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ABSTRACT

Milling is the mechanical process of removing material from a piece of stock through
the use of a rapidly spinning circular milling tool in order to form some desired geo-
metric shape. An important problem in computer-aided design and manufacturing is
the automated generation of efficient milling plans for computerized numerically con-
trolled (CNC) milling machines. Among the most common milling problems is simple
2-dimensional pocket milling: cut a given 2-dimensional region down to some constant
depth using a given set of milling tools. Most of the research in this area has focused
on generating such milling plans assuming that the machine has a tool of a single size.
Since modern CNC milling machines typically have access to a number of milling tools
of various sizes and the ability to change tools automatically, this raises the important
optimization problem of generating efficient milling plans that take advantage of this ca-
pability to reduce the total milling time. We consider the following multiple-tool milling
problem: Given a region in the plane and a set of tools of different sizes, determine how
to mill the desired region with minimum cost. The problem is known to be NP-hard even
when restricted to the case of a single tool. In this paper, we present a polynomial-time
approximation algorithm for the multiple-tool milling problem. The running time and
approximation ratio of our algorithm depend on the simple cover complexity (introduced
by Mitchell, Mount, and Suri) of the milling region.
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1. Introduction

Milling is one of the most important methods used in the manufacturing of me-
chanical parts in computer-aided manufacturing (CAM). Tt is applied to a workpiece
of (typically metal) stock sometimes called the part or billet, which is clamped to
a moving platform that is then translated under a rapidly spinning circular-shaped
milling tool. Tt 1s somewhat more natural to think of the stock as remaining station-
ary and the tool translating above it. In this way material is removed, or milled,
from the part. The overall problem is how to construct milling plans in order to
achieve a given final geometric shape within the shortest amount of time.

There are several kinds of milling depending on the numbers of degrees of free-
dom possessed by the tool relative to the workpiece. In this paper we focus on the
simplest case, but one that is common in practice, where continuous tool movement
is possible in one plane and the direction normal to 1t is used only for retracting
the tool. This situation is commonly referred to as 2D milling or pocket machining.
(Pocket refers to the region being milled).

There has been a lot of research on the subject of automatic generation of tool
paths for computerized numerically controlled (CNC) pocket machining. However,
much of this study, both theoretical and practical, has focused on machining pockets
using a single tool; the question of how to machine pockets efficiently using more
than one tool has been largely ignored, and seems to be considerably deeper and
richer than the single-tool problem. Modern milling machines have the capability
of automatically loading different milling tools of a wide range of radii. Using a
larger tool when possible offers a significant advantage in terms of milling time. In
this paper we propose a cost model for describing multiple-tool milling problem,
and present an approximation algorithm.

Previous results. Within the computer-aided design and manufacturing com-
munity there has been a considerable amount of study of various heuristics for the
automatic generation of tool paths for pocket machining. The most common general
strategies are contour-parallel (also known as window-pane milling),®11,20,24,22,23,25
in which the tool spirals inwards from (or outwards to) the boundary of the region,
and azis-parallel milling (also known as zig-zag or staircase milling),®10:1721,26 in
which the milling tool moves back and forth cutting parallel strips. Multiple tool
milling has been considered, see for example Bala and Chang,® but there is no
theoretical analysis of the performance of the heuristics proposed.

Held!?131% made a comprehensive study of milling heuristics from a compu-
tational geometry perspective. For the single tool case, he presented efficient al-
gorithms to find a feasible tool path, given the shape of the pocket to be milled
and the size of the tool. On the theoretical side, Arkin et al.»? and Iwano et al.'®
have given constant-factor approximation algorithms for finding shortest paths for
the single-tool milling problem and for the closely related problem of lawnmowing.
Arkin et al.? have also given approximation algorithms for minimizing the number
of retractions for the zig-zag milling problem, subject to the constraint that one is
not allowed to mill the same region again. The problem is known to be NP-hard



even when restricted to the case of a single tool.! We know of no theoretical work
considering the use of multiple tools in milling.

Domain and tools. We model the pocket machining problem as follows. Tools
are changed at a designated location called the tool-change center. Thus the path
for each tool is assumed to start and end at this center. The input to our problem
provides a planar domain P to be milled, a set of tools of different sizes, and the
location of the tool-change center. We make the realistic assumptions that the
ratio between consecutive tool sizes is bounded above by a constant (for simplicity,
we assume this ratio to be bounded by 2), and that the smallest tool can mill P
without the need to be lifted. These two assumptions are essential in proving the
approximation ratio. (We leave the removal of these assumptions as future research
problems.) The tools are disks with different radii and the domain P is a connected
region (possibly with holes) bounded by straight line segments and circular arcs.
We call these segments and arcs domain edges. We assume that each domain edge
has two distinct endpoints. The tools can be moved arbitrarily, as long as they do
not cross the boundary of P.

Let n denote the number of vertices in P and let m denote the number of tools.

Cost model. A milling plan is a sequence of tours, each for a particular tool
size. A tour begins and ends at the tool-change center. It consists of a sequence of
paths alternating between being engaged with the material (milling path) or being
retracted (transport path in air). Due to stress on the tool, the speed with which
the tool can be moved, called the feed rate is typically much smaller for milling than
for transport. Consider a milling plan . Define

mill(¥) = total milling path length for ¥,
transport(¥) = total transport path length for ¥,
ntools(¥) = the number of tool changes in ¥.

The total milling cost in this model is
cost(V) = o - mill(V) + 53 - transport(V) + v - ntools(¥),

where «, 3, and v are arbitrary nonnegative values supplied by the user as part of
the input. Each milling path with tool of size ¢ includes a cost of 2¢ in addition to
the length of the path. This additional component is included to account for the
time to place the cutting tool within the material. This might be done either by
milling in from the side or by drilling a hole and milling down into the material.
This assumption is added to prevent ridiculous solutions based on using the tool
like a cookie-cutter to stamp out disks without paying any milling cost at all. From
a practical standpoint, plunging the tool into material induces considerable stresses
on the milling tool, and is not used in practice, or only after the time has been
spent to drill a hole where the center of the milling tool is to be placed.

The factor v reflects the amount of time needed to load a tool. We include
this cost when loading the first tool. Note that under our cost model, there is no



Fig. 1. Counterexample for the simplest milling strategy.

advantage gained by loading a tool, unloading it, and then reloading it later. Thus
it is reasonable to assume that each tool is loaded at most once, and hence ntools
is equal to the number of tools used by W.

Output representation. As observed in Ref. [2], the milling path of a tool may
require a combinatorially very large description even if the size of the region milled
i1s combinatorially very small, e.g., a small tool milling a large circle. Following the
approach in Ref. [2], we use a succinct representation of milling paths instead. In
our output, we represent the points milled by each tool as a collection of simple
regions of regular structure. If desired, the actual milling paths can be extracted by
contour-parallel milling or zig-zagging within each output regions. We also output
the cost of our approximate milling plan.

2. Overview and Summary of Results

Before discussing our approximation algorithm, we begin with some discussion
to motivate the various elements of our solution. Since large tools can mill more
material per unit of motion than small tools, the simplest strategy that comes
to mind is to mill everything that can be reached by the largest tool, and then
repeatedly load successively smaller tools and mill everything that is reachable for
each tool. However, it 1s easy to see that this simple strategy may be suboptimal
by a factor that i1s as large as the number of different tools. For example, for the
domain shown in Fig. 1, after the large tool #; has acted, all that remains are the
small protrusions. The next smaller tool may only be able to shave away a small
amount of additional material. The best option is to load a much smaller tool ¢5 that
can completely fit within each of the small protrusions. The tradeoff that must be
faced is whether to use a larger tool and mill potentially less material with greater
efficiency, or to use a smaller tool and mill more material with lesser efficiency.

At a very abstract level, milling the domain is equivalent to covering the points
in the domain with copies of the tools available. Each copy of a tool used will
incur some cost. This cost includes the time to load the tool, the time to mill the
various regions, and the time to transport the tool from one unmilled region to the
next. This suggests that milling 1s related to the discrete optimization problem
of weighted set-cover (cover a domain by sets, each having an associated cost, so
that the sum of costs is minimized). A well-known heuristic for weighted set-cover
is the greedy algorithm,” which at each stage selects the subset that maximizes
the number of items covered per unit cost. This algorithm is known to produce a



logarithmic approximation ratio.

We will transform the multiple-tool milling problem into a weighted set-cover
problem and then solve the weighted set-cover problem by a greedy heuristic. To
construct the transformation, we need to define the elements in the base set and the
weighted subsets. The transformation is not straightforward for two reasons. First,
it 1s infeasible to use points as set elements directly as there are an infinite number
of them. We overcome this by discretizing the domain into simple regions and use
these simple regions as set elements instead. We will show how to construct this
discretization such that we may assume that each simple region is milled with only
one tool, while increasing the approximation ratio only by a constant. This is given
in Sections 4 and 5.

Each subset in our transformation will correspond to a milling action, which
consists of loading a tool and then milling some subset of the remaining unmilled
regions with this tool. The second problem is that it is not efficient to enumerate
the exponential number of possible subsets of unmilled regions in order to select the
next subset. We overcome this by using an approximate greedy strategy that does
not require the weighted subsets to be explicitly provided. This strategy will incur
another constant factor in the approximation ratio, and it is based on the Euclidean
k-TSP problem.® It will be described in Section 6.

Our discretization of milling actions is based on a subdivision of the milling
domain P. We first subdivide the boundary of P through the introduction of new
vertices into O(n) segments, in order to satisfy certain monotonicity conditions,
which will be described later. Let P* denote the modified domain. The size of
our discretization is equal to the simple cover complexity of P*. The simple cover
complexity, or sce(P*), is an intrinsic measure of the geometric complexity of P*.1?
It is defined as follows. A disk is simple if it intersects at most 2 edges of P*. Given
any € > 0, we say that a ball of radius r is e-strongly simple if the ball with the
same center and radius (1 + €)r is simple. Given €, a strongly simple cover of a
region P* is a collection of e-strongly simple balls whose union contains P*. Given
any fixed e (for example € = 1/2), the simple cover complexity of P* is defined to
be the cardinality of the smallest strongly simple cover of P*. Qur main result is:

Theorem 1 Given a domain P of n vertices and m circular tools, an O(logm +
log scc(P*))-factor approzimation to the optimum cost milling plan for P can be
computed in time that is polynomial in n, sce(P*) and m. (Constant factors hidden
by the “big-Oh” do not depend on the cost model parameters.)

