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ABSTRACT

Milling is the mechanical process of removing material from a piece of stock through
the use of a rapidly spinning circular milling tool in order to form some desired geo�
metric shape� An important problem in computer�aided design and manufacturing is
the automated generation of e�cient milling plans for computerized numerically con�
trolled �CNC	 milling machines� Among the most common milling problems is simple

�dimensional pocket milling� cut a given 
�dimensional region down to some constant
depth using a given set of milling tools� Most of the research in this area has focused
on generating such milling plans assuming that the machine has a tool of a single size�
Since modern CNC milling machines typically have access to a number of milling tools
of various sizes and the ability to change tools automatically� this raises the important
optimization problem of generating e�cient milling plans that take advantage of this ca�
pability to reduce the total milling time� We consider the following multiple�tool milling

problem� Given a region in the plane and a set of tools of di
erent sizes� determine how
to mill the desired region with minimumcost� The problem is known to be NP�hard even
when restricted to the case of a single tool� In this paper� we present a polynomial�time
approximation algorithm for the multiple�tool milling problem� The running time and
approximation ratio of our algorithmdepend on the simple cover complexity �introduced
by Mitchell� Mount� and Suri	 of the milling region�
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�� Introduction

Milling is one of the most important methods used in the manufacturing of me�

chanical parts in computer�aided manufacturing �CAM�� It is applied to a workpiece

of �typically metal� stock sometimes called the part or billet� which is clamped to

a moving platform that is then translated under a rapidly spinning circular�shaped

milling tool� It is somewhat more natural to think of the stock as remaining station�

ary and the tool translating above it� In this way material is removed� or milled�

from the part� The overall problem is how to construct milling plans in order to

achieve a given �nal geometric shape within the shortest amount of time�

There are several kinds of milling depending on the numbers of degrees of free�

dom possessed by the tool relative to the workpiece� In this paper we focus on the

simplest case� but one that is common in practice� where continuous tool movement

is possible in one plane and the direction normal to it is used only for retracting

the tool� This situation is commonly referred to as 	D milling or pocket machining�

�Pocket refers to the region being milled��

There has been a lot of research on the subject of automatic generation of tool

paths for computerized numerically controlled �CNC� pocket machining� However�

much of this study� both theoretical and practical� has focused on machining pockets

using a single tool
 the question of how to machine pockets e�ciently using more

than one tool has been largely ignored� and seems to be considerably deeper and

richer than the single�tool problem� Modern milling machines have the capability

of automatically loading di�erent milling tools of a wide range of radii� Using a

larger tool when possible o�ers a signi�cant advantage in terms of milling time� In

this paper we propose a cost model for describing multiple�tool milling problem�

and present an approximation algorithm�

Previous results� Within the computer�aided design and manufacturing com�

munity there has been a considerable amount of study of various heuristics for the

automatic generation of tool paths for pocket machining� The most common general

strategies are contour�parallel �also known as window�pane milling���������������������

in which the tool spirals inwards from �or outwards to� the boundary of the region�

and axis�parallel milling �also known as zig�zag or staircase milling��������������	 in

which the milling tool moves back and forth cutting parallel strips� Multiple tool

milling has been considered� see for example Bala and Chang�	 but there is no

theoretical analysis of the performance of the heuristics proposed�

Held�������� made a comprehensive study of milling heuristics from a compu�

tational geometry perspective� For the single tool case� he presented e�cient al�

gorithms to �nd a feasible tool path� given the shape of the pocket to be milled

and the size of the tool� On the theoretical side� Arkin et al���� and Iwano et al��	

have given constant�factor approximation algorithms for �nding shortest paths for

the single�tool milling problem and for the closely related problem of lawnmowing�

Arkin et al�� have also given approximation algorithms for minimizing the number

of retractions for the zig�zag milling problem� subject to the constraint that one is

not allowed to mill the same region again� The problem is known to be NP�hard

	



even when restricted to the case of a single tool�� We know of no theoretical work

considering the use of multiple tools in milling�

Domain and tools� We model the pocket machining problem as follows� Tools

are changed at a designated location called the tool�change center� Thus the path

for each tool is assumed to start and end at this center� The input to our problem

provides a planar domain P to be milled� a set of tools of di�erent sizes� and the

location of the tool�change center� We make the realistic assumptions that the

ratio between consecutive tool sizes is bounded above by a constant �for simplicity�

we assume this ratio to be bounded by 	�� and that the smallest tool can mill P

without the need to be lifted� These two assumptions are essential in proving the

approximation ratio� �We leave the removal of these assumptions as future research

problems�� The tools are disks with di�erent radii and the domain P is a connected

region �possibly with holes� bounded by straight line segments and circular arcs�

We call these segments and arcs domain edges� We assume that each domain edge

has two distinct endpoints� The tools can be moved arbitrarily� as long as they do

not cross the boundary of P �

Let n denote the number of vertices in P and let m denote the number of tools�

Cost model� A milling plan is a sequence of tours� each for a particular tool

size� A tour begins and ends at the tool�change center� It consists of a sequence of

paths alternating between being engaged with the material �milling path� or being

retracted �transport path in air�� Due to stress on the tool� the speed with which

the tool can be moved� called the feed rate is typically much smaller for milling than

for transport� Consider a milling plan 
� De�ne

mill�
� � total milling path length for 
�

transport�
� � total transport path length for 
�

ntools�
� � the number of tool changes in 
�

The total milling cost in this model is

cost�
� � � �mill�
� � � � transport�
� � � � ntools�
��
where �� �� and � are arbitrary nonnegative values supplied by the user as part of

the input� Each milling path with tool of size t includes a cost of 	t in addition to

the length of the path� This additional component is included to account for the

time to place the cutting tool within the material� This might be done either by

milling in from the side or by drilling a hole and milling down into the material�

This assumption is added to prevent ridiculous solutions based on using the tool

like a cookie�cutter to stamp out disks without paying any milling cost at all� From

a practical standpoint� plunging the tool into material induces considerable stresses

on the milling tool� and is not used in practice� or only after the time has been

spent to drill a hole where the center of the milling tool is to be placed�

The factor � re�ects the amount of time needed to load a tool� We include

this cost when loading the �rst tool� Note that under our cost model� there is no
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Fig� �� Counterexample for the simplest milling strategy�

advantage gained by loading a tool� unloading it� and then reloading it later� Thus

it is reasonable to assume that each tool is loaded at most once� and hence ntools

is equal to the number of tools used by 
�

Output representation� As observed in Ref� �	�� the milling path of a tool may

require a combinatorially very large description even if the size of the region milled

is combinatorially very small� e�g�� a small tool milling a large circle� Following the

approach in Ref� �	�� we use a succinct representation of milling paths instead� In

our output� we represent the points milled by each tool as a collection of simple

regions of regular structure� If desired� the actual milling paths can be extracted by

contour�parallel milling or zig�zagging within each output regions� We also output

the cost of our approximate milling plan�

�� Overview and Summary of Results

Before discussing our approximation algorithm� we begin with some discussion

to motivate the various elements of our solution� Since large tools can mill more

material per unit of motion than small tools� the simplest strategy that comes

to mind is to mill everything that can be reached by the largest tool� and then

repeatedly load successively smaller tools and mill everything that is reachable for

each tool� However� it is easy to see that this simple strategy may be suboptimal

by a factor that is as large as the number of di�erent tools� For example� for the

domain shown in Fig� �� after the large tool t� has acted� all that remains are the

small protrusions� The next smaller tool may only be able to shave away a small

amount of additional material� The best option is to load a much smaller tool t� that

can completely �t within each of the small protrusions� The tradeo� that must be

faced is whether to use a larger tool and mill potentially less material with greater

e�ciency� or to use a smaller tool and mill more material with lesser e�ciency�

At a very abstract level� milling the domain is equivalent to covering the points

in the domain with copies of the tools available� Each copy of a tool used will

incur some cost� This cost includes the time to load the tool� the time to mill the

various regions� and the time to transport the tool from one unmilled region to the

next� This suggests that milling is related to the discrete optimization problem

of weighted set�cover �cover a domain by sets� each having an associated cost� so

that the sum of costs is minimized�� A well�known heuristic for weighted set�cover

is the greedy algorithm�
 which at each stage selects the subset that maximizes

the number of items covered per unit cost� This algorithm is known to produce a
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logarithmic approximation ratio�

We will transform the multiple�tool milling problem into a weighted set�cover

problem and then solve the weighted set�cover problem by a greedy heuristic� To

construct the transformation� we need to de�ne the elements in the base set and the

weighted subsets� The transformation is not straightforward for two reasons� First�

it is infeasible to use points as set elements directly as there are an in�nite number

of them� We overcome this by discretizing the domain into simple regions and use

these simple regions as set elements instead� We will show how to construct this

discretization such that we may assume that each simple region is milled with only

one tool� while increasing the approximation ratio only by a constant� This is given

in Sections � and ��

Each subset in our transformation will correspond to a milling action� which

consists of loading a tool and then milling some subset of the remaining unmilled

regions with this tool� The second problem is that it is not e�cient to enumerate

the exponential number of possible subsets of unmilled regions in order to select the

next subset� We overcome this by using an approximate greedy strategy that does

not require the weighted subsets to be explicitly provided� This strategy will incur

another constant factor in the approximation ratio� and it is based on the Euclidean

k�TSP problem�� It will be described in Section ��

Our discretization of milling actions is based on a subdivision of the milling

domain P � We �rst subdivide the boundary of P through the introduction of new

vertices into O�n� segments� in order to satisfy certain monotonicity conditions�

which will be described later� Let P � denote the modi�ed domain� The size of

our discretization is equal to the simple cover complexity of P �� The simple cover

complexity� or scc�P ��� is an intrinsic measure of the geometric complexity of P ���


