s, w(s)) applies to the strip bounded by the
y-intercepts y0 and y1. The first observation arises as a local-minimality constraint
on the strip lying between the intercepts [y0, y1]. (If this did not hold, a differential
argument shows that an infinitessimal shift of the strip, either up or down, would
increase the probability mass without increasing the strip’s width, contradicting
the strip’s minimality.) The second fact simply states that the strip must contain
a fraction FI of the probability mass. From (5.8) and the first constraint we obtain

(5.9) 1 − e−y0−s = e−y1 − e−y1−s,

and substituting (y0 + w) for y1 yields

(5.10) e−y0
(
e−s + e−w − e−w−s

)
= 1.

From (5.6), (5.7), we have

F (y0) = 1 − 1
s

+
y0

s
+

1
s

e−y0−s

and
F (y1) = 1 +

1
s

(
e−s − 1

)
e−y1 .

From the last two equations and the second constraint we obtain

A(s, w(s)) =
1
s

(
(e−s − 1)e−y1 + 1 − y0 − e−se−y0

)
= FI .

Combining the latter equation with (5.9) and (5.10) yields

A(s, w(s)) s = −y0,

or
A(s, w(s)) s = − ln

(
e−s + e−w − e−w−s

)
= −FIs.

Hence we get the following closed-form expression

(5.11) w(s) = ln
(

1 + e−s

e−FIs − e−s

)
.

Finding s from a given w does not yield a closed-form solution. As in the previous
subsection, a standard iterative root-finding technique was used.

6. Numerical Results

We show the concrete results of the analysis for the Gaussian and exponential
distributions. Figure 6 shows the probability that single random sampled pair is
good as a function of ε. Recall that a sampled pair is good if there is a strip
whose slope is determined by the pair, that contains a fraction of FI of the inliers,
and whose width is at most (1 + ε) times the optimum width. Recall that FI =
1/(2(1 − q)), where q is the expected fraction of outliers, and hence the values
FI = {0.5, 0.7, 0.9} shown in the plots correspond to outlier fractions of q =
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{0, 0.29, 0.44}, respectively. Figure 7 shows the required number of samples as a
function of ε for various confidence levels pc, and for the fixed value FI = 0.5.
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Figure 6. Probability that a single random sample is good as a
function of ε for various FI values: (a) Gaussian case, (b) expo-
nential case.
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Figure 7. Required number of samples as a function of ε for
FI = 0.5 and for various confidence levels pc: (a) Gaussian case,
(b) exponential case.
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