Throughout, we will denote sce(P*) by N for simplicity.

The remainder of the paper is organized as follows. In Section 3 and 4, we show
how to discretize the problem. Section 5 shows that our discretization method
indeed approximates the milling problem to within a constant factor. Section 6
shows how to reduce the milling problem to a weighted set cover problem and
describes the approximation algorithm.
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Fig. 2. The dotted curve shows the Voronoi diagram of the domain. White
points are the bottleneck points and dashed segments are the bottleneck seg-

ments.

3. Subdividing the Domain

Let 0P denote the boundary of the domain. Consider the Voronoi diagram of
JP. We define a distance function v(p) which maps every point p on the Voronoi
diagram to its closest point on JP. Consider the set of points p on the Voronoi
diagram such that v(p) is locally minimal, in the sense that in every sufficiently small
neighborhood of p there is a point on the Voronoi diagram with strictly higher
distance value, and no point in the neighborhood has a strictly smaller distance
value. For each such point p on the Voronoi diagram, the two nearest points on 9P
to p are called bottleneck points, and the line segment joining these boundary points
is a bottleneck segment. (See Fig. 2 for example.) Note that there cannot be three
or more bottleneck points for p by the local minimality requirement. We introduce
all the bottleneck points as new vertices on the boundary of P. Each bottleneck
point splits a domain edge into two smaller domain edges. We denote by P* the
resulting domain.

We will perform a quadtree decomposition of P*. This decomposition will sub-
divide the plane into a collection of square regions called bozes. For any box z, we
denote its side length by width(x). For any positive real ¢, we denote by cz a box
with the same center as & whose side length is ¢ - width(z).

The goal of the decomposition is to cover P* with a set X of boxes such that
the portion of the domain lying within and near each box is extremely simple. X
is generated as follows. We first enclose P* in a bounding box. Then we apply the
following splitting rule. For any box z, we call 3z the buffer zone of x and denote it
by buf(x). Take any box x, if buf () intersects more than two domain edges, then
split 2 through its center into four identical boxes each of half the size. When the
splitting process stops (which will occur eventually since each vertex is adjacent to
at most two domain edges), we obtain a set of boxes covering P*.

A cell is a connected component of P* Nz for some box z € X. Given a cell
C', we denote by boz(C') the box € X that contains C. We define the size of C,
size(C'), to be width(box(C)). We define buf(C) to be buf(box(C)). The size of
our subdivision of P* is bounded by the simple cover complexity.'® Such a quantity
has been reported to be close to linear for practical scenes,” though hypothetical
examples exist for which the simple cover complexity becomes unbounded.



Lemma 1 There are O(scc(P*)) boxzes covering P*.

Proof. To prove that |X|is O(sce(P*)) we consider an expansion factor of € =
1/2. As shown in Ref. [19], the choice of € only affects the constant factor involved.
Consider a strongly simple disk of radius ». This means that its expansion by a
factor of 1+¢ = 3/2 does not intersect more than two edges of P*. We claim that any
box in X that overlaps the (unexpanded) disk has width > r/(12v/2). Suppose to
the contrary that there is a box x that overlaps the disk and has width < r/(12v/2).
Then the parent box p of & has width < r/(6+/2). Thus, buf(p) has width at most
r/(2v/2) and hence a diameter of at most /2. Thus buf(p) lies entirely within the
expanded disk and so intersects at most two edges of P*. Consequently p could not
have been split further to generate x. This i1s a contradiction. It follows that any
strongly simple disk cannot contain a box of X of width less than r/(12v/2). By
a simple packing argument, it follows that the number of boxes in X that overlap
any strongly simple disk is a constant. Since the simple disks cover P*| it follows
that |X| is bounded above by a constant factor times the number of simple disks,
and hence is O(scc(P*)). a

4. Basic Milling Actions

As mentioned above, our approximation algorithm 1s based on discretizing the
space of possible milling actions into what we call basic milling actions, or BMAs
for short. Each basic milling action is responsible for milling a certain portion
of the domain by a single tool. In general, many tools may be able to access a
given region, and the definition of BMA makes no attempt to limit which tool is
responsible for some region. It will be the responsibility of the greedy algorithm,
described in Section 6, to determine which BMAs to apply to employ for the final
plan.

We begin by introducing some notation. Let d(p,r) denote a disk of radius r
centered at a point p. Given a tool ¢, we also use ¢ to denote its radius. Whenever
we put the center of ¢ at a point p, we call d(p,t) a placement of t. A placement
of t is free if it lies within P*. The free space of t is the locus of centers of all free
placements of t. We denote it by F(¢). Formally, F(t) = P* ©t, where & is the
Minkowski difference operator. Thus, F(¢) &t is the set of points in P* that can
be covered by a free placement of ¢, where & is the Minkowski sum operator.

At each vertex p of F(t), d(p,t) touches P at several points. If the arc between
two consecutive contact points on the boundary of d(p,t) is less than a semicircle,
then we call it an accessibility arc. The collection of accessibility arcs for a tool ¢ 1s
denoted by A(t). See Fig. 3.

A subset K of F(t) and a subset M C K @t define a milling action. Specifically,
t moves with center in K to remove all points in M. If K is not connected, then
we have to pick ¢t up transport it to another component and place it. This will
incur a charge of 2¢ per connected component in K plus the transport cost to visit
all components in K. We say that a point in M is milled by this action. Note
that, physically speaking, a larger set than A may be removed by #’s movement.
However, we only consider points in M as milled, and we will have to deploy other



Fig. 3. The accessibility arcs for tool ¢ (dashed).

milling actions to mill points not in M. Imagine that an arbitrary sequence of
milling actions (possibly of different tools) has been applied to the collection of
cells defined in the previous section. Given a cell C', we call the set of points in C
not milled the unmilled region, and we call a connected component of the unmilled
region an unmilled component.

Given a tool ¢, we restrict ourselves to two kinds of milling actions of £ on a cell
C, depending on the relative sizes of ¢ and C'. We say that ¢ 1s large for a cell C'if
t > size(C)/16 and smallif t < size(C)/4. Conversely, we say that a cell C'is small
for t if t > size(C)/16 and large if t < size(C')/4. Note that this implies that in the
range size(C)/16 <t < size(C)/4, t is both small and large for cell C. In the next
two subsections we describe the basic milling actions for large tools and small tools.

4.1. Large-Tool Basic Milling Action

Recall that the goal of defining basic milling actions is to provide a discretization
within which to approximate any milling action. Since we do not know the optimum
milling path for any tool, our approach will be to define each large-tool basic milling
action to mill a local region whose size is proportional to the size of the milling
tool. Then we will be able to approximate the milling action of any milling plan by
concatenating a sequence of such local milling operations. Since basic milling actions
are defined independently of one another, we cannot generally predict whether a
given milling action will simply be a continuation of a neighboring milling operation,
or whether it will require placing the tool of size ¢ into the material. Recall that
each such placement incurs a cost of 2¢ by our model. To absorb this potential
placement cost, we define each basic milling operation (except for the smallest tool)
so that there is a free placement of a tool of twice this size. This insures that there
will be sufficient millable area, so that placement costs will not dominate milling
costs.

One of the tricky issues in defining basic milling actions for large tools is that
a single large tool may mill portions of many small cells at the same time. Thus,
if we were to account for the milling cost on a cell-by-cell basis and sum these
costs, then we may considerably overestimate the actual milling cost. In order to
accurately account for the total cost of using a large tool to mill many smaller cells,
it is important to define the milling actions for large tools in a way that is global



to the small cells that it affects. We do this by overlaying a grid on the domain
whose side length is proportional to the tool size, and then associating each basic
milling action with each grid cell. A second issue is predicting the possible shapes
of the unmilled regions that result after each basic milling action. To minimize the
number of possibilities, our milling actions are defined so that if a cell cannot be
milled entirely, then we mill up to an accessibility arc for this tool.

Overlay a square grid G; of side length ¢t on P*. Define B; to be the set of grid
squares b such that b @ 4t overlaps some quadtree box of width less than 16¢. Any
grid square b € B; induces a (possibly empty) set of milling actions as follows. If ¢
is the smallest tool, let K be a connected component of (6@ 282)NF(¢) such that K
overlaps with b & 4¢; otherwise, let K be a connected component of (b 28¢) N F ()
that contains some component of b F(2t). Define Cp to be the collection of cells ¢
such that ¢ is large for C'and C overlaps b@4t. Define M to be K@tﬁUCEcb C'. Then
K and M define a large-tool basic milling action denoted by large_tool(t, K, M), i.e.,
move ¢ along the surface with center in K to mill points in M.

The choice of the constant 28 is due to the following motivation. We want a
large BMA to simulate the local milling action of a large tool on small cells in
the optimal milling plan. Suppose that the optimal milling plan uses a tool with
center in the grid square b. We want to do the simulation with a tool of radius
a constant factor smaller (as will be shown, we need this to guarantee that b will
induce only O(1) large tool BMAs for any tool). By our assumption that the radii
of two successive tools are within a factor 2, we know that we can always pick a
tool which is at least a factor 2 smaller but no more than a factor 4 smaller. Hence,
we use a tool ¢ to simulate a tool of radius at most 4¢ in the optimal milling plan.
As mentioned before, we need to push up to accessibility arcs to simplify the shape
of unmilled regions. Thus, if a tool of radius 4¢ centered inside b mills a cell small
for t , then we want the large BMA of ¢ to cover as many points in the cell as F(¢)
allows. Recall that the cell is small for ¢ and hence has size at most 16¢. Fig. 4
shows that b @ 28t is large enough to allow the tool ¢ to attack the cell from any
direction. An example of the effect of a large BMA is shown in Fig. 5.

In the remainder of this section we establish a number of facts about large-tool
BMAs. In Lemma 2 we show that after the action of a large-tool BMA by ¢, the
boundaries of any resulting unmilled component consist of accessibility arcs of .
Lemmas 3 and 4 show that the length of the boundary of K is O(t). Lemma 5
shows that the cost of each large-tool BMA is O(t). Finally, Lemmas 6 and 7 and
the associated corollary establish that there are a total of O(mN) large-tool BMAs.
Lemma 2 Let C be a cell small for toolt. For any large_tool(t, K, M), either MNC
is empty or the boundary of M N C consists of points in OC and A(1).