It is de�ned as follows� A disk is simple if it intersects at most 	 edges of P �� Given

any � � �� we say that a ball of radius r is ��strongly simple if the ball with the

same center and radius �� � ��r is simple� Given �� a strongly simple cover of a

region P � is a collection of ��strongly simple balls whose union contains P �� Given

any �xed � �for example � � �		�� the simple cover complexity of P � is de�ned to

be the cardinality of the smallest strongly simple cover of P �� Our main result is�

Theorem � Given a domain P of n vertices and m circular tools� an O�logm �

log scc�P ����factor approximation to the optimum cost milling plan for P can be

computed in time that is polynomial in n� scc�P �� and m� �Constant factors hidden

by the �big�Oh� do not depend on the cost model parameters��

Throughout� we will denote scc�P �� by N for simplicity�

The remainder of the paper is organized as follows� In Section � and �� we show

how to discretize the problem� Section � shows that our discretization method

indeed approximates the milling problem to within a constant factor� Section �

shows how to reduce the milling problem to a weighted set cover problem and

describes the approximation algorithm�
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Fig� 
� The dotted curve shows the Voronoi diagram of the domain� White
points are the bottleneck points and dashed segments are the bottleneck seg�
ments�

�� Subdividing the Domain

Let 
P denote the boundary of the domain� Consider the Voronoi diagram of


P � We de�ne a distance function v�p� which maps every point p on the Voronoi

diagram to its closest point on 
P � Consider the set of points p on the Voronoi

diagram such that v�p� is locallyminimal� in the sense that in every su�ciently small

neighborhood of p there is a point on the Voronoi diagram with strictly higher

distance value� and no point in the neighborhood has a strictly smaller distance

value� For each such point p on the Voronoi diagram� the two nearest points on 
P

to p are called bottleneck points� and the line segment joining these boundary points

is a bottleneck segment� �See Fig� 	 for example�� Note that there cannot be three

or more bottleneck points for p by the local minimality requirement� We introduce

all the bottleneck points as new vertices on the boundary of P � Each bottleneck

point splits a domain edge into two smaller domain edges� We denote by P � the

resulting domain�

We will perform a quadtree decomposition of P �� This decomposition will sub�

divide the plane into a collection of square regions called boxes� For any box x� we

denote its side length by width�x�� For any positive real c� we denote by cx a box

with the same center as x whose side length is c �width�x��
The goal of the decomposition is to cover P � with a set X of boxes such that

the portion of the domain lying within and near each box is extremely simple� X

is generated as follows� We �rst enclose P � in a bounding box� Then we apply the

following splitting rule� For any box x� we call �x the bu	er zone of x and denote it

by buf �x�� Take any box x� if buf �x� intersects more than two domain edges� then

split x through its center into four identical boxes each of half the size� When the

splitting process stops �which will occur eventually since each vertex is adjacent to

at most two domain edges�� we obtain a set of boxes covering P ��

A cell is a connected component of P � � x for some box x � X� Given a cell

C� we denote by box �C� the box x � X that contains C� We de�ne the size of C�

size�C�� to be width�box �C��� We de�ne buf �C� to be buf �box �C��� The size of

our subdivision of P � is bounded by the simple cover complexity��
 Such a quantity

has been reported to be close to linear for practical scenes�� though hypothetical

examples exist for which the simple cover complexity becomes unbounded�
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Lemma � There are O�scc�P ��� boxes covering P ��

Proof� To prove that jXj is O�scc�P ��� we consider an expansion factor of � �

�		� As shown in Ref� ����� the choice of � only a�ects the constant factor involved�

Consider a strongly simple disk of radius r� This means that its expansion by a

factor of ��� � �		 does not intersect more than two edges of P �� We claim that any

box in X that overlaps the �unexpanded� disk has width � r	��	
p
	�� Suppose to

the contrary that there is a box x that overlaps the disk and has width � r	��	
p
	��

Then the parent box p of x has width � r	��
p
	�� Thus� buf �p� has width at most

r	�	
p
	� and hence a diameter of at most r		� Thus buf �p� lies entirely within the

expanded disk and so intersects at most two edges of P �� Consequently p could not

have been split further to generate x� This is a contradiction� It follows that any

strongly simple disk cannot contain a box of X of width less than r	��	
p
	�� By

a simple packing argument� it follows that the number of boxes in X that overlap

any strongly simple disk is a constant� Since the simple disks cover P �� it follows

that jXj is bounded above by a constant factor times the number of simple disks�
and hence is O�scc�P ���� �

�� Basic Milling Actions

As mentioned above� our approximation algorithm is based on discretizing the

space of possible milling actions into what we call basic milling actions� or BMAs

for short� Each basic milling action is responsible for milling a certain portion

of the domain by a single tool� In general� many tools may be able to access a

given region� and the de�nition of BMA makes no attempt to limit which tool is

responsible for some region� It will be the responsibility of the greedy algorithm�

described in Section �� to determine which BMAs to apply to employ for the �nal

plan�

We begin by introducing some notation� Let d�p� r� denote a disk of radius r

centered at a point p� Given a tool t� we also use t to denote its radius� Whenever

we put the center of t at a point p� we call d�p� t� a placement of t� A placement

of t is free if it lies within P �� The free space of t is the locus of centers of all free

placements of t� We denote it by F�t�� Formally� F�t� � P � � t� where � is the

Minkowski di�erence operator� Thus� F�t� � t is the set of points in P � that can

be covered by a free placement of t� where � is the Minkowski sum operator�

At each vertex p of F�t�� d�p� t� touches 
P � at several points� If the arc between

two consecutive contact points on the boundary of d�p� t� is less than a semicircle�

then we call it an accessibility arc� The collection of accessibility arcs for a tool t is

denoted by A�t�� See Fig� ��
A subset K of F�t� and a subset M � K� t de�ne a milling action� Speci�cally�

t moves with center in K to remove all points in M � If K is not connected� then

we have to pick t up transport it to another component and place it� This will

incur a charge of 	t per connected component in K plus the transport cost to visit

all components in K� We say that a point in M is milled by this action� Note

that� physically speaking� a larger set than M may be removed by t�s movement�

However� we only consider points in M as milled� and we will have to deploy other
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Fig� �� The accessibility arcs for tool t �dashed	�

milling actions to mill points not in M � Imagine that an arbitrary sequence of

milling actions �possibly of di�erent tools� has been applied to the collection of

cells de�ned in the previous section� Given a cell C� we call the set of points in C

not milled the unmilled region� and we call a connected component of the unmilled

region an unmilled component�

Given a tool t� we restrict ourselves to two kinds of milling actions of t on a cell

C� depending on the relative sizes of t and C� We say that t is large for a cell C if

t � size�C�	�� and small if t � size�C�	�� Conversely� we say that a cell C is small

for t if t � size�C�	�� and large if t � size�C�	�� Note that this implies that in the

range size�C�	�� � t � size�C�	�� t is both small and large for cell C� In the next

two subsections we describe the basic milling actions for large tools and small tools�


��� Large�Tool Basic Milling Action

Recall that the goal of de�ning basic milling actions is to provide a discretization

within which to approximate any milling action� Since we do not know the optimum

milling path for any tool� our approach will be to de�ne each large�tool basic milling

action to mill a local region whose size is proportional to the size of the milling

tool� Then we will be able to approximate the milling action of any milling plan by

concatenating a sequence of such local milling operations� Since basic millingactions

are de�ned independently of one another� we cannot generally predict whether a

given milling action will simply be a continuation of a neighboring milling operation�

or whether it will require placing the tool of size t into the material� Recall that

each such placement incurs a cost of 	t by our model� To absorb this potential

placement cost� we de�ne each basic milling operation �except for the smallest tool�

so that there is a free placement of a tool of twice this size� This insures that there

will be su�cient millable area� so that placement costs will not dominate milling

costs�

One of the tricky issues in de�ning basic milling actions for large tools is that

a single large tool may mill portions of many small cells at the same time� Thus�

if we were to account for the milling cost on a cell�by�cell basis and sum these

costs� then we may considerably overestimate the actual milling cost� In order to

accurately account for the total cost of using a large tool to mill many smaller cells�

it is important to de�ne the milling actions for large tools in a way that is global
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to the small cells that it a�ects� We do this by overlaying a grid on the domain

whose side length is proportional to the tool size� and then associating each basic

milling action with each grid cell� A second issue is predicting the possible shapes

of the unmilled regions that result after each basic milling action� To minimize the

number of possibilities� our milling actions are de�ned so that if a cell cannot be

milled entirely� then we mill up to an accessibility arc for this tool�

Overlay a square grid Gt of side length t on P �� De�ne Bt to be the set of grid
squares b such that b� �t overlaps some quadtree box of width less than ��t� Any
grid square b � Bt induces a �possibly empty� set of milling actions as follows� If t
is the smallest tool� let K be a connected component of �b�	�t��F�t� such that K
overlaps with b� �t
 otherwise� let K be a connected component of �b� 	�t��F�t�
that contains some component of b�F�	t�� De�ne Cb to be the collection of cells C
such that t is large for C andC overlaps b��t� De�neM to be K�t�SC�Cb C� Then
K andM de�ne a large�tool basic milling action denoted by large tool�t�K�M �� i�e��

move t along the surface with center in K to mill points in M �

The choice of the constant 	� is due to the following motivation� We want a

large BMA to simulate the local milling action of a large tool on small cells in

the optimal milling plan� Suppose that the optimal milling plan uses a tool with

center in the grid square b� We want to do the simulation with a tool of radius

a constant factor smaller �as will be shown� we need this to guarantee that b will

induce only O��� large tool BMAs for any tool�� By our assumption that the radii

of two successive tools are within a factor 	� we know that we can always pick a

tool which is at least a factor 	 smaller but no more than a factor � smaller� Hence�

we use a tool t to simulate a tool of radius at most �t in the optimal milling plan�

As mentioned before� we need to push up to accessibility arcs to simplify the shape

of unmilled regions� Thus� if a tool of radius �t centered inside b mills a cell small

for t � then we want the large BMA of t to cover as many points in the cell as F�t�
allows� Recall that the cell is small for t and hence has size at most ��t� Fig� �

shows that b � 	�t is large enough to allow the tool t to attack the cell from any

direction� An example of the e�ect of a large BMA is shown in Fig� ��

In the remainder of this section we establish a number of facts about large�tool

BMAs� In Lemma 	 we show that after the action of a large�tool BMA by t� the

boundaries of any resulting unmilled component consist of accessibility arcs of t�

Lemmas � and � show that the length of the boundary of K is O�t�� Lemma �

shows that the cost of each large�tool BMA is O�t�� Finally� Lemmas � and � and

the associated corollary establish that there are a total of O�mN � large�tool BMAs�

Lemma � Let C be a cell small for tool t� For any large tool�t�K�M �� eitherM�C
is empty or the boundary of M �C consists of points in 
C and A�t��

Proof� Suppose that M � C is nonempty� Take a point q in 
�M �C� n 
C�
By our choice� q is milled by large tool�t�K�M � and so there is a free placement

d�p� t� that touches q� where p � K� We claim that p must lie on the boundary of

F�t� and so q � A�t� or q � 
P �� The latter is impossible as q � 
C otherwise�

Assume to the contrary that p lies in int�F�t��� If p lies on the boundary of
C � t� then q � 
C which is impossible� Suppose that p � int�C � t � F�t��� For
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16t

16t <28t

t

Fig� �� An illustration of the choice of the constant 
�� The distance between
the center of t on the upper left of the �gure from the upper left corner of b is
�t� ��

p

t� t � 
���t � 
�t�

t(  )F t

b

Fig� �� Large�tool BMA for tool t� The solid square is a grid square b in Gt�
The quadtree cells shown in dotted lines are within b � �t� All of them are
small for t and so b induces large tool BMAs of t on them� After these large
tool BMAs� some cells will be milled completely and some are milled up to
accessibility arcs �shown in solid lines	� The boundary of F�t	 is shown in
dashed lines�
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each cell C � Cb� C� t lies within b�	�t� Thus� p lies in the interior of a connected
component of C � t�F�t� that is a subset of K� This implies that p � int�K� and

we can perturb p to another p� � K such that d�p�� t� contains a small neighborhood

of q� Therefore� q and a small neighborhood of it should have been milled which

contradicts that q � 
�M �C� n 
C� �

Next we establish a bound on the length of the boundary of the milling action�

In general� we bound the lengths of the boundaries of F�t� � t and F�t� in any
region of diameter O�t��

Lemma � Let c be a constant� Then the length of the boundary of F�t��t�d�p� ct�
is at most a constant factor times t�

Proof� Overlay a square grid of side length t		 on d�p� ct�� By a packing

argument� there are at most ��c � ��� grid squares intersecting d�p� ct�� Let x be

one such grid square�

The boundary of F�t� � t in the interior of x consists of disjoint circular arcs

f�ig� which are either portions of an accessibility arc in A�t� or an edge of the
polygon P �� �If �i is a straight line segment� then we take its radius to be in�nity��

For any point q � �i� de�ne f�q� to be the center of the disk of radius t that

touches q and is tangential to �i� For each circular arc �i we de�ne a wedge Wi�

which consists of line segments fqf�q� � q � �ig� We are going to charge the length
of �i to the intersection of Wi and the boundary of x� It is straightforward to see

that the length of the intersection of Wi and the boundary of x is no less than a

constant times the length of �i� The proof will be complete if we can show each

point on the boundary of x will be charged at most once�

We claim that no two wedges Wi andWj intersect each other� which implies that

each point on the boundary of x is charged at most once� Assume for contradiction�

that wedges Wi and Wj intersect� Then clearly there must be points q� � �i and

q� � �j such that segments q�f�q�� and q�f�q�� cross each other� By de�nition of

f � jq�f�q��j � jq�f�q��j � t� Further� since q� lies on the boundary of F�t� � t�

it follows that the disk d�f�q��� t� does not overlap point q�� Thus jq�f�q��j � t�

Similarly� jq�f�q��j � t� But this implies that in the quadrilateral q�q�f�q��f�q���

the sum of the length of the two opposite sides exceeds the sum of the length of the

two diagonals or f�q�� � f�q��� in which case the segments q�f�q�� and q�f�q�� do

not cross each other� In either case� we obtain the desired contradiction� �

Lemma � Let c be a constant� Then the length of the boundary of F�t� � d�p� ct�

is at most a constant factor times t�

Proof� The proof is similar to the one given for the previous lemma� We

only mention the main di�erence� which concerns the de�nition of the wedges� The

boundaries of F�t� in the interior of x consists of disjoint circular arcs f�ig� For
any point q � �i� de�ne f�q� to be the point on the boundary of the polygon that

touches the disk of radius t with center at q� For each circular arc �i we de�ne a

wedge Wi� which consists of line segments fqf�q� � q � �ig� We omit the rest of the
argument� which is analogous� �

��



Lemma � The cost of each large�tool BMA for t is O�t��

Proof� Placing t with center on 
K costs 	t� Then we move t along the bound�

ary of K and then zig�zag inside K along vertical segments that are separated by a

distance at least 	t apart� By the result in Ref� �	�� the cost of this is proportional

to the sum of the boundary length of K and the total length of the vertical seg�

ments� Since the total length of the vertical segments is O�t� as K � b� 	�t� and
by Lemma � the boundary length of K is O�t�� the cost of each large tool�t�K�M �

is O�t�� �

Next we show that the number of large�tool BMAs is O�mN �� In order to prove

this� we will �rst need to establish a technical lemma�

Lemma 	 If t is a tool such that F�t� is connected� then for any box b of side

length t� the number of connected components of b � 	t � F�t� that intersect b is

O����

Proof� Let D denote any set of placements of tool t whose centers lie in b

such that each placement lies in a di�erent connected component of b� 	t � F�t��
Clearly any upper bound on the size of D is an upper bound on the desired number

of connected components� Let t� � ct for some positive real parameter c � ��

to be speci�ed later� Let D� denote a set of disks with the same centers as the

disks of D� but whose radii are t�� We will show that no three disks in D� have

pairwise nonempty intersection� From this� and a simple packing argument� it

follows that the number of disks in D�� and hence the number of disks in D is O����

The key idea is that since two disks in D and hence D� are centered in di�erent

connected components� there is a bottleneck segment lying between their centers�

The distance of the segment from the centers decreases as c becomes small� If three

disks in D� have pairwise nonempty intersections� then the center of the middle disk

will be sandwiched between two bottleneck segments� Thus� if c becomes small� two

bottleneck segments de�ne a thin quadrilateral such that the middle disk is too big

to cross the two extremely short sides� The middle disk cannot cross the two longer

sides as they are bottleneck segments� Thus� the middle disk cannot move freely

around in P � which contradicts that F�t� is connected�
Consider the Voronoi diagram of the boundary of P � Recall the bottleneck seg�

ments described earlier� Consider the subset of bottleneck segments whose lengths

are less than 	t� It follows from standard results on Delaunay triangulations and

Voronoi diagrams that these segments have pairwise disjoint interiors �but they may

share a common endpoint��

We begin by showing that if two disks of D� overlap� then there is a bottleneck

segment that intersects the line segment joining their two centers� Consider two

placements of t from D� such that the disks of radius t� with the same centers

overlap each other� Let p and q denote their centers� �See Fig� ��a��� Without

loss of generality� assume that pq is horizontal� Let R be a rectangle with height

	t and with p and q at the midpoints of the two vertical sides� Because p and q

are in D� they are in di�erent connected components of b� 	t � F�t�� This means
that it is not possible to move a tool t with center from p to q without moving the

center outside R� We interpret this di�erently� We shrink the disks centered at p

�	
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Fig� �� Bounding the number of connected components� The solid circles have
radius t� dashed circles have radius t�� and dotted lines are bottleneck segments�

and q to a single point� Simultaneously� we expand each point on the boundary of

R � t and each point on the domain boundary inside R � t to a disk of radius t�

Now� it is not possible to translate tool t from p to q if and only if some expanded

disks together separate p from q in R � t� So there are two overlapping expanded

disks such that the line segment connecting their centers intersect pq� Thus� there

is a pair of points on the domain boundary at distance less than 	t apart and the

line segment connecting them intersects pq� Pick the closest pairs among the above

pairs of points� Then among the closest pairs� pick the pair x� y such that the

connecting line segment xy has the leftmost intersection with pq� We claim that

xy is a bottleneck segment� xy does not cross pq at p or q� otherwise either x or y

would like inside the disk of D centered at p or q� Let C be the diametrical circle

of xy� The contact point x lies on a domain edge s which is either a horizontal line

segment or a circular arc that touches C at x� The same is true for y� Slide a copy