Proof. Suppose that M N C is nonempty. Take a point ¢ in (M N C)\ IC.
By our choice, ¢ is milled by large_tool(t, K, M) and so there is a free placement
d(p,t) that touches ¢, where p € K. We claim that p must lie on the boundary of
F(t) and so ¢ € A(t) or ¢ € 9P*. The latter is impossible as ¢ € dC otherwise.

Assume to the contrary that p lies in int(F(t)). If p lies on the boundary of
C @1, then ¢ € C which is impossible. Suppose that p € int(C &t N F(t)). For
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16t <28t

16t \
/D b
4t

Fig. 4. An illustration of the choice of the constant 28. The distance between
the center of ¢ on the upper left of the figure from the upper left corner of b is
4t 4+ 16V/2t + t & 27.7t < 28t.

F(t)

Fig. 5. Large-tool BMA for tool ¢. The solid square is a grid square b in G;.
The quadtree cells shown in dotted lines are within b @ 4¢. All of them are
small for ¢ and so b induces large tool BMAs of ¢t on them. After these large
tool BMAs, some cells will be milled completely and some are milled up to
accessibility arcs (shown in solid lines). The boundary of F(¢) is shown in

dashed lines.
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each cell C' € Gy, C' Pt lies within b 28¢. Thus, p lies in the interior of a connected
component of C'@ N F(t) that is a subset of K. This implies that p € int(K) and
we can perturb p to another p’ € K such that d(p’,?) contains a small neighborhood
of q. Therefore, ¢ and a small neighborhood of it should have been milled which
contradicts that ¢ € H(M N C)\ 9C. 0

Next we establish a bound on the length of the boundary of the milling action.
In general, we bound the lengths of the boundaries of F(t) ® ¢ and F(¢) in any
region of diameter O(t).

Lemma 3 Let ¢ be a constant. Then the length of the boundary of F(t)dtNd(p, ct)
1s at most a constant factor times t.

Proof. Overlay a square grid of side length ¢/2 on d(p,ct). By a packing
argument, there are at most (4c + 1)? grid squares intersecting d(p, ct). Let z be
one such grid square.

The boundary of F(¢) &t in the interior of  consists of disjoint circular arcs
{a;}, which are either portions of an accessibility arc in A(Z) or an edge of the
polygon P*. (If o is a straight line segment, then we take its radius to be infinity.)

For any point ¢ € «y, define f(¢) to be the center of the disk of radius ¢ that
touches ¢ and is tangential to «;. For each circular arc «; we define a wedge W;,
which consists of line segments {W 1 q € o;}. We are going to charge the length
of «; to the intersection of W; and the boundary of z. It is straightforward to see
that the length of the intersection of W; and the boundary of = i1s no less than a
constant times the length of «a;. The proof will be complete if we can show each
point on the boundary of = will be charged at most once.

We claim that no two wedges W; and I intersect each other, which implies that
each point on the boundary of z is charged at most once. Assume for contradiction,
that wedges 1W; and 1; intersect. Then clearly there must be points ¢; € o; and

g2 € o such that segments ¢ f(q1) and ¢2f(g2) cross each other. By definition of
fy laaf(q1)] = la2f(¢q2)| = t. Further, since ¢o lies on the boundary of F(t) @ ¢,
it follows that the disk d(f(¢1),t) does not overlap point ¢2. Thus |¢2f(¢1)] > ¢.
Similarly, |¢1 f(¢2)| > t. But this implies that in the quadrilateral ¢192f(q1)f(q2),
the sum of the length of the two opposite sides exceeds the sum of the length of the

two diagonals or f(¢1) = f(¢2), in which case the segments ¢1 f(q1) and ¢2f(¢2) do
not cross each other. In either case, we obtain the desired contradiction. a
Lemma 4 Let ¢ be a constant. Then the length of the boundary of F(t) Nd(p,ct)
1s at most a constant factor times t.

Proof. The proof is similar to the one given for the previous lemma. We
only mention the main difference, which concerns the definition of the wedges. The
boundaries of F(¢) in the interior of = consists of disjoint circular arcs {a;}. For
any point ¢ € oy, define f(q) to be the point on the boundary of the polygon that
touches the disk of radius ¢ with center at ¢. For each circular arc a; we define a

wedge W, which consists of line segments {qf(¢) : ¢ € o; }. We omit the rest of the
argument, which is analogous. ad
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Lemma 5 The cost of each large-tool BMA fort is O(t).

Proof. Placingt with center on JK costs 2¢. Then we move ¢ along the bound-
ary of K and then zig-zag inside K along vertical segments that are separated by a
distance at least 2¢ apart. By the result in Ref. [2], the cost of this is proportional
to the sum of the boundary length of K and the total length of the vertical seg-
ments. Since the total length of the vertical segments is O(t) as K C b @ 28¢, and
by Lemma 4 the boundary length of K is O(2), the cost of each large_tool(t, K, M)
is O(t). O

Next we show that the number of large-tool BMAs is O(mN). In order to prove
this, we will first need to establish a technical lemma.

Lemma 6 Ift is a tool such that F(t) is connected, then for any box b of side
length t, the number of connected components of b @ 2t N F(t) that intersect b is
O(1).

Proof. Let D denote any set of placements of tool ¢+ whose centers lie in b
such that each placement lies in a different connected component of b & 2¢ N F(¢).
Clearly any upper bound on the size of D is an upper bound on the desired number
of connected components. Let # = ct for some positive real parameter ¢ < 1,
to be specified later. Let D’ denote a set of disks with the same centers as the
disks of D, but whose radii are #. We will show that no three disks in D’ have
pairwise nonempty intersection. From this, and a simple packing argument, it
follows that the number of disks in I’, and hence the number of disks in D is O(1).
The key idea is that since two disks in D and hence D’ are centered in different
connected components, there is a bottleneck segment lying between their centers.
The distance of the segment from the centers decreases as ¢ becomes small. If three
disks in D’ have pairwise nonempty intersections, then the center of the middle disk
will be sandwiched between two bottleneck segments. Thus, if ¢ becomes small, two
bottleneck segments define a thin quadrilateral such that the middle disk is too big
to cross the two extremely short sides. The middle disk cannot cross the two longer
sides as they are bottleneck segments. Thus, the middle disk cannot move freely
around in P* which contradicts that F(?) is connected.

Consider the Voronoi diagram of the boundary of P. Recall the bottleneck seg-
ments described earlier. Consider the subset of bottleneck segments whose lengths
are less than 2¢. It follows from standard results on Delaunay triangulations and
Voronoi diagrams that these segments have pairwise digjoint interiors (but they may
share a common endpoint).

We begin by showing that if two disks of D’ overlap, then there is a bottleneck
segment that intersects the line segment joining their two centers. Consider two
placements of ¢ from D, such that the disks of radius ¢’ with the same centers
overlap each other. Let p and ¢ denote their centers. (See Fig. 6(a).) Without
loss of generality, assume that pg is horizontal. Let R be a rectangle with height
2t and with p and ¢ at the midpoints of the two vertical sides. Because p and ¢
are in D, they are in different connected components of b @ 2t N F(¢). This means
that it is not possible to move a tool ¢ with center from p to ¢ without moving the
center outside R. We interpret this differently. We shrink the disks centered at p
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Fig. 6. Bounding the number of connected components. The solid circles have
radius t, dashed circles have radius ¢, and dotted lines are bottleneck segments.

and ¢ to a single point. Simultaneously, we expand each point on the boundary of
R @&t and each point on the domain boundary inside R & ¢ to a disk of radius ¢.
Now, it is not possible to translate tool ¢ from p to ¢ if and only if some expanded
disks together separate p from ¢ in R @ ¢. So there are two overlapping expanded
disks such that the line segment connecting their centers intersect pg. Thus, there
is a pair of points on the domain boundary at distance less than 2¢ apart and the
line segment connecting them intersects pq. Pick the closest pairs among the above
pairs of points. Then among the closest pairs, pick the pair z,y such that the
connecting line segment zy has the leftmost intersection with pg. We claim that
zy 1s a bottleneck segment. xzy does not cross pq at p or ¢, otherwise either = or y
would like inside the disk of D centered at p or q. Let C' be the diametrical circle
of zy. The contact point z lies on a domain edge s which is either a horizontal line
segment or a circular arc that touches C' at . The same is true for y. Slide a copy
C" of C along s to the left by an arbitrarily small distance ¢ > 0 on s. If C” does
not encounter any other domain boundary point not on s for some ¢, then after the
sliding, we can expand C’ slightly while maintaining emptiness. This shows that zy
is a bottleneck segment. Suppose that for all € > 0, €’ will encounter some domain
boundary point not on s. The first possibility 1s that ' touches another domain
boundary point z on the semi-circle to the left of zy, but this means that zz or yz
is shorter than zy, contradiction. The second and last possibility i1s that during the
sliding, C" always touches or contains some point on the domain edge containing
y. But this contradicts either the shortestness or the leftmostness of zy. Hence, we
conclude that zy is a bottleneck segment intersecting pq.

Now, suppose to the contrary that three disks of D’ centered at some points
p, ¢, and 7 have pairwise nonempty intersection. We will show that for all suffi-
ciently small values of ¢, this will imply that F(¢) is not connected, leading to a
contradiction. (See Fig. 6(b).) From the observations of the previous paragraph, it
follows that there are bottleneck segments that intersect each edge of the triangle
pqr. Hence, there is a point, say p, that lies between the bottleneck segments s; and
s2 that intersect pg and pr. Also, s; and s intersect a disk of radius 2¢’ centered
at p.
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Consider the quadrilateral defined by the endpoints of s; and s2 (which may
degenerate to a triangle if s; and sa share a common endpoint). Observe that as
the parameter ¢ decreases, s; and s, intersect a shrinking disk centered at p with p
lying between them. Since the lengths of s; and ss are less than 2¢, and s; and s
pass arbitrarily close to the center of p, their lengths approach 2¢ as ¢ approaches
zero. Since s; and s» do not intersect, the other two sides of the quadrilateral will
fall below any given threshold for sufficiently small ¢. At the same time, p will lie
inside the quadrilateral.