C� of C along s to the left by an arbitrarily small distance � � � on s� If C� does

not encounter any other domain boundary point not on s for some �� then after the

sliding� we can expand C� slightly while maintaining emptiness� This shows that xy

is a bottleneck segment� Suppose that for all � � �� C� will encounter some domain

boundary point not on s� The �rst possibility is that C touches another domain

boundary point z on the semi�circle to the left of xy� but this means that xz or yz

is shorter than xy� contradiction� The second and last possibility is that during the

sliding� C� always touches or contains some point on the domain edge containing

y� But this contradicts either the shortestness or the leftmostness of xy� Hence� we

conclude that xy is a bottleneck segment intersecting pq�

Now� suppose to the contrary that three disks of D� centered at some points

p� q� and r have pairwise nonempty intersection� We will show that for all su��

ciently small values of c� this will imply that F�t� is not connected� leading to a
contradiction� �See Fig� ��b��� From the observations of the previous paragraph� it

follows that there are bottleneck segments that intersect each edge of the triangle

pqr� Hence� there is a point� say p� that lies between the bottleneck segments s� and

s� that intersect pq and pr� Also� s� and s� intersect a disk of radius 	t� centered

at p�

��



Consider the quadrilateral de�ned by the endpoints of s� and s� �which may

degenerate to a triangle if s� and s� share a common endpoint�� Observe that as

the parameter c decreases� s� and s� intersect a shrinking disk centered at p with p

lying between them� Since the lengths of s� and s� are less than 	t� and s� and s�
pass arbitrarily close to the center of p� their lengths approach 	t as c approaches

zero� Since s� and s� do not intersect� the other two sides of the quadrilateral will

fall below any given threshold for su�ciently small c� At the same time� p will lie

inside the quadrilateral�

Thus there exists a constant value of c so that all four sides of the quadrilateral

are of length less than 	t� Since p lies inside the quadrilateral whose vertices are

points of P �s boundary and whose sides are shorter than 	t� the placement of t at

p is e�ectively trapped at this location� In particular� the connected component of

F�t� containing p has a diameter less than t� and hence lies entirely within b � 	t�
However� because q and r are in di�erent connected components of b � 	t � F�t��
they are in di�erent connected components of F�t�� This contradicts the hypothesis
that F�t� is connected� �

Lemma 
 There are O��� large�tool BMAs for t induced by any grid square b � Bt�
Proof� If t is the smallest tool� let K be the set of connected components

of b � 	�t � F�t� that overlap b � �t� Otherwise let K be the set of connected

components of b� 	�t�F�t� that contain some component of b�F�	t�� Since one
large�tool BMA for tool t is de�ned for each component in K� it su�ces to show
that the number of components in K is O����

Consider the case when t is not the smallest tool� Let K be any component in

K� Since K contains a component of b � F�	t�� there is a free placement d�p� 	t�
where p � K � b� Clearly d�p� t� � F�t� since a disk of radius t with center in d�p� t�
lies completely within d�p� 	t�� Further� since p � b� d�p� t� � b�	�t� It follows that
d�p� t� � K� By a packing argument� the number of components in K is O����

If t is the smallest tool� then by our assumption F�t� consists of one connected
component� Since b is of side length t� we can cover b�	�t with a constant number
of boxes of side length t� Let b� be any such box� Since �b� � 	t� 	 �b � 	�t�� the
number of connected components of b � 	�t � F�t� that overlap b� is at most the

number of connected components of b� � 	t �F�t� that overlap b� �since expanding
the region can only improve connectivity�� Thus� by applying Lemma � to b�� it

follows that this number of connected components is O���� This implies that the

number of components in K that overlap b� �t is O���� �

Corollary � There are O�mN � large�tool BMAs for all tools�

Proof� For each tool t� we de�ne large�tool BMAs for each b � Bt� Since a
quadtree box of width less than ��t can overlap b��t for at most a constant number
of grid squares b in Gt� the number of squares in Bt is O�N �� By Lemma �� the
number of large�tool BMAs induced by each b � Bt is O���� It follows that there
are O�N � large�tool BMAs de�ned for a given tool t� Summing over all tools� we

have the desired result� �

��
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Fig� �� Small�tool BMA� U is bounded by the domain boundary and solid lines�
F�t	 is shown with dashed lines� and K is shown with dotted lines� All of U is
milled except the portion below the accessibility arc at the bottom�


��� Small�Tool Basic Milling Action

Unlike the large�tool BMAs� small�tool BMAs only act on a single cell of the

subdivision� At some stage when a small tool �rst acts on a cell� other tools may

have already milled portions of this cell� leaving one or more unmilled regions� We

do not know what these tools are� but �as we have already seen with the large�tool

BMAs� we design each BMA so that it either mills the entire region or it mills up

to an accessibility arc� Henceforth� the term unmilled component will refer to an

unmilled component that could have resulted by any sequence of BMAs� �Later

we will show that no matter what combination of tools have acted on this cell� the

number of possible unmilled components that could result is polynomially bounded��

Intuitively� the task of each small�tool BMA is to mill as much material as it can

access within an unmilled component such that the tool is always in contact with

the unmilled component�

Let U be an unmilled component of C such that t is small for C� Let K be a

connected component of U � t�F�t�� De�ne M to be K � t�U � K and M de�ne

a small�tool BMA by t� denoted small tool�t�K�M �� This action will move t on the

surface with center in K to mill points in M �

As in the large�tool case� we will prove that the unmilled components remaining

after a small�tool BMA will be bounded by the boundary of the cell and portions

of accessibility arcs� In fact� we will show that for small�tool BMAs� each unmilled

component is bounded by at most one accessibility arc� From this we will show that

each unmilled component has constant combinatorial complexity�

Lemma � After small tool�t�K�M � acts on an unmilled component U in a cell C�

any resulting unmilled component is bounded by a portion of at least one accessibility

arc of radius t�

Proof� Let W be a resulting unmilled component� Take a point q in 
W n
U �
Such a point q must exist� otherwise U was not a�ected by small tool�t�K�M �� By

our choice� q is milled by small tool�t�K�M � and there is a free placement d�p� t�

that touches q� where p � K� We claim that p must lie on the boundary of F�t�
and so q � A�t� or q � 
P �� The latter is impossible as q � 
C otherwise�

��
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Fig� �� Facing accessibility arcs�

Assume to the contrary that p lies in int�F�t��� If p lies on the boundary of
U � t� then q � 
U which is impossible� The other possibility is that p lies in the

interior of a connected component of U � t � F�t� which is a subset of K� This
implies that p � int�K� and we can perturb p to another p� � K such that d�p�� t�

contains a small neighborhood of q� Thus a small neighborhood of q should have

been milled which contradicts that q � 
W n 
U � �

Next� we strengthen our result and show that each resulting unmilled component

is bounded by exactly one accessibility arc of A�t�� To this end� we need two

technical results� Lemma � and Corollary 	� They are illustrated in Fig� �� Let

us think of each edge of P � as being an open curve �line segment or circular arc��

Observe that when an accessibility arc of some tool t is incident to an edge of P ��

the point of incidence subdivides this edge into two portions� Locally about the

point of incidence� one portion contains points that are accessible to t and the other

contains points that are not� Points that are not accessible to t are said to lie outside

the accessibility arc� Observe that unmilled regions are always locally outside of any

accessibility arcs on their boundaries� Two accessibility arcs that are incident to the

same edge are said to face each other if the points between these accessibility arcs

lie outside of both arcs� We show that� because of the introduction of bottleneck

points� it is not possible for two facing accessibility arcs to be incident to the same

edge of P ��

Lemma � If the interior of an edge of P � is incident to an accessibility arc for

tool t� then no point on the outside portion of the edge is accessible to t�

Proof� Assume to the contrary that a domain edge e is incident at a point q�
to an accessibility arc of radius t and that there a free placement of t that intersects

a point of e that is outside this arc� �See Fig� ��a��� Consider the point of contact q�
of such a placement that is closest to q�� Clearly the placement must be tangential

to e at this point� Since the placement cannot be moved closer to q�� there must be

a second accessibility arc incident to e at q� such that both accessibility arcs face

each other� Because these accessibility arcs are blocked by some other boundary

points� it follows that their centers lie on the Voronoi diagram of P �� The Voronoi

distance function v�p� is equal to these t at each center and is smaller in between

�for otherwise there would be a free placement of t that is closer to q� along e��

Therefore� there must be a bottleneck point somewhere within the segment q�q��

contradicting the hypothesis that they both lie on the same edge of P �� �

��
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Fig� �� Bounding the combinatorial complexity of unmilled regions for small�
tool BMAs�

Corollary � An edge of P � cannot be incident to two accessibility arcs �of possibly

di	erent sized tools� that face one another�

Proof� If two such arcs exist� then the arc with a larger radius can accommo�

date a disk that has the same radius as the other arc and touches the domain edge�

�See Fig� ��b��� This contradicts Lemma �� �

Lemma �
 After the action small tool�t�K�M �� each resulting unmilled compo�

nent W is bounded by points belonging either to 
C or to exactly one accessibility

arc of A�t��
Proof� By Lemma �� 
W contains a portion of some accessibility arcs of radius

t� Since t is small for C� the contact points between an accessibility arc� �� and P �

are within buf �C�� Recall that there can be at most two edges of P � within buf �C��

First we observe that both endpoints of � cannot lie on the same domain edge�

This is a simple consequence of the facts that � is a circular arc subtending an

angle less than �� the domain edges are either straight line segments or circular

arcs� and that buf �C� intersects at most two edges of P �� Let e� and e� denote the

two domain edges to which � is incident� We assert that each edge is tangentially

incident to �� If not� then one endpoint of � must coincide with a vertex of P �� and

the other with one of the edges e� or e�� However� either this vertex is incident to

a third edge �contradicting the fact that buf �C� can intersect at most two edges�

or else both endpoints of � are incident to a single edge �contradicting the previous

observation��

Consider the subregion R of box �C� bounded by � and e� and e� �See Fig� ��a���

W lies within R� Suppose that W was bounded by some other accessibility arc ��

Since unmilled regions lie outside of their accessibility boundaries� � and � face one

another� If � has radius no greater than ��s� then � was also produced by a small

milling action� By applying the above analysis it follows that � is incident to e�
and e�� However� the existence of an edge incident to two accessibility arcs that

face one another contradicts Corollary 	� Otherwise� if ��s radius is greater than

��s� then there is a free placement of a disk d� of radius t that intersects R and

��



lies on the inside of �� �See Fig� ��b��� If we move d� towards the disk d� the fact

that � is an accessibility arcs implies that d� must contact the domain boundary at

some point� This contact must be with either e� or e�� by the same analysis used

above for �� However� this free placement along such an edge contradicts Lemma ��

Hence� we conclude that W is bounded by only one accessibility arc of radius t� �


�
� Complexity of Unmilled Region

In this section� we establish that after any sequence of BMAs the combinatorial

complexity of the unmilled region inside a cell is always bounded by a constant� In

the sequence� tools can change and large�tool and small�tool BMAs can interleave�

The consequence is that within each cell� the number of unmilled components is

always bounded by a constant and each unmilled component has constant complex�

ity�

Lemma �� After any sequence of BMAs on a cell C� the unmilled region in C has

constant combinatorial complexity�

Proof� The proof involves two cases� depending on whether the unmilled

component resulted from a small�tool or large�tool basic milling action�

Small�tool case� By Lemma ��� after a small�tool BMA� each unmilled compo�

nent of C is bounded by straight line segments and circular arcs� limited to the

four sides of box �C�� at most two domain edges of P �� and at most one accessibility

arc� Therefore� each unmilled component has constant combinatorial complexity�

Thus� it su�ces to show that the number of connected components is bounded by

a constant�

Moreover� we assert that each unmilled component U either borders a domain

edge intersecting C or a vertex of box �C�� To prove this� observe that if U is not

bounded by 
P �� then for any maximal connected component s of a side of box �C�

bounding U � s lies outside of at most one accessibility arc by Lemma ��� Thus� the

other endpoint of s must be incident to a vertex of box �C�� Since there are only a

constant number of box vertices� it su�ces to show that the number of connected

components bounded by domain edges is bounded by a constant�

Each domain edge intersecting C cannot border more than two unmilled com�

ponents� for otherwise the domain edge would be incident to two accessibility arcs

that face each other� contradicting Corollary 	� �The worst case occurs when both

of the edge�s vertices lie within unmilled components� and hence each faces an acces�

sibility arc�� Therefore� the total complexity of all unmilled components produced

by small�tool BMAs acting on C is a constant�

Large�tool case� Let U denote the set of unmilled components of C that resulted

from large�tool milling actions� There are two key ideas� First� since we are con�

cerned with large�tool milling actions� the radius of accessibility arcs bounding C

is not small compared with size�C�� Second� if there are many accessibility arcs

bounding U � it implies that there are many placements of tools around U whose

radii are not small compared with size�C�� This will introduce overlapping among

��
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Fig� ��� Bounding the combinatorial complexity of unmilled regions for large�
tool BMAs�

these placements and the overlapping increases as the number of placements in�

creases� For one such tool placement d� the other tool placements overlapping d

create an empty region around d which implies that d can be moved a bit into U

and mill more� This is impossible� The details are as follows�

We assert that no component of U can be bounded by the accessibility arc of a

tool smaller than size�C�	��� This is because such an arc would have resulted from

the milling action of a small�tool BMA� By de�nition such a milling action would

remove everything reachable to this tool within the component� This implies that

no larger tool could later introduce an accessibility arc into the remaining unmilled

component� Thus� it su�ces to bound the number of accessibility arcs of radius at

least size�C�	���

To simplify the analysis� we overlay a square grid on C of side length
p
	r� where

r � size�C�	�	� The number of such boxes is bounded by a constant� Consider one

such box x� Observe that if we enclose x within a disk Dr of radius r� then the

closest point outside buf �C� is at distance greater than r from Dr � We will show

that the number of accessibility arcs for all large tools t that may contribute to the

intersection of 
U with Dr is O���� It will follow that the number of accessibility

arcs that bound U is also O����

Let c be the center of Dr� Let D�r be a disk of radius 	r centered at c� Since

D�r lies entirely within buf �C�� at most two edges of P � may intersect this disk�

�See Fig� ���a��� Let fdig be the set of free placements of tools for C that support

accessibility arcs that contribute to the intersection of 
U withDr � Let fcig be their
respective centers� The radius of each disk is at least size�C�	�� � 	r� Sort these

disks in angular order about c according to locations of their centers� If there are

no three consecutive disks d�� d�� and d� such that �c�cc� � �	� and �c�cc� � �	��

then it follows that there are at most 	� such disks �two per sector of �	��� We will

show that if we exceed this number by more than a small additive constant� then

��



there will be a triple of consecutive disks� d�� d�� and d�� satisfying this condition�

such that one of these three disks is free to move further into Dr � However� this

will imply that it could not contribute an accessibility arc� a contradiction�

First� by simple trigonometry� any disk di of radius at least 	r that intersects

Dr must intersect D�r along an arc of angle at least 	 arccos��	�� 
 ����� � �	��

Second� if we draw a diameter of di perpendicular to cci �shown as a dashed line

between shaded points in Fig� ���a��� and join c to one diameter endpoint and ci�

then the angle between these rays is at least arctan�		�� 
 ����� � �	�� �In both

cases� the minimum occurs when di has radius exactly 	r� and ci is at distance �r

from c�� Third� the center of no di can lie insideD�r� otherwise� di would completely

enclose Dr � implying that di contributes no accessibility arc that intersects Dr�

We consider two possible con�gurations of d�� d�� and d� depending on the

position of the endpoints of the diameter of d� perpendicular to cc�� Call this

diameter l� �the dashed line segment in Fig� ���a��� In the �rst case� both the

endpoints of l� lie inside d� and d�� By the lower bound on the radii of d� and d�
and the upper bound on the angle their centers subtend about c� it follows that l� is

fully contained within the union of d� and d�� Since these are both free placements�

and since d� contributes an accessibility arc� it follows that d� must contact 
P �

along the portion of the arc of d� that lies within D�r n �d� � d��� By the same

reasoning used in Lemma ��� it follows that this accessibility arc must contact both

of the domain edges of P � that lie within D�r� However� observe that d� is unique

in this� since no other accessibility arc can have its contact points lying on the

edges of P � within D�r without violating Corollary 	� Thus excluding d�� no other

accessibility arc can be in this con�guration�

For the second con�guration� either the left endpoint of l� lies outside d� or

the right endpoint of l� outside d�� Let us consider the latter� as the other case is

symmetrical� �See Fig� ���b��� Let l� be the diameter of d� that lies on the line

through c and c� �shown as a dotted line in the �gure�� From the trigonometric

observations above it follows that l� lies within D�r � d�� If the portion of 
d�
that contributes the accessibility arc intersects the domain boundary within D�r �

then this contact involves one of the two edges of 
P � that lies within D�r � Again�

by Corollary 	� this can only happen for a constant number of accessibility arcs�

Otherwise� the closest contact of d� with the domain boundary occurs at some point

p that lies outside D�r� The point q on 
d� that is diametrically opposite to p� lies

in d�� However� the arc of length � from q to p is free from contact with the domain

boundary� contradicting the hypothesis that d� contributes an accessibility arc� �

Lemma �� Given an unmilled component U in a cell C and a tool t small for

C� U � t � F�t� consists of a constant number of components� each of constant

combinatorial complexity�

Proof� Let x be �
�box �C�� If t moves with center in x� then t is entirely inside

buf �C�� Since there are at most two domain edges intersecting buf �C�� the com�

plexity of x � F�t� is bounded by a constant� By Lemma ��� the complexity of
U is bounded by a constant� Since U � C and t is small for C� U � t � x� So

U � t � F�t� � U � t � �x � F�t�� which is the intersection of two shapes of con�
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stant combinatorial complexities� Thus� we conclude that U � t � F�t� consists of
a constant number of components� each of constant combinatorial complexity� �

Lemma �� There are O�N �mn�O���� basic milling actions by small tools�

Proof� It su�ces to prove that there are O��mn�O���� basic milling actions by

small tools in a cell C� By Lemma 	� Lemma ��� and Lemma ��� after any sequence

of BMAs the boundary of the unmilled region in C is bounded by at most a constant

c elements of the following varieties� line segments on the boundary of box �C�� the

at most two domain edges intersecting box �C�� and accessibility arcs� There are m

di�erent tools and there are O�n� accessibility arcs for each tool size� Therefore�

there are O�mcnc� possible unmilled regions which may be generated after some

sequence of milling actions� Hence� there are O�mcnc� unmilled components that

a basic milling action by a small tool t �with respect to C� may act on� Given an

unmilled component U � U � t � F�t� consists of a constant number of components
by Lemma �	� This gives rise to a constant number of basic milling actions by t on

U � In all� there are at most O�mc
�nc� basic milling actions by some small tool in

C� Summing over all cells� we obtain the bound O�mc
�ncN �� �

�� Approximating Optimal Milling using BMAs

The main result of this section is to show that any milling plan can be converted

into a milling plan consisting entirely of BMAs while sacri�cing at most a constant

factor in cost�

We associate with each BMA large tool�t�K�M � or small tool�t�K�M � a starting

point� which may be any point in K� When we perform a BMA� the tool will �rst

be placed at the starting point and at the end� the tool is returned to this point�

De�ne mill�t�K�M � to be the milling cost of the milling operation de�ned by

the BMA large tool�t�K�M � or small tool�t�K�M �� Given a set of BMAs S� de�

�ne St to be the subset of S which uses tool t� De�ne TSP�S� to be the length

of a minimum Euclidean traveling salesman tour on the starting points of S and

the tool�change center� The cost of S is composed of two elements� the time re�

quired to perform each of its milling operations and the time to move from the

starting point of one to the starting point of another� De�ne mill�S� to be the

sum of mill�t�K�M � for all large tool�t�K�M � and small tool�t�K�M � in S� De�ne

transport�S� �
P

tTSP �St��

We immediately have the following�

Lemma �� Let S be a set of BMAs that mills P � � Then there exists a milling

plan 
� using tools in S� such that

mill�
� � mill�S�� transport�
� � transport�S��

Conversely we assert that any milling plan 
 can be transformed into a set of

BMAs that mills P �� whose milling and moving times are comparable to those of


� Before proving this main result� we prove three technical lemmas�

Lemma �� Consider any path of length L among a uniform rectangular grid of

side length s� and let i be the number of cells of the grid that the path intersects�

Then i � 	p	L	s � ��

	�



Proof� Replace the path by a rectilinear path by breaking it at its intersection

points with the grid� The resulting path is longer by a factor of at most
p
	� In

the worst case� the path starts very close to a vertex� and so it can visit four cells

within an arbitrarily small distance� After this� with each walk along the path by

distance s the path can visit at most two new cells� Thus the number of cells visited

satis�es i � � � 	p	L	s� �

Lemma �	 For any path 
 of length L� there is a sequence of disks d�pi� 	t�� where

� � i � dL	te and pi lies on 
� such that 
 � t � Si d�pi� 	t��

Proof� Put d�p�� 	t� at an endpoint p� of 
� Traverse 
 from p� to the other

endpoint� When 
 leaves d�p�� t� for the �rst time� put d�p�� 	t� at the exit point�

Repeat the above until we reach the other endpoint of 
� The result follows by

observing that each placement is separated by an arc length of at least t� �

Lemma �
 Let C� and C� be two cells such that size�C�� � size�C��� If �box �C���
t���box �C���t� is nonempty for some t � size�C��	�� then size�C�� � size�C��	����

Hence� for any point q� there are O��� cells C such that box �C�� �size�C�	�� con�
tains q�

Proof� Assume to the contrary that size�C�� � size�C��	���� Since t �
size�C��	� and �box �C�� � t� � �box �C�� � t� is nonempty� both the horizontal

and the vertical distances between the centers of box �C�� and box �C�� is less than

�size�C��	� � size�C��		 � ���size�C��� The bu�er zone of the parent of box �C��

lies inside �box �C�� and has width at most ����size�C��� Thus� the bu�er zone

of the parent of box �C�� lies inside �box �C�� which is the bu�er zone of box �C���

This implies that the bu�er zone of the parent of box �C�� intersects at most two

domain edges� which contradicts the splitting of it� Therefore� we conclude that

size�C�� � size�C��	����

Take any point q� Let C be the cell of the largest size such that q � box �C� �
�size�C�	��� Thus� a square of width �size�C� centered at q contains all the boxes

box �C�� for some cells C� such that q � box �C�� � �size�C��	��� From the above

size�C�� � ��size�C��� So a packing argument shows that there are O��� of such

boxes� Since each cell is a connected component of a box and each box intersects

at most a constant number of domain edges� the number of cells is also O���� �

Theorem � Let 
 be a milling plan� Then there exists a set S of BMAs which mills

P � using at most twice the number of tools as in 
� such that mill�S� � O�mill�
��

and transport�S� � O�mill�
� � transport�
���

The proof of this theorem is presented in the remainder of this section� We �rst

identify a set S� of large�tool BMAs and then a set S� of small�tool BMAs that

mills P �� Clearly� mill�S� � S�� � mill�S�� � mill�S�� and transport�S� � S�� �
transport�S�� � transport�S��� Thus� it su�ces to bound the milling and transport

costs of S� and S� separately by mill�
� and transport�
�� Each of S� and S�
will involve at most the same number of tools used in 
� Thus ntools�S� � S�� �
	ntools�
�� For each tool t� 
t denotes the set of milling paths involving t� and


�t denotes the set of milling paths involving t or smaller tools� We think of 
t as

the set of paths along which the center of the tool moves and the same applies for

		




�t� To complete the proof� we present the analyses of the large�tool and small�tool

cases in the next two subsections�

���� Large�Tool BMAs

For each continuous curve �t in 
t� we �nd a set of large�tool BMAs so that if

a point q in a cell of size less than �t is milled by t traversing along �t� then q is

milled by some large�tool BMA in this set� Let t� be the smallest tool in the range

�t	�� t�� Let Xt� be the squares b in the grid Gt� through which �t passes� For each
square b � Xt� � we add to S� all large�tool BMAs large tool�t

��K�M � induced by b

such that K contains a point on �t inside b� We claim the following�

�i� If a point q in some cellC is milled by a tool in 
 of size greater than size�C�	��

then q is milled by a large�tool BMA in S��

�ii� mill�S�� � O�mill�
�� and transport�S�� � O�mill�
� � transport�
���

To prove �i�� since q is milled by some tool t of size greater than size�C�	��

q � d�p� t� for some point p on a curve �t in 
t� Let b be the square in Gt� that
contains p� Let K be the connected component of �b�	�t���F�t�� that contains p�
�Note that K must exist as b� 	�t� contains p and F�t� � F�t���� We claim that b

induces the BMA large tool�t��K�M � which is added to S�� Since p � b and d�p� t�

overlaps C and t � �t�� this implies that b��t� overlaps C� Also� since size�C� � �t
and t � �t�� size�C� � ��t�� If t� is the smallest tool� then we are done� Otherwise�

we need to check if K contains a component of b � F�	t��� Since t � 	t� by choice

of t�� F�t� � F�	t��� Since p � F�t� and p � K� we conclude that K contains a

component of b �F�	t��� Finally� we verify that large tool�t��K�M � mills q� Recall

that q � d�p� t� for some p on �t and p � K� Thus� one can �rst center t� at p and

then move within d�p� t� to mill q�

To prove �ii�� by Lemma ��� each �t in 
t passes through O�L�t	t��� squares in

Gt� and so Xt� has O�L�t	t� �� squares� By Lemma �� each square in Xt� induces

O��� large�tool BMAs for t�� So the total number of large�tool BMAs identi�ed

for �t is O�L�t	t � ��� By Lemma �� the total milling cost of these BMAs is

O�t��L�t	t��t
�� � O�L�t�t

�� which is bounded by the milling cost of �t �length plus

placement cost 	t�� Thus summing over 
t for all t� we have mill�S�� � O�mill�
���

We can visit all the large�tool BMAs in S� involving tool t as follows� Follow 


to transport t to a point on �t� Then transport t to an endpoint of �t �this costs

O�L�t�� Transport to the starting points of the large�tool BMAs de�ned at this

endpoint and apply the BMAs� Traverse along �t to the center of the next disk in

D�t and repeat the application of BMAs �this costs O�L�t � t��� Finally� transport

t to the point on �t from where 
 will leave �t �this costs O�L�t��� Thus� the entire

tour can be viewed as the transport of t in 
 plus some detour� The cost of the

detour sums to O�mill�
t��� Thus� transport�S�� � O�mill�
� � transport�
���

���� Small�Tool BMAs

We assume that all the large�tool BMAs in S� have been applied� Let C be

a cell with an unmilled region� Any tool t in 
 that acts on this unmilled region
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must satisfy t � size�C�	� and so t must be small for C� We will identify a set

S� of small�tool BMAs to mill the rest of P
� and charge the cost to mill�
� and

transport�
��

The charging scheme for the small�tool BMAs is more complex than for large

tools� Consider some unmilled component� Let t be the largest tool used by 
 to

mill any point of this component� We will introduce the corresponding small�tool

BMA for t to mill as much of this component as possible without losing contact with

it� The key to establishing the approximation bound is to show that no combination

of smaller tools could mill the same region with signi�cantly less cost� Recall from

Section 	 and Fig� � that one reason that larger tools are not necessarily better than

smaller tools is that a large tool may only shave away a small amount of additional

material� into which a small tool may be able to plunge deeply� Intuitively� if tool t

does plunge deeply into the unmilled region� then it will mill more e�ciently than a

smaller tool� On the other hand� if t does not plunge deeply into the unmilled region�

then the small�tool BMA will scrape along the boundary of the unmilled region� To

account for this� we will introduce a charging scheme to pay for this milling action�

The boundary of each unmilled region will be assigned a charge proportional to its

length� We will then show that the total charges will be dominated by the other

costs of our milling plan�

To facilitate the charging� we need to initialize some charge on boundaries of

unmilled regions after applying all large�tool BMAs in S�� For each segment on

these boundaries� we associate a charge proportional to its length� We claim that

these charges can be paid for by mill�
� and the argument is as follows�

By Lemma �� the sum of lengths of segments that lie on accessibility arcs left

by large�tool BMAs in S� can already be paid for by mill�S��� which is O�mill�
���

The other boundary segments of the unmilled regions lie either on the boundary

of quadtree boxes or domain edges� Let s be a boundary segment of the unmilled

region in a cell C that lies either on the boundary of box �C� or on some domain

edge bounding C� Let t be the largest tool in 
 that mills any point on s� Consider

s � t�

Suppose that s is a straight line segment� Let t� be the tool traversing a subpath


t� in 
 � s� ��t	�� such that 
t� � t� overlaps s� Note that t� � t� By Lemma ���

the perimeter of 
t� � t� is less than j
t� j � O�t��� If we take all such tools and

subpaths� then s is covered by
S
t� 
t� � t� and so jsj � Pt� j
t� j � O�t��� Notice

that each 
t� either traverses a distance of at least t	� in s � ��t	�� n �s � t� or

contains a placement of t�� Thus� the O�t�� term can be charged to this placement

or 
t� itself� Thus� jsj can be charged to the total cost of such milling subpaths 
t� �
Hence� by Lemma �� and Lemma ��� the total length of straight line segments of the

unmilled regions can be charged to O�mill�
��� The possibility that s is a circular

arc can be handled identically� This proves our claim that charges associated with

boundaries of unmilled regions after applying large�tool BMAs in S� can be paid

for by O�mill�
���

Let U be the set of unmilled components after applying large�tool BMAs in S��
We de�ne the set S� of small�tool BMAs iteratively as follows� Remove U � U � Let
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t be the largest tool in 
 that mills any point of U � For each connected component

K of �U � t� � F�t� that intersects 
t� we add small tool�t�K�M � to S�� Then we

subtract K� t from U for each such K and put the unmilled components produced

back to U � We repeat the above until U becomes empty�
We bound mill�S�� by bounding the placement costs and milling path lengths

separately� Take any small tool�t�K�M � � S�� In 
t� there is either a placement of

t in K � t or a segment � of length t in �K � t� nK� We charge the placement cost
of small tool�t�K�M � to this placement in K� t or the length of �� At any moment
in time� a point q on 
t can only lie inside K for at most a constant number of

small�tool BMAs in S� by Lemma ��� Lemma ��� and Lemma �	� Moreover� after

applying small tool�t�K�M �� q is at distance at least t away from any new unmilled

component produced� Thus� q cannot be charged again for these new unmilled

components or any subset of them� Therefore� the placement costs of small�tool

BMAs in S� is bounded by O�
P

tmill�
t�� � O�mill�
���

To bound the millingpath length of small tool�t�K�M �� consider the intersection

� � K � 
�t� � � 
K is an arrangement of curves �possibly consisting of several

connected components�� �See Fig� ���a�� for example�� For each tool t� used in 
�t�

we let �t� denote the portion of a milling path for tool t� that lies in �� If we move

t along 
K and t� along �t� for each �t� � �� we must mill the entire K � t� The

reason is as follows�

Let q be any point in K � t� If q is at distance � t from some point on 
K� then

it must be milled as t is moved along 
K � If q is at distance � t from every point

on 
K �i�e� q � K � t�� then q must lie inside U � Further� since t is the largest tool

in 
 that mills any point of U � q must be milled by 
 using a tool t� of size � t�

Clearly� the center of such a tool t� lies within K�

Our plan is roughly to move t almost along � � 
K to bound the milling path

length of small tool�t�K�M �� The main problem with this strategy is that if � con�

sists of many di�erent components� then the placement cost of t for each component

cannot be paid for by the much smaller placement costs that may have been in�

curred by 
� To remedy this� we will add extra segments to connect all components

in �� 
K
 we will show that the length of these segments can be paid for either by
the length of these components or by the placement costs in 
�

Each connected component � of ��
K can be viewed as a single oriented curve

by an Eulerian traversal� Let t� be the largest tool used in � �we assume that t is

used for 
K�� By Lemma ��� we can �nd L�	t� � � disks of radius 	t� to cover

� � t� � where L� is the length of �� We add a straight line segment of length 	t�
to connect the envelope of the union of these disks and �� We denote the union of

this extra line segment� the boundaries of the disks and � collectively by ��� �For

example� see Fig� ���b��� The total length of �� is O�L� � t��� Also� let �R denote

the region formed by taking the union of these disks� If we could move t� along ���

then this would mill all of �R� However� it may not be possible to move t� along

��� if it projects outside of K� Therefore� we trim �R by taking its intersection with

K� Also� we trim �� by taking its intersection with K and then adding the portion

of K that lies within the �trimmed� �R� �For example� see Fig� ���c���
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K KK

(c)(b)(a)
Fig� ��� Charging argument for small�tool BMAs� Figure �a	 shows K ���t�
Figure �b	 shows �� for one component � shown in bold� Figure �c	 shows the
trimmed �� for another component � shown in bold�

We claim that moving t� along �
� mills all of �R� For the sake of contradiction�

assume that there is a point q in �R which cannot be milled by moving t� along

��� Let q be inside disk x� Then q cannot be within distance t� of center of disk

x because moving t� along � would mill q and �� contains � since � lies entirely

within K� Let p denote the closest point to q on the boundary of disk x� Clearly p

must lie outside of K� else t� would be placed at p and it would mill q� Thus� there

must be a point on the boundary of K which intersects segment qp and moving t�
along the portion of K included in �� would mill q� contradiction� This proves our

claim that moving t� along �
� mills all of �R�

Earlier we proved that moving t along 
K and t� along �t� for each �t� � �� we
must mill the entire K � t� It follows that

S
�����K�� � t�� �K � K� Since �R

contains �� � t�� �K�
S
�����K �R � K� Let �� be the connected component in

the arrangement
S
�����K �� that contains 
K� We claim that by moving t along

��� we mill the entire K � t� The argument is as follows�

Suppose there is a point q � K � t� which is not milled by moving t along ���

Certainly� q cannot be within distance t of some point on 
K � since all such points

are milled as t is moved along 
K� Assume therefore that q lies within K � t� Let

�� denote the union of all components in the arrangement
S
�����K �� for which

the component contains some �� such that �R contains q� Since moving t along any

component in �� would mill q� it follows that no component in �� is connected to


K � But this implies that there is a point su�ciently close to the boundary of ��

�and therefore inside K�� which is not contained in
S
�����K �R� This contradicts

what we proved earlier and so moving t along �� must mill K � t�

Next we bound the length of the milling path for applying small tool�t�K�M ��

Clearly this is bounded by the length of ��� Let � be the connected component

of � � 
K that contains 
K � Then the length of the milling path for applying

small tool�t�K�M � is bounded by the sum of length of �� and O�L��� where L� �
P

�����K�� ��� L� � t��

L� is bounded by the sum of lengths of K � 
�t and the associated placement
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costs of 
�t inK� At any moment in time� a point q on 
�t can only lie insideK for

at most a constant number of small�tool BMAs small tool�t�K�M � by Lemma ���

Lemma ��� and Lemma �	� Hence� q lies on the milling path of only a constant

number of small�tool BMAs in S� that can be applied at this moment� Moreover�

after applying one such small tool�t�K�M �� the same point q is at distance at least

t away from any new unmilled component produced� Thus� q cannot be used again

in the future in the milling paths for these new unmilled components or any subset

of them� Therefore� summingL� over all small�tool BMAs in S� is O�mill�
��� The

length of �� is bounded by the sum of length of 
K plus the length of K �
�t plus

O�t�� The O�t� term can be absorbed like the placement cost of small tool�t�K�M ��

As analyzed before� the sum of the lengths of K �
�t over all small�tool BMAs in

S� is O�mill�
��� It remains to bound the length of 
K �

First� by Lemma �	� there is a constant number of segments in 
K � Second� we

claim that any placement of t on 
K contains a point on 
U � Otherwise� such a

placement must then lie in the interior of U and its center must lie on 
F�t�� But
this implies that the interior of U contains a point on the boundary of the domain�

contradiction� Now� we are ready to bound the length of 
K as follows� Move the

tool t with center along each boundary segment s on 
K � By our second claim�

moving t with center along s will eliminate points on 
U � Moreover� the length of s

is at most the length of segments on 
U eliminated � O�t�� By our �rst claim� the

total length of 
K is bounded by O�t� plus the length of segments on 
U eliminated

while moving t along 
K� The O�t� term can be absorbed like the placement cost of

small tool�t�K�M �� 
U consists of segments of two possible kinds� The �rst kind

consists of segments on boundaries of unmilled regions left after applying large tool

BMAs in S�� By our initial setup� these segments carry enough charge to pay for

themselves� The second kind consists of accessibility arcs left after applying some

small tool BMAs introduced earlier to S�� By Lemma ��� a small tool BMA will

introduce at most a constant number of accessibility arcs� Thus� we can charge the

sum of lengths of these accessibility arcs to the placement cost of the small tool

BMA introducing them� As analyzed before� the sum of placement costs of small

tool BMAs in S� is bounded by O�mill�
���

The above establishes that mill�S�� � O�mill�
��� Given any tool t� we trans�

port t as follows� Take out all the small�tool BMAs small tool�t�K�M � in S�
involving t� By construction� 
t visits some point qK in each K� Hence� we

can visit all the small�tool BMAs in S� involving t by following 
t which costs

mill�
t� � transport�
t�� At each small�tool BMA small tool�t�K�M � visited� we

take a detour from qK to the starting point speci�ed for small tool�t�K�M �� mill

points inM � and �nally return to qK � The trip from qK to the starting point and the

�nal return to qK costs no more than the milling path length of small tool�t�K�M ��

Therefore� transport�S�� is bounded by
P

tmill�
t��transport�
t� plus the sum of

milling path lengths of small�tool BMAs in S�� The latter sum is O�mill�
�� as an�

alyzed before� Hence� transport�S�� � O�mill�
� � transport�
��� This completes

the proof of Theorem 	�
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	� Greedy Approximation