Thus there exists a constant value of ¢ so that all four sides of the quadrilateral
are of length less than 2¢. Since p lies inside the quadrilateral whose vertices are
points of P’s boundary and whose sides are shorter than 2¢, the placement of ¢ at
p is effectively trapped at this location. In particular, the connected component of
F(t) containing p has a diameter less than ¢, and hence lies entirely within b & 2¢.
However, because ¢ and r are in different connected components of b & 2t N F (1),
they are in different connected components of F(¢). This contradicts the hypothesis
that F(¢) is connected. O

Lemma 7 There are O(1) large-tool BMAs fort induced by any grid square b € B;.

Proof. 1If ¢ is the smallest tool, let K be the set of connected components
of b @ 28t N F(t) that overlap b @ 4¢t. Otherwise let K be the set of connected
components of b @ 28t N F (1) that contain some component of N F(2t). Since one
large-tool BMA for tool ¢ 1s defined for each component in K, it suffices to show
that the number of components in K is O(1).

Consider the case when ¢ is not the smallest tool. Let K be any component in
K. Since K contains a component of b N F(2t), there is a free placement d(p, 2t)
where p € K Nb. Clearly d(p,t) C F(t) since a disk of radius ¢ with center in d(p,t)
lies completely within d(p, 2¢). Further, since p € b, d(p,t) C b 28t. Tt follows that
d(p,t) C K. By a packing argument, the number of components in K is O(1).

If ¢ is the smallest tool, then by our assumption F(¢) consists of one connected
component. Since b is of side length ¢, we can cover b 28f with a constant number
of boxes of side length ¢. Let &’ be any such box. Since (¥ @ 2t) C (b P 28t), the
number of connected components of b @ 28t N F(t) that overlap &' is at most the
number of connected components of &' @ 2¢ N F(t) that overlap &' (since expanding
the region can only improve connectivity). Thus, by applying Lemma 6 to ¥, it
follows that this number of connected components is O(1). This implies that the
number of components in K that overlap b & 4¢ is O(1). a
Corollary 1 There are O(mN) large-tool BMAs for all tools.

Proof. For each tool ¢, we define large-tool BMAs for each b € B;. Since a
quadtree box of width less than 16¢ can overlap b4t for at most a constant number
of grid squares b in G, the number of squares in B; is O(N). By Lemma 7, the
number of large-tool BMAs induced by each b € B; is O(1). It follows that there
are O(N) large-tool BMAs defined for a given tool ¢. Summing over all tools, we
have the desired result. ad
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Fig. 7. Small-tool BMA. U is bounded by the domain boundary and solid lines.
F(¢) is shown with dashed lines, and K is shown with dotted lines. All of U is
milled except the portion below the accessibility arc at the bottom.

4.2. Small-Tool Basic Milling Action

Unlike the large-tool BMAs, small-tool BMAs only act on a single cell of the
subdivision. At some stage when a small tool first acts on a cell, other tools may
have already milled portions of this cell, leaving one or more unmilled regions. We
do not know what these tools are, but (as we have already seen with the large-tool
BMAs) we design each BMA so that it either mills the entire region or it mills up
to an accessibility arc. Henceforth, the term unmailled component will refer to an
unmilled component that could have resulted by any sequence of BMAs. (Later
we will show that no matter what combination of tools have acted on this cell, the
number of possible unmilled components that could result is polynomially bounded.)
Intuitively, the task of each small-tool BMA is to mill as much material as it can
access within an unmilled component such that the tool is always in contact with
the unmilled component.

Let U be an unmilled component of C' such that ¢ is small for C'. Let K be a
connected component of U @ ¢ N F(t). Define M to be K ®tNU. K and M define
a small-tool BMA by ¢, denoted small_tool(t, K, M'). This action will move ¢ on the
surface with center in K to mill points in M.

As in the large-tool case, we will prove that the unmilled components remaining
after a small-tool BMA will be bounded by the boundary of the cell and portions
of accessibility arcs. In fact, we will show that for small-tool BMAs, each unmilled
component is bounded by at most one accessibility arc. From this we will show that
each unmilled component has constant combinatorial complexity.

Lemma 8 After small_-tool(t, K, M) acts on an unmilled component U in a cell C,
any resulting unmailled component 1s bounded by a portion of at least one accessibility
arc of radius t.

Proof. Let IV be a resulting unmilled component. Take a point ¢ in OW \ 9U .
Such a point ¢ must exist, otherwise U was not affected by small_tool(t, K, M). By
our choice, ¢ is milled by small_tool(t, K, M) and there is a free placement d(p,t)
that touches ¢, where p € K. We claim that p must lie on the boundary of F(t)
and so ¢ € A(t) or ¢ € P*. The latter is impossible as ¢ € 9C otherwise.
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Fig. 8. Facing accessibility arcs.

Assume to the contrary that p lies in int(F(t)). If p lies on the boundary of
U®t, then ¢ € OU which is impossible. The other possibility is that p lies in the
interior of a connected component of U & ¢ N F(¢) which is a subset of K. This
implies that p € int(K) and we can perturb p to another p’ € K such that d(p/,t)
contains a small neighborhood of ¢. Thus a small neighborhood of ¢ should have
been milled which contradicts that ¢ € W \ 9U. O

Next, we strengthen our result and show that each resulting unmilled component
is bounded by exactly one accessibility arc of A(t). To this end, we need two
technical results: Lemma 9 and Corollary 2. They are illustrated in Fig. 8. Let
us think of each edge of P* as being an open curve (line segment or circular arc).
Observe that when an accessibility arc of some tool ¢ is incident to an edge of P*,
the point of incidence subdivides this edge into two portions. Locally about the
point of incidence, one portion contains points that are accessible to ¢t and the other
contains points that are not. Points that are not accessible to t are said to lie outside
the accessibility arc. Observe that unmilled regions are always locally outside of any
accessibility arcs on their boundaries. Two accessibility arcs that are incident to the
same edge are said to face each other if the points between these accessibility arcs
lie outside of both arcs. We show that, because of the introduction of bottleneck
points, it is not possible for two facing accessibility arcs to be incident to the same
edge of P*.

Lemma 9 If the interior of an edge of P* is incident to an accessibility arc for
tool t, then no point on the outside portion of the edge is accessible to t.

Proof. Assume to the contrary that a domain edge e 1s incident at a point ¢;
to an accessibility arc of radius ¢ and that there a free placement of ¢ that intersects
a point of e that is outside this arc. (See Fig. 8(a).) Consider the point of contact ¢z
of such a placement that is closest to ¢;. Clearly the placement must be tangential
to e at this point. Since the placement cannot be moved closer to ¢;, there must be
a second accessibility arc incident to e at ¢ such that both accessibility arcs face
each other. Because these accessibility arcs are blocked by some other boundary
points, it follows that their centers lie on the Voronoi diagram of P*. The Voronoi
distance function v(p) is equal to these ¢ at each center and is smaller in between
(for otherwise there would be a free placement of ¢ that is closer to ¢ along e).
Therefore, there must be a bottleneck point somewhere within the segment ¢1¢-2,
contradicting the hypothesis that they both lie on the same edge of P*. a
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Fig. 9. Bounding the combinatorial complexity of unmilled regions for small-

tool BMAs.

Corollary 2 An edge of P* cannot be incident to two accessibility arcs (of possibly
different sized tools) that face one another.

Proof. If two such arcs exist, then the arc with a larger radius can accommo-
date a disk that has the same radius as the other arc and touches the domain edge.
(See Fig. 8(b).) This contradicts Lemma 9. O
Lemma 10 After the action smalltool(t, K, M), each resulting unmilled compo-
nent W 1s bounded by points belonging either to C or to exactly one accessibility
arc of A(t).

Proof. By Lemma 8, W contains a portion of some accessibility arcs of radius
t. Since t is small for C', the contact points between an accessibility arc, o, and P*
are within buf(C'). Recall that there can be at most two edges of P* within buf(C).

First we observe that both endpoints of « cannot lie on the same domain edge.
This is a simple consequence of the facts that « 18 a circular arc subtending an
angle less than 7, the domain edges are either straight line segments or circular
arcs, and that buf(C) intersects at most two edges of P*. Let e; and ez denote the
two domain edges to which « is incident. We assert that each edge is tangentially
incident to «. If not, then one endpoint of &« must coincide with a vertex of P*, and
the other with one of the edges e; or es. However, either this vertex is incident to
a third edge (contradicting the fact that buf(C') can intersect at most two edges)
or else both endpoints of « are incident to a single edge (contradicting the previous
observation).

Consider the subregion R of boz(C') bounded by « and e; and es (See Fig. 9(a)).
W lies within R. Suppose that W was bounded by some other accessibility arc j3.
Since unmilled regions lie outside of their accessibility boundaries, o and 3 face one
another. If 7 has radius no greater than «’s, then 7 was also produced by a small
milling action. By applying the above analysis it follows that £ is incident to e;
and es. However, the existence of an edge incident to two accessibility arcs that
face one another contradicts Corollary 2. Otherwise, if 8’s radius is greater than
a’s, then there is a free placement of a disk dg of radius ¢ that intersects R and
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lies on the inside of 3. (See Fig. 9(b).) If we move dg towards the disk d, the fact
that o is an accessibility arcs implies that dg must contact the domain boundary at
some point. This contact must be with either e; or e, by the same analysis used
above for ao. However, this free placement along such an edge contradicts Lemma 9.
Hence, we conclude that W is bounded by only one accessibility arc of radius . O

4.3. Complezity of Unmilled Region

In this section, we establish that after any sequence of BMAs the combinatorial
complexity of the unmilled region inside a cell is always bounded by a constant. In
the sequence, tools can change and large-tool and small-tool BMAs can interleave.
The consequence is that within each cell, the number of unmilled components 1is
always bounded by a constant and each unmilled component has constant complex-
ity.

Lemma 11 After any sequence of BMAs on a cell C, the unmailled region in C' has
constant combinatorial complexity.

Proof.  The proof involves two cases, depending on whether the unmilled
component resulted from a small-tool or large-tool basic milling action.

Small-tool case. By Lemma 10, after a small-tool BMA, each unmilled compo-
nent of C'is bounded by straight line segments and circular arcs, limited to the
four sides of boz(C'), at most two domain edges of P*, and at most one accessibility
arc. Therefore, each unmilled component has constant combinatorial complexity.
Thus, it suffices to show that the number of connected components is bounded by
a constant.