We reduce the problem of �nding an optimal milling plan to a weighted set cover

problem� given a set S and a family Z of some subsets of S where each X � Z is

associated with weight w�X�� the objective is to �nd Y � Z such that S �
S
X�Y X

and
P

X�Y w�X� is minimized� Denote such an instance by �S�Z�� We approximate
the weighted set cover problem with a greedy algorithm� thus achieving the claimed

logarithmic factor approximation� The di�culty is that� as we will see� the instance

of our weighted set cover problem is too large to be described explicitly� Therefore�

we run an approximate greedy algorithm on a succinct problem description� We

will show that this only adds an extra constant factor�

���� Reduction

We re�ne the subdivision of P � by overlaying the accessibility arcs of F�t� for
all t on it� The set of faces in the re�ned subdivision is the set S in our weighted

set cover instance� Intuitively� we have to cover all the points in P � by covering all

the faces in S� It remains to de�ne Z�
For each large tool�t�K�M � or small tool�t�K�M �� M is a subset of faces in S�

We call K a t�locus and M a t�region� A t�subset is union of some t�regions and

so a t�subset is a set of faces in S� For each t�subset X� we denote by XM the set

of t�regions forming X and we denote by XK the collection of corresponding t�loci�

The weight w�X� of X is the sum of three terms� The �rst term is the total milling

costs of the t�regions in XM � The second term is the length of the MST connecting

the tool�change center and the starting points of the t�loci in XK � The third term

is the sum of placement costs O�jXKj � t�� These terms give the total cost of milling
faces in X using the BMAs induced by XK �

We �rst include in Z the collection of all possible t�subsets for each tool t�

Then we prune Z such that for each tool t� X � Z� and any cell C� if there are
small tool�t�K�M � and small tool�t�K��M �� where K�K� � XK � M�M � � XM �

and M�M � � C� then small tool�t�K�M � and small tool�t�K��M �� act on unmilled

components of the same unmilled region of C� By our proof of Theorem 	� solving

�S�Z� will return at least a constant factor approximation of the milling problem�

���� Approximate Greedy Algorithm

If �S�Z� is described explicitly� then we can use the following greedy heuristic
to obtain an O�logm � logN � approximation factor� Initialize the cover Y to be

empty� Compute the t�subset X � Z that minimizes the average weight de�ned

to be the ratio w�X� divided by the number of faces in X that are currently in S�

Then include X in Y and remove all the faces in S contained in X� Repeat until

S becomes empty� It is well known that this procedure produces a set cover whose

total weight is at most ln jSj times the optimal� In our case� jSj � O��Nmn�O�����

Since N � n� the approximation ratio is O�logm � logN �� Unfortunately� it is

not e�cient to describe �S�Z� explicitly� since jZj is exponential in the number of
faces in S� Instead we only store the set of t�regions for all tools and compute a
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t�subset of approximately minimum average weight �within a constant factor� by

solving a series of instances of a variant of k�TSP� Hence� we still solve �S�Z� within
a logarithmic approximation factor�

��	��� Strategy and di�culty

We brie�y review the k�TSP problem and introduce a variant that will be solved

repeatedly as a subproblem� Given l points in the plane� the k�TSP is to �nd

a tour of minimum length that visits any j of the l given points� The k�TSP

problem is NP�hard but it can be approximated to within any constant factor in

polynomial time����� These algorithms for approximating the k�TSP problem are

based on showing that computing the optimum tour of a particular structure will

provide an approximation to the optimum tour� Then the optimum tour of the

particular form can be computed using dynamic programming� We generalize the

k�TSP problem to �nd a tour that collects coins at the visited points� Each point

p is given a table table�p� and each entry of table�p� is a coins�cost pair which

tells the cost of collecting the associated number of coins at p� The j�WTSP is

to �nd a tour that collects j coins so that the tour length plus the sum of the

cost of collecting coins at visited points is minimized� This is de�ned to be the

weight of the tour� The dynamic programming paradigm for approximating the

k�TSP is powerful enough to approximate the j�WTSP within a constant factor in

polynomial time� The geometric component of the k�TSP approximation algorithm

is una�ected by this reduction� so the approximation bounds proved in Refs� ������

hold here as well�

Our strategy is to compute� for each tool t� a t�subset of approximatelyminimum

average weight� and then return the one of the least average weight� Consider

computing this t�subset for tool t� We �rst outline our approach by making the

�invalid� assumption that t�regions are disjoint� We will show how to overcome this

afterwards�

Given a t�region M � �x a point p in the corresponding t�locus� Let fp be the

number of faces covered by M � Let cp be the sum of milling cost and placement

cost for the BMA by t that mills M � Create the table table�p� which contains

only one entry� namely� �fp� cp�� Repeat this for all other t�regions� This yields a

collection of points and their associated tables� Let Ft be the maximum number of

faces currently in S that are covered by some t�region� For each j� � � j � Ft� �nd

the approximate j�WTSP and compute its average weight� Afterwards� select the

tour with the minimum average weight and this corresponds to the t�subset with

approximately minimum average weight�

Due to the possible overlapping among t�regions� the number of faces covered

when visiting a set of points is not simply the sum of numbers of faces covered when

visiting each point� Thus� the above strategy needs to be improved to overcome

this di�culty� We describe below two transformations to get around this problem

and obtain the desired series of instances of j�WTSP�

	�



��	�	� Collapsing small�tool BMAs

Let large cell�t� denote the set of cells for which t is small� Given a cell C �
large cell�t�� all the t�regions inside C are generated by small�tool BMAs by t�

If box �C� � �size�C�	�� does not contain the tool�change center� then we put a

representative point pt�C� at the center of box �C� as the common point for all

t�regions in C� If box �C� � �size�C�	�� contains the tool�change center� then we
put a representative point pt�C� at the tool�change center� �If box �C� contains two

cells� then we can put these two points slightly apart at the center of box �C��� Let

M be the milling plan obtained in Theorem 	� We modify M as follows� First�

if t is transported to C and M is the �rst t�region in C visited by t� then we �rst

transport t to pt�C� and then to M to start milling� Afterwards� if t is transported

to pt�C� several times� then we transport t to pt�C� exactly once and then mill all

the t�regions in C that t should mill before going to another cell� Let M� denote

the modi�ed milling plan�

Lemma �� The tour length of t inM� is within a constant factor of the tour length

of t in M�

Proof� We will show that detouring via the common point pt�C� of a cell C

increases the tour length of t by a constant factor� and the lemma will follow�

Thus� we focus on proving that the detour is not expensive� Let M� denote the

modi�cation of M with the detour� Let T and T � be a tour of t in M and its

modi�ed version inM� respectively� We �rst modify T � as follows� In T �� if there

is an edge e from the starting point of the t�locus K� for a t�region in cell C� to

pt�C�� and then to the starting point of the t�locus K� for a t�region in cell C��

then we replace e by a path of two edges� from the starting point of K� to the

starting point of K� and then to pt�C��� Let �T denote the modi�cation of T ��

The length of �T is no less than the length of T � by triangle inequality� We call

an edge in �T between a t�locus for a t�region in a cell C and pt�C� a detour edge�

By construction� �T contains all the edges in T and some detour edges� Let e be

a detour edge from a point p to pt�C� for some cell C� If box �C� � �size�C�	��
contains the tool�change center� then pt�C� is the tool�change center� Then we

charge e to the length of the tour T � Suppose that box �C� � �size�C�	�� does not
contain the tool�change center� In T � after leaving the point p� the tour has to leave

box �C�� �size�C�	�� eventually� Let 
 be the path in T starting at p and ending at
the boundary of box �C���size�C�	��� The length of 
 is  �size�C��� We charge the
length of e in �T to the length of 
� We bound the total charge on the length of T in

the following� T visits the same box a constant number of times because there are

at most two cells in a box and there is a constant number of unmilled components

in a cell to act on� Therefore� there is a constant number of detour edges in �T for

any box� By Lemma ��� there are O��� boxes box �C� such that box �C�� size�C�	�

contains the tool�change center� So the length of T is charged a constant number

of times by these boxes� For the rest of the charging� observe that when we charge

the length of a detour edge for a box box �C� to some subpath 
 in T � 
 lies inside

box �C�� size�C�	� and each point on 
 receives at most constant units of charge�

By Lemma ��� there are at most a constant number of boxes box �C� such that

��



box �C�� size�C�	� contains a particular point in T � Thus� the accumulated charge

on each point in T is bounded by a constant� This proves that the length of �T and

hence T � is within a constant factor of the length of T � �

For each cell C � large cell�t�� we associate a table table�pt�C�� with pt�C� to

re�ect all the possible e�ects of small�tool BMAs by t in C and the correspond�

ing costs� We enumerate all possible unmilled regions in C and for each unmilled

region� we enumerate all possible combinations of small�tool BMAs on unmilled

components� Note that each unmilled component induces at most a constant num�

ber of small�tool BMAs� For each such combination of small�toolBMAs by t� we �nd

out the number of faces covered and the cost �sum of costs of the small�tool BMAs�

the length of the minimum spanning tree connecting pt�C� and the t�loci� and the

placement cost�� The number of combinations to be evaluated is O��mN �O���� and

the table table�pt�C�� has O��mN �O���� entries�

��	��� Separating large�tool BMAs

After collapsing small�tool BMAs by a tool t� we have one representative point

for each cell C � large cell�t�� We now address the overlapping among t�regions of

large�tool BMAs� We divide such t�regions into groups so that within a group� no

two t�regions overlap� The division is done by coloring an induced graph as follows�

Consider the grid squares that induce the large�tool BMAs by t� There is a constant

number of large�tool BMAs induced by each grid square� Since each grid square has

width  �t�� the t�region of a large�tool BMA cannot overlap more than a constant

number of grid squares� Thus� the t�region of a large�tool BMA overlaps at most

a constant number of t�regions of other large�tool BMAs� This induces a graph

of maximum degree bounded by a constant !� Such a graph is colorable using at

most !� � colors which