Moreover, we assert that each unmilled component U either borders a domain
edge intersecting C' or a vertex of boxz(C'). To prove this, observe that if U is not
bounded by 9P*, then for any maximal connected component s of a side of boz(C)
bounding U, s lies outside of at most one accessibility arc by Lemma 10. Thus, the
other endpoint of s must be incident to a vertex of boz(C'). Since there are only a
constant number of box vertices, 1t suffices to show that the number of connected
components bounded by domain edges is bounded by a constant.

Each domain edge intersecting C' cannot border more than two unmilled com-
ponents, for otherwise the domain edge would be incident to two accessibility arcs
that face each other, contradicting Corollary 2. (The worst case occurs when both
of the edge’s vertices lie within unmilled components, and hence each faces an acces-
sibility arc.) Therefore, the total complexity of all unmilled components produced
by small-tool BMAs acting on C'is a constant.

Large-tool case. Let U denote the set of unmilled components of C' that resulted
from large-tool milling actions. There are two key ideas. First, since we are con-
cerned with large-tool milling actions, the radius of accessibility arcs bounding C'
is not small compared with size(C). Second, if there are many accessibility arcs
bounding U, it implies that there are many placements of tools around U whose
radii are not small compared with size(C'). This will introduce overlapping among
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Fig. 10. Bounding the combinatorial complexity of unmilled regions for large-

tool BMAs.

these placements and the overlapping increases as the number of placements in-
creases. For one such tool placement d, the other tool placements overlapping d
create an empty region around d which implies that d can be moved a bit into U
and mill more. This is impossible. The details are as follows.

We assert that no component of U can be bounded by the accessibility arc of a
tool smaller than size(C')/16. This is because such an arc would have resulted from
the milling action of a small-tool BMA. By definition such a milling action would
remove everything reachable to this tool within the component. This implies that
no larger tool could later introduce an accessibility arc into the remaining unmilled
component. Thus, it suffices to bound the number of accessibility arcs of radius at
least size(C')/16.

To simplify the analysis, we overlay a square grid on C' of side length /27, where
r = size(C')/32. The number of such boxes is bounded by a constant. Consider one
such box z. Observe that if we enclose x within a disk D, of radius r, then the
closest point outside buf(C') is at distance greater than r from D,. We will show
that the number of accessibility arcs for all large tools ¢ that may contribute to the
intersection of U with D, is O(1). Tt will follow that the number of accessibility
arcs that bound U is also O(1).

Let ¢ be the center of D,. Let Ds, be a disk of radius 2r centered at ¢. Since
Dy, lies entirely within buf(C), at most two edges of P* may intersect this disk.
(See Fig. 10(a).) Let {d;} be the set of free placements of tools for C' that support
accessibility arcs that contribute to the intersection of U with D,. Let {¢;} be their
respective centers. The radius of each disk is at least size(C')/16 > 2r. Sort these
disks in angular order about ¢ according to locations of their centers. If there are
no three consecutive disks d, d2, and ds such that Zejees < /6 and Zeaces < 7/6,
then it follows that there are at most 24 such disks (two per sector of 7/6). We will
show that if we exceed this number by more than a small additive constant, then
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there will be a triple of consecutive disks, di, ds, and d3, satisfying this condition,
such that one of these three disks is free to move further into D,.. However, this
will imply that it could not contribute an accessibility arc, a contradiction.

First, by simple trigonometry, any disk d; of radius at least 2r that intersects
D, must intersect Da, along an arc of angle at least 2arccos(3/4) =~ 1.445 > «/3.
Second, if we draw a diameter of d; perpendicular to ce¢; (shown as a dashed line
between shaded points in Fig. 10(a)), and join ¢ to one diameter endpoint and ¢;,
then the angle between these rays is at least arctan(2/3) ~ 0.588 > 7 /6. (In both
cases, the minimum occurs when d; has radius exactly 27, and ¢; 1s at distance 3r
from c.) Third, the center of no d; can lie inside Da,, otherwise, d; would completely
enclose D, , implying that d; contributes no accessibility arc that intersects D,.

We consider two possible configurations of di, ds, and ds depending on the
position of the endpoints of the diameter of d; perpendicular to ces. Call this
diameter 5 (the dashed line segment in Fig. 10(a)). In the first case, both the
endpoints of /5 lie inside d; and d3. By the lower bound on the radii of d; and d3
and the upper bound on the angle their centers subtend about ¢, it follows that /5 is
fully contained within the union of d; and d3. Since these are both free placements,
and since ds contributes an accessibility arc, it follows that ds must contact JP*
along the portion of the arc of dz that lies within Da, \ (d1 U ds). By the same
reasoning used in Lemma 10, 1t follows that this accessibility arc must contact both
of the domain edges of P* that lie within D,,. However, observe that ds is unique
in this, since no other accessibility arc can have its contact points lying on the
edges of P* within Da, without violating Corollary 2. Thus excluding d2, no other
accessibility arc can be in this configuration.

For the second configuration, either the left endpoint of [; lies outside d; or
the right endpoint of [s outside ds. Let us consider the latter, as the other case is
symmetrical. (See Fig. 10(b).) Let I3 be the diameter of ds that lies on the line
through ¢ and es (shown as a dotted line in the figure). From the trigonometric
observations above it follows that I3 lies within D, U ds. If the portion of dds
that contributes the accessibility arc intersects the domain boundary within Ds,,
then this contact involves one of the two edges of P* that lies within Ds,. Again,
by Corollary 2, this can only happen for a constant number of accessibility arcs.
Otherwise, the closest contact of d3 with the domain boundary occurs at some point
p that lies outside Ds,.. The point ¢ on Jds that is diametrically opposite to p, lies
in dy. However, the arc of length 7 from ¢ to p is free from contact with the domain
boundary, contradicting the hypothesis that ds contributes an accessibility arc. O

Lemma 12 Given an unmilled component U in a cell C' and a tool t small for
C, U@ tnF({) consists of a constant number of components, each of constant
combinatorial complexity.

Proof. Let z be %bo:p(C’). If ¢ moves with center in z, then ¢ is entirely inside
buf(C). Since there are at most two domain edges intersecting buf(C'), the com-
plexity of N F(t) is bounded by a constant. By Lemma 11, the complexity of
U is bounded by a constant. Since U C C and ¢ is small for C', U &t C z. So
UetnNF@) =Udtn (xnNF(@)) which is the intersection of two shapes of con-
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stant combinatorial complexities. Thus, we conclude that U &t N F(¢) consists of
a constant number of components, each of constant combinatorial complexity. 0O
Lemma 13 There are O(N(mn)°W)) basic milling actions by small tools.

Proof. It suffices to prove that there are O((mn)?V)) basic milling actions by
small tools in a cell C. By Lemma 2, Lemma 10, and Lemma 11, after any sequence
of BMAs the boundary of the unmilled region in C'is bounded by at most a constant
¢ elements of the following varieties: line segments on the boundary of boz(C'), the
at most two domain edges intersecting boxz (C'), and accessibility arcs. There are m
different tools and there are O(n) accessibility arcs for each tool size. Therefore,
there are O(m°n®) possible unmilled regions which may be generated after some
sequence of milling actions. Hence, there are O(m°n®) unmilled components that
a basic milling action by a small tool ¢ (with respect to C') may act on. Given an
unmilled component U, U &t N F(t) consists of a constant number of components
by Lemma 12. This gives rise to a constant number of basic milling actions by ¢ on
U. In all, there are at most O(m*T!n®) basic milling actions by some small tool in
C. Summing over all cells, we obtain the bound O(m**t1n°N). O

5. Approximating Optimal Milling using BMAs

The main result of this section 1s to show that any milling plan can be converted
into a milling plan consisting entirely of BM As while sacrificing at most a constant
factor in cost.

We associate with each BMA large_tool(t, K, M) or small_tool(t, K, M) a starting
point, which may be any point in K. When we perform a BMA, the tool will first
be placed at the starting point and at the end, the tool is returned to this point.

Define mill(t, K, M) to be the milling cost of the milling operation defined by
the BMA large_tool(t, K, M) or small_tool(t, K, M). Given a set of BMAs S, de-
fine Sy to be the subset of S which uses tool t. Define TSP(S) to be the length
of a minimum Fuclidean traveling salesman tour on the starting points of S and
the tool-change center. The cost of S is composed of two elements: the time re-
quired to perform each of its milling operations and the time to move from the
starting point of one to the starting point of another. Define mill(S) to be the
sum of mill(t, K, M) for all large_tool(t, K, M) and small_tool(t, K, M) in S. Define
transport(S) = Y, TSP(Sy).

We immediately have the following.

Lemma 14 Let S be a set of BMAs that mills P* . Then there exists a mulling
plan ¥, using tools in S, such that

mill(¥) = mill(S), transport(¥) = transport(S).

Conversely we assert that any milling plan ¥ can be transformed into a set of
BMAs that mills P*, whose milling and moving times are comparable to those of
W. Before proving this main result, we prove three technical lemmas.

Lemma 15 Consider any path of length L among a uniform rectangular grid of
side length s, and let © be the number of cells of the grid that the path intersects.
Then i < 2\/2L/s + 4.
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Proof. Replace the path by a rectilinear path by breaking it at its intersection
points with the grid. The resulting path is longer by a factor of at most v/2. In
the worst case, the path starts very close to a vertex, and so it can visit four cells
within an arbitrarily small distance. After this, with each walk along the path by
distance s the path can visit at most two new cells. Thus the number of cells visited
satisfies 1 — 4 < 2\/§L/5. a
Lemma 16 For any path p of length L, there is a sequence of disks d(p;, 2t), where
1 <i<[L/t] and p; lies on p, such that pdt C |, d(ps, 2t).

Proof. Put d(p1,2t) at an endpoint p; of p. Traverse p from p; to the other
endpoint. When p leaves d(py,t) for the first time, put d(ps,2t) at the exit point.
Repeat the above until we reach the other endpoint of p. The result follows by
observing that each placement is separated by an arc length of at least ¢. a

Lemma 17 Let Cy and Cy be two cells such that size(Cy) > size(Ca). If (box(Ch)®
DN (box (C2)@t) is nonempty for somet < size(C1)/3, then size(Cy) > size(C1)/100.
Hence, for any point q, there are O(1) cells C' such that box(C) @ (size(C)/3) con-
tains q.

Proof. Assume to the contrary that size(Ca2) < size(C1)/100. Since ¢ <
size(C1)/3 and (box(Ch) & 1) N (box(C2) & t) is nonempty, both the horizontal
and the vertical distances between the centers of box(C1) and box(C3) is less than
Tsize(C1)/6 + size(C2)/2 < 1.4size(Cy). The buffer zone of the parent of box(C2)
lies inside 9boz(C2) and has width at most 0.09size(C1). Thus, the buffer zone
of the parent of box(Cs) lies inside 3box(Cy) which is the buffer zone of boz(Cy).
This implies that the buffer zone of the parent of boz(C2) intersects at most two
domain edges, which contradicts the splitting of it. Therefore, we conclude that
size(Ca) > size(C1)/100.

Take any point q. Let C be the cell of the largest size such that ¢ € boz(C) &
(size(C)/3). Thus, a square of width 3size(C') centered at ¢ contains all the boxes
boxz (C") for some cells C' such that ¢ € box(C") & (size(C”")/3). From the above
size(C") = O(size(C)). So a packing argument shows that there are O(1) of such
boxes. Since each cell is a connected component of a box and each box intersects
at most a constant number of domain edges, the number of cells is also O(1). O

Theorem 2 Let U be a milling plan. Then there exists a set S of BMAs which mills
P* using at most twice the number of tools as in U, such that mill(S) = O(mill(¥))
and transport(S) = O(mill(V) + transport(¥)).

The proof of this theorem is presented in the remainder of this section. We first
identify a set S7 of large-tool BMAs and then a set S; of small-tool BMAs that
mills P*. Clearly, mill(Sy U Sa) = mill(S1) + mill(S2) and transport(S; U S2) <
transport(Sy) + transport(Ssz). Thus, it suffices to bound the milling and transport
costs of Sy and Sy separately by mill(¥) and transport(¥). Each of S; and S,
will involve at most the same number of tools used in ¥. Thus ntools(S; U .Sz) <
2ntools(¥). For each tool t, ¥, denotes the set of milling paths involving ¢, and
W<, denotes the set of milling paths involving ¢ or smaller tools. We think of ¥; as
the set of paths along which the center of the tool moves and the same applies for
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W<;. To complete the proof, we present the analyses of the large-tool and small-tool
cases in the next two subsections.

5.1. Large-Tool BMAs

For each continuous curve 7, in ¥;, we find a set of large-tool BMAs so that if
a point ¢ in a cell of size less than 4¢ is milled by ¢ traversing along 5, then ¢ is
milled by some large-tool BMA in this set. Let ¢ be the smallest tool in the range
(t/4,t]. Let Xy be the squares b in the grid Gy through which n; passes. For each
square b € Xy, we add to S all large-tool BMAs large_tool(t', K, M) induced by b
such that K contains a point on 7; inside . We claim the following:

(i) Tfa point ¢ in some cell C'is milled by a tool in ¥ of size greater than size(C')/4,
then ¢ is milled by a large-tool BMA in S;.
(ii) mill(S1) = O(mill(¥)) and transport(S1) = O(mill(¥) + transport(V)).

To prove (i), since ¢ is milled by some tool t of size greater than size(C')/4,
q € d(p,t) for some point p on a curve 5, in ¥;. Let b be the square in Gy that
contains p. Let K be the connected component of (b& 28¢') N F(¢') that contains p.
(Note that K must exist as b ¢ 28t contains p and F(¢) C F(¢').) We claim that b
induces the BMA large_tool(t', K, M) which is added to Sy. Since p € b and d(p,t)
overlaps C' and ¢ < 4¢’, this implies that b @4t overlaps C'. Also, since size(C) < 4t
and t < 4t', size(C') < 16t'. If ¢’ is the smallest tool, then we are done. Otherwise,
we need to check if K contains a component of b N F(2t'). Since t > 2t by choice
of t', F(t) C F(2t'). Since p € F(t) and p € K, we conclude that K contains a
component of b N F(2t"). Finally, we verify that large_tool(t', K, M) mills ¢. Recall
that ¢ € d(p,t) for some p on 1 and p € K. Thus, one can first center ¢’ at p and
then move within d(p,?) to mill q.

To prove (ii), by Lemma 15, each 7, in ¥, passes through O(L,, /t+1) squares in
Gy and so Xy has O(Ly, /t + 1) squares. By Lemma 7, each square in Xy induces
O(1) large-tool BMAs for t'. So the total number of large-tool BMAs identified
for ny is O(Ly,/t + 1). By Lemma 5, the total milling cost of these BMAs is
O (Ly, /t)+t") = O(L,,+1t") which is bounded by the milling cost of 7; (length plus
placement cost 2t). Thus summing over ¥, for all ¢, we have mill(S1) = O(mill(¥)).

We can visit all the large-tool BMAs in Sp involving tool ¢ as follows. Follow ¥
to transport ¢ to a point on ;. Then transport ¢ to an endpoint of 7, (this costs
O(L,,). Transport to the starting points of the large-tool BMAs defined at this
endpoint and apply the BMAs. Traverse along 7, to the center of the next disk in
D, and repeat the application of BMAs (this costs O(L,, +t)). Finally, transport
t to the point on 7, from where ¥ will leave #; (this costs O(Ly,)). Thus, the entire
tour can be viewed as the transport of £ in ¥ plus some detour. The cost of the
detour sums to O(mill(¥;)). Thus, transport(S1) = O(mill(¥) + transport(V)).

5.2. Small-Tool BMAs

We assume that all the large-tool BMAs in S; have been applied. Let C' be
a cell with an unmilled region. Any tool ¢t in ¥ that acts on this unmilled region
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must satisfy ¢ < size(C')/4 and so t must be small for C. We will identify a set
Sy of small-tool BMAs to mill the rest of P* and charge the cost to mill(¥) and
transport(¥).

The charging scheme for the small-tool BMAs is more complex than for large
tools. Consider some unmilled component. Let ¢ be the largest tool used by ¥ to
mill any point of this component. We will introduce the corresponding small-tool
BMA for ¢ to mill as much of this component as possible without losing contact with
it. The key to establishing the approximation bound is to show that no combination
of smaller tools could mill the same region with significantly less cost. Recall from
Section 2 and Fig. 1 that one reason that larger tools are not necessarily better than
smaller tools is that a large tool may only shave away a small amount of additional
material, into which a small tool may be able to plunge deeply. Intuitively, if tool ¢
does plunge deeply into the unmilled region, then it will mill more efficiently than a
smaller tool. On the other hand, if ¢ does not plunge deeply into the unmilled region,
then the small-tool BMA will scrape along the boundary of the unmilled region. To
account for this, we will introduce a charging scheme to pay for this milling action.
The boundary of each unmilled region will be assigned a charge proportional to its
length. We will then show that the total charges will be dominated by the other
costs of our milling plan.

To facilitate the charging, we need to initialize some charge on boundaries of
unmilled regions after applying all large-tool BMAs in S;. For each segment on
these boundaries, we associate a charge proportional to its length. We claim that
these charges can be paid for by mill(¥) and the argument is as follows.

By Lemma 3, the sum of lengths of segments that lie on accessibility arcs left
by large-tool BMAs in Sy can already be paid for by mill(Sy), which is O(mill(¥)).
The other boundary segments of the unmilled regions lie either on the boundary
of quadtree boxes or domain edges. Let s be a boundary segment of the unmilled
region in a cell C' that lies either on the boundary of boz(C) or on some domain
edge bounding C'. Let ¢ be the largest tool in ¥ that mills any point on s. Consider
st

Suppose that s is a straight line segment. Let ¢’ be the tool traversing a subpath
pr in ¥ N s @ (4¢/3) such that py @t overlaps s. Note that ¢ <¢. By Lemma 16,
the perimeter of py @t is less than |py| + O(F'). If we take all such tools and
subpaths, then s is covered by |J, p & ¢’ and so |s| < >,/ |pe| + O(t'). Notice
that each py either traverses a distance of at least ¢/3 in s @ (4¢/3) \ (s @ ¢) or
contains a placement of ¢'. Thus, the O(¢') term can be charged to this placement
or py itself. Thus, |s| can be charged to the total cost of such milling subpaths p,.
Hence, by Lemma 17 and Lemma 11, the total length of straight line segments of the
unmilled regions can be charged to O(mill(¥)). The possibility that s is a circular
arc can be handled identically. This proves our claim that charges associated with
boundaries of unmilled regions after applying large-tool BMAs in S; can be paid
for by O(mill(¥)).

Let U be the set of unmilled components after applying large-tool BMAs in 5.
We define the set S5 of small-tool BM As iteratively as follows. Remove U € U. Let
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t be the largest tool in ¥ that mills any point of U. For each connected component
K of (U & t)N F(t) that intersects Wy, we add small_tool(t, K, M) to Sa. Then we
subtract K @t from U for each such K and put the unmilled components produced
back to U. We repeat the above until & becomes empty.

We bound mill(S2) by bounding the placement costs and milling path lengths
separately. Take any small_tool(t, K, M) € Sa. In W, there is either a placement of
tin K &t or a segment 7 of length ¢ in (K @)\ K. We charge the placement cost
of small_tool(t, K, M) to this placement in K @t or the length of . At any moment
in time, a point ¢ on W¥; can only lie inside K for at most a constant number of
small-tool BMAs in S5 by Lemma 17, Lemma 11, and Lemma 12. Moreover, after
applying small_tool(t, K, M), ¢ is at distance at least ¢ away from any new unmilled
component produced. Thus, ¢ cannot be charged again for these new unmilled
components or any subset of them. Therefore, the placement costs of small-tool
BMAs in Sy is bounded by O3, mill(¥y)) = O(mall(¥)).

To bound the milling path length of small_tool(t, K, M), consider the intersection
I'= KNW¥g;. I'UOJK is an arrangement of curves (possibly consisting of several
connected components). (See Fig. 11(a), for example.) For each tool ¢’ used in W<,
we let 1 denote the portion of a milling path for tool ¢’ that lies in T'. If we move
t along 0K and t’ along 7 for each 1y € T', we must mill the entire K @ ¢. The
reason 1s as follows.

Let ¢ be any point in K @t. If ¢ is at distance < ¢ from some point on K, then
it must be milled as ¢ is moved along 0K . If ¢ is at distance > ¢ from every point
on K (i.e. ¢ € K &), then ¢ must lie inside U. Further, since ¢ is the largest tool
in ¥ that mills any point of U/, ¢ must be milled by ¥ using a tool ¢ of size < t.
Clearly, the center of such a tool ¢’ lies within K.

Our plan is roughly to move ¢ almost along I' U 0K to bound the milling path
length of small_tool(t, K, M). The main problem with this strategy is that if ' con-
sists of many different components, then the placement cost of ¢ for each component
cannot be paid for by the much smaller placement costs that may have been in-
curred by ¥. To remedy this, we will add extra segments to connect all components
in ' UJK; we will show that the length of these segments can be paid for either by
the length of these components or by the placement costs in V.

Each connected component i of [UJK can be viewed as a single oriented curve
by an Eulerian traversal. Let ¢, be the largest tool used in n (we assume that ¢ is
used for 0K). By Lemma 16, we can find L,/t, + 1 disks of radius 2¢, to cover
n @ t,, where L, is the length of . We add a straight line segment of length 2t,
to connect the envelope of the union of these disks and 7. We denote the union of
this extra line segment, the boundaries of the disks and » collectively by n*. (For
example, see Fig. 11(b).) The total length of n* is O(L, +t,). Also, let n® denote
the region formed by taking the union of these disks. If we could move ¢, along n*,
then this would mill all of 5. However, it may not be possible to move t, along
n*, if it projects outside of K. Therefore, we trim nf* by taking its intersection with
K. Also, we trim n* by taking its intersection with K and then adding the portion
of K that lies within the (trimmed) nf. (For example, see Fig. 11(c).)
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@ (b) (©
Fig. 11. Charging argument for small-tool BMAs. Figure (a) shows K N Ve
Figure (b) shows n* for one component i shown in bold. Figure (c) shows the

trimmed n* for another component 1 shown in bold.

We claim that moving ¢, along ™ mills all of 7. For the sake of contradiction,
assume that there is a point ¢ in n® which cannot be milled by moving ¢, along
n*. Let ¢ be inside disk x. Then ¢ cannot be within distance ¢, of center of disk
x because moving ¢, along n would mill ¢ and #* contains 7 since n lies entirely
within K. Let p denote the closest point to ¢ on the boundary of disk x. Clearly p
must lie outside of K, else ¢, would be placed at p and it would mill ¢. Thus, there
must be a point on the boundary of K which intersects segment ¢p and moving ¢,
along the portion of K included in n* would mill ¢, contradiction. This proves our
claim that moving ¢, along n* mills all of .

Earlier we proved that moving ¢ along 0K and ¢’ along n for each 5y € T') we
must mill the entire K & ¢. It follows that {J, cryax(n @ t)) N K = K. Since P
contains (n @ ty) N K, U, cruox n® = K. Let n° be the connected component in
the arrangement UneruaK n* that contains 0K. We claim that by moving ¢ along
nY, we mill the entire K @¢. The argument is as follows.

Suppose there is a point ¢ € K @ t, which is not milled by moving ¢ along °.
Certainly, ¢ cannot be within distance ¢ of some point on 0K, since all such points
are milled as ¢ is moved along 0K. Assume therefore that ¢ lies within K ©¢. Let
n' denote the union of all components in the arrangement UneruaK n* for which
the component contains some n* such that ¥ contains ¢. Since moving ¢ along any
component in ' would mill ¢, it follows that no component in n' is connected to
OK. But this implies that there is a point sufficiently close to the boundary of n'
(and therefore inside K), which is not contained in |J, cryax n®. This contradicts
what we proved earlier and so moving ¢ along 7° must mill K @ ¢.

Next we bound the length of the milling path for applying small_tool(t, K, M).
Clearly this is bounded by the length of n°. Let ¢ be the connected component
of ' U K that contains K. Then the length of the milling path for applying
small_tool(t, K, M) is bounded by the sum of length of £* and O(L*), where L* =

Y oneruak gze Ln Tty
L* is bounded by the sum of lengths of K N W<; and the associated placement
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costs of W< in K. At any moment in time, a point ¢ on W<, can only lie inside K for
at most a constant number of small-tool BMAs small_tool(t, K, M) by Lemma 17,
Lemma 11, and Lemma 12. Hence, ¢ lies on the milling path of only a constant
number of small-tool BMAs in S5 that can be applied at this moment. Moreover,
after applying one such small_tool(t, K, M), the same point ¢ is at distance at least
t away from any new unmilled component produced. Thus, ¢ cannot be used again
in the future in the milling paths for these new unmilled components or any subset
of them. Therefore, summing L* over all small-tool BMAs in Sz is O(mill(¥)). The
length of £* is bounded by the sum of length of 9K plus the length of K N W<, plus
O(t). The O(t) term can be absorbed like the placement cost of small_tool(t, K, M).
As analyzed before, the sum of the lengths of K N W<; over all small-tool BMAs in
Sz is O(mill(¥)). Tt remains to bound the length of K.

First, by Lemma 12, there is a constant number of segments in K. Second, we
claim that any placement of t on K contains a point on 9U. Otherwise, such a
placement must then lie in the interior of U and its center must lie on F(¢). But
this implies that the interior of U contains a point on the boundary of the domain,
contradiction. Now, we are ready to bound the length of K as follows. Move the
tool t with center along each boundary segment s on K. By our second claim,
moving ¢ with center along s will eliminate points on 0U. Moreover, the length of s
is at most the length of segments on U eliminated + O(t). By our first claim, the
total length of 9K is bounded by O(¢) plus the length of segments on 9U eliminated
while moving ¢ along K. The O(t) term can be absorbed like the placement cost of
small_tool(t, K, M). 9U consists of segments of two possible kinds. The first kind
consists of segments on boundaries of unmilled regions left after applying large tool
BMAs in S;. By our initial setup, these segments carry enough charge to pay for
themselves. The second kind consists of accessibility arcs left after applying some
small tool BMAs introduced earlier to Ss. By Lemma 10, a small tool BMA will
introduce at most a constant number of accessibility arcs. Thus, we can charge the
sum of lengths of these accessibility arcs to the placement cost of the small tool
BMA introducing them. As analyzed before, the sum of placement costs of small
tool BMAs in S is bounded by O(mill(¥)).

The above establishes that mill(S2) = O(mill(¥)). Given any tool ¢, we trans-
port ¢ as follows. Take out all the small-tool BMAs small_tool(t, K, M) in S,
involving ¢t. By construction, ¥, visits some point gg in each K. Hence, we
can visit all the small-tool BMAs in Sy involving ¢ by following W¥; which costs
mill(¥y) + transport(V,). At each small-tool BMA small_tool(t, K, M) visited, we
take a detour from ¢x to the starting point specified for small_tool(t, K, M), mill
points in M, and finally return to ¢x . The trip from gx to the starting point and the
final return to ¢x costs no more than the milling path length of small_tool(t, K, M).
Therefore, transport(Ss) is bounded by >, mill(¥;)+ transport(¥;) plus the sum of
milling path lengths of small-tool BMAs in Sy. The latter sum is O(mill(¥)) as an-
alyzed before. Hence, transport(Sz) = O(mill(¥) + transport(¥)). This completes
the proof of Theorem 2.
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6. Greedy Approximation

We reduce the problem of finding an optimal milling plan to a weighted set cover
problem: given a set S and a family Z of some subsets of .S where each X € Z is
associated with weight w(X), the objective is to find Y C Z such that S = (Jx oy X
and ) x ¢y w(X) is minimized. Denote such an instance by (5, Z). We approximate
the weighted set cover problem with a greedy algorithm, thus achieving the claimed
logarithmic factor approximation. The difficulty is that, as we will see, the instance
of our weighted set cover problem is too large to be described explicitly. Therefore,
we run an approximate greedy algorithm on a succinct problem description. We
will show that this only adds an extra constant factor.

0.1. Reduction

We refine the subdivision of P* by overlaying the accessibility arcs of F(¢) for
all ¢ on it. The set of faces in the refined subdivision is the set S in our weighted
set cover instance. Intuitively, we have to cover all the points in P* by covering all
the faces in S. It remains to define Z.

For each large_tool(t, K, M) or small_tool(t, K, M), M is a subset of faces in S.
We call K a t-locus and M a t-region. A 1-subset is union of some {-regions and
so a t-subset 1s a set of faces in S. For each ¢-subset X, we denote by X the set
of t-regions forming X and we denote by X the collection of corresponding ¢-loci.
The weight w(X) of X is the sum of three terms. The first term is the total milling
costs of the t-regions in Xpr. The second term is the length of the MST connecting
the tool-change center and the starting points of the ¢-loci in Xg. The third term
is the sum of placement costs O(|Xg|-t). These terms give the total cost of milling
faces in X using the BMAs induced by Xg.

We first include in Z the collection of all possible ¢-subsets for each tool .
Then we prune Z such that for each tool ¢, X € Z, and any cell C, if there are
small_tool(t, K, M) and small_tool(t, K', M') where K, K' € Xg, M,M' € Xy,
and M, M’ C C, then small_tool(t, K, M) and small_tool(t, K', M") act on unmilled
components of the same unmilled region of C'. By our proof of Theorem 2, solving
(S, Z) will return at least a constant factor approximation of the milling problem.

6.2. Approzimate Greedy Algorithm

If (S, 2) is described explicitly, then we can use the following greedy heuristic
to obtain an O(logm + log N') approximation factor. Initialize the cover ) to be
empty. Compute the ¢-subset X € Z that minimizes the average weight defined
to be the ratio w(X) divided by the number of faces in X that are currently in S.
Then include X in Y and remove all the faces in S contained in X. Repeat until
S becomes empty. It is well known that this procedure produces a set cover whose
total weight is at most In |S| times the optimal. In our case, |S| = O((Nmn)°M)).
Since N > n, the approximation ratio is O(logm + log N'). Unfortunately, it is
not efficient to describe (S, Z) explicitly, since | Z] is exponential in the number of
faces in S. Instead we only store the set of ¢-regions for all tools and compute a
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t-subset of approximately minimum average weight (within a constant factor) by
solving a series of instances of a variant of k- TSP. Hence, we still solve (S, Z) within
a logarithmic approximation factor.

6.2.1. Strategy and difficulty

We briefly review the k-TSP problem and introduce a variant that will be solved
repeatedly as a subproblem. Given [ points in the plane, the k-TSP is to find
a tour of minimum length that visits any j of the [ given points. The k-TSP
problem is NP-hard but it can be approximated to within any constant factor in
polynomial time.*'® These algorithms for approximating the kTSP problem are
based on showing that computing the optimum tour of a particular structure will
provide an approximation to the optimum tour. Then the optimum tour of the
particular form can be computed using dynamic programming. We generalize the
k-TSP problem to find a tour that collects coins at the visited points. Each point
p is given a table table(p) and each entry of table(p) is a coins-cost pair which
tells the cost of collecting the associated number of coins at p. The j-WTSP is
to find a tour that collects j coins so that the tour length plus the sum of the
cost of collecting coins at visited points is minimized. This is defined to be the
weight of the tour. The dynamic programming paradigm for approximating the
k-TSP is powerful enough to approximate the j-WTSP within a constant factor in
polynomial time. The geometric component of the £-TSP approximation algorithm
is unaffected by this reduction, so the approximation bounds proved in Refs. [4,18]
hold here as well.

Our strategy is to compute, for each tool ¢, a ¢-subset of approximately minimum
average weight, and then return the one of the least average weight. Consider
computing this ¢-subset for tool £. We first outline our approach by making the
(invalid) assumption that t-regions are disjoint. We will show how to overcome this
afterwards.

Given a t-region M, fix a point p in the corresponding t-locus. Let f, be the
number of faces covered by M. Let ¢, be the sum of milling cost and placement
cost for the BMA by ¢ that mills M. Create the table table(p) which contains
only one entry, namely, (f,,cp). Repeat this for all other ¢-regions. This yields a
collection of points and their associated tables. Let F} be the maximum number of
faces currently in S that are covered by some t-region. For each j, 1 < j < Fy, find
the approximate j-WTSP and compute its average weight. Afterwards, select the
tour with the minimum average weight and this corresponds to the ¢-subset with
approximately minimum average weight.

Due to the possible overlapping among t-regions, the number of faces covered
when visiting a set of points 1s not simply the sum of numbers of faces covered when
visiting each point. Thus, the above strategy needs to be improved to overcome
this difficulty. We describe below two transformations to get around this problem
and obtain the desired series of instances of j~-WTSP.
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6.2.2. Collapsing small-tool BMAs

Let large_cell(t) denote the set of cells for which ¢ is small. Given a cell C' €
large_cell(t), all the t-regions inside C' are generated by small-tool BMAs by ¢.
If box(C) @ (size(C)/3) does not contain the tool-change center, then we put a
representative point pt(C) at the center of boz(C) as the common point for all
t-regions in C. If box(C) @ (size(C)/3) contains the tool-change center, then we
put a representative point pt(C') at the tool-change center. (If boz(C') contains two
cells, then we can put these two points slightly apart at the center of boz(C').) Let
M be the milling plan obtained in Theorem 2. We modify M as follows. First,
if ¢ is transported to C' and M 1is the first ¢-region in C visited by ¢, then we first
transport ¢ to pt(C') and then to M to start milling. Afterwards, if ¢ is transported
to pt(C') several times, then we transport ¢ to pt(C') exactly once and then mill all
the t-regions in C' that ¢ should mill before going to another cell. Let M’ denote
the modified milling plan.

Lemma 18 The tour length of t in M’ is within a constant factor of the tour length
of t in M.

Proof. We will show that detouring via the common point pt(C) of a cell C
increases the tour length of ¢ by a constant factor, and the lemma will follow.
Thus, we focus on proving that the detour is not expensive. Let M* denote the
modification of M with the detour. Let 7" and 7™ be a tour of ¢ in M and its
modified version in M™* respectively. We first modify 7™ as follows. In 7™ if there
is an edge e from the starting point of the ¢-locus Ky for a {-region in cell Cy to
pt(C2) and then to the starting point of the #-locus Ks for a t-region in cell Cy,
then we replace e by a path of two edges: from the starting point of K; to the
starting point of K2 and then to pt(C3). Let T denote the modification of 77*.
The length of T is no less than the length of T by triangle inequality. We call
an edge in T between a {-locus for a t-region in a cell C' and pt(C) a detour edge.
By construction, 7' contains all the edges in T and some detour edges. Let e be
a detour edge from a point p to pt(C') for some cell C. If box(C) @ (size(C)/3)
contains the tool-change center, then pt(C') is the tool-change center. Then we
charge e to the length of the tour 7". Suppose that box(C) @ (size(C)/3) does not
contain the tool-change center. In T, after leaving the point p, the tour has to leave
box (C) @ (size(C')/3) eventually. Let p be the path in T starting at p and ending at
the boundary of box(C)®(size(C)/4). The length of p is Q(size(C')). We charge the
length of e in T to the length of p. We bound the total charge on the length of 7" in
the following. T visits the same box a constant number of times because there are
at most two cells in a box and there is a constant number of unmilled components
in a cell to act on. Therefore, there is a constant number of detour edges in T for
any box. By Lemma 17, there are O(1) boxes boxz(C') such that boz(C) @ size(C)/3
contains the tool-change center. So the length of 7" is charged a constant number
of times by these boxes. For the rest of the charging, observe that when we charge
the length of a detour edge for a box boxz(C') to some subpath p in T, p lies inside
box (C) @ size(C)/3 and each point on p receives at most constant units of charge.
By Lemma 17, there are at most a constant number of boxes boz(C') such that
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box (C') @ size(C')/3 contains a particular point in 7. Thus, the accumulated charge
on each point in 7" is bounded by a constant. This proves that the length of T and
hence T™ is within a constant factor of the length of T'. ad

For each cell C' € large_cell(t), we associate a table table(pt(C)) with pt(C) to
reflect all the possible effects of small-tool BMAs by ¢ in €' and the correspond-
ing costs. We enumerate all possible unmilled regions in C' and for each unmilled
region, we enumerate all possible combinations of small-tool BMAs on unmilled
components. Note that each unmilled component induces at most a constant num-
ber of small-tool BMAs. For each such combination of small-tool BMAs by ¢, we find
out the number of faces covered and the cost (sum of costs of the small-tool BMAs,
the length of the minimum spanning tree connecting p#(C') and the t-loci, and the
placement cost). The number of combinations to be evaluated is O((mN)?™) and

the table table(pt(C)) has O((mN)O1)) entries.

6.2.3. Separating large-tool BMAs

After collapsing small-tool BMAs by a tool ¢, we have one representative point
for each cell C' € large_cell(t). We now address the overlapping among t-regions of
large-tool BMAs. We divide such ¢-regions into groups so that within a group, no
two t-regions overlap. The division is done by coloring an induced graph as follows.
Consider the grid squares that induce the large-tool BMAs by ¢. There is a constant
number of large-tool BM As induced by each grid square. Since each grid square has
width Q(t), the t-region of a large-tool BMA cannot overlap more than a constant
number of grid squares. Thus, the {-region of a large-tool BMA overlaps at most
a constant number of ¢-regions of other large-tool BMAs. This induces a graph
of maximum degree bounded by a constant A. Such a graph is colorable using at
most A + 1 colors which yields at most A + 1 groups of ¢-regions. We fix a point p
in each t-region M and associate with it a table table(p) of a single entry, namely,
the faces covered by M and cost (cost of the corresponding large-tool BMA plus
placement cost). Thus, we obtain at most A + 1 groups of points each associated
with a table. We denote these groups by G;(t) for 1 <i < A+ 1. Finally, we add
one last group Gat2(t) which contains pt(C) along with table(pt(C)) for each cell
C € large_cell(t) (i.e., Gat2(t) takes care of the small tool BMAs by ¢ discussed in
section 6.2.2.)

Lemma 19 There is a milling plan A" in which each tour of a tool t beginning
and ending at the tool-change center wisits only points in some G;(t). Moreover,
A" approzimates the optimal milling plan within a constant factor.

Proof. Consider the milling plan A’ constructed in Lemma 18. Let T be a
tour of some ¢ in A’ beginning and ending at the tool center. We simply duplicate
T in all the groups. We repeat this for all other tours of all tools. The cost of
the resulting milling plan is at most A + 2 times the cost of A’ which is within a
constant factor of the optimal. a
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6.3. The Complete Algorithm

By Lemma 19, it suffices to run a greedy heuristic to approximate A”. Lemma 19
also implies that for each tool ¢, we need to consider only ¢-subsets whose t-regions
have points in one single group. Thus, the complete greedy algorithm is as follows.
Recall that Fy is the number of faces currently in S covered by some ¢-region.

Algorithm Greedy
Input:
1.The set of faces S in the subdivision.

2. The t-loci and t-regions for all tools.

3. The groups G;(t) of fixed points to be visited for all
tools. Each fixed point is associated with a table keep-
ing the cost and the number of faces covered by the
visit. F} denotes the maximum number of faces in
some table entry in some G;(t).

Output: An approximate milling plan

1. while S# 0 (* Loop until all faces are covered *)

2 do for each tool ¢ (% Find min avg weight tour for each tool #)

3. do for 1 <j < F}

4. do for each G;(t)

5 do solve the j~-WTSP on G;(1);

6 T;(t) = the tour with minimum weight among the j-
WTSP solutions;

7. T'(t) = minimum average weight {7;(¢)/j};

8. Set T' to be the tour of minimum average weight among T'(¢) for all tools
L

9. output 7" as a tour in the output milling plan;

10. remove faces covered in T from S;  (* Update for next iteration =)

11. update Fy for all t;

12. update the numbers of faces in all tables;

Fig. 12. Greedy heuristic.

Theorem 3 An approzimate milling plan can be computed in O((mN )M time
with cost within O(logm + log N') of the optimal.

Proof. By Lemma 19, it suffices to approximate A”. Due the nature of tours in
A’ | the nested for loops clearly return the ¢-subset of minimum average weight, if the
J-WTSP could be solved exactly. The approximation factor would be O(In |S]) =
O(log m+log N') by the well-known performance of greedy heuristic. The j~-WTSP is
approximated to within a constant factor in time O((mN)?()) using the algorithm
in Refs. [4,18]. An inspection of the analysis of greedy heuristic for weighted set
cover (see, e.g., Refs. [9,15]) reveals that this extra constant factor only increases
the constant hidden in O(logm + log N) O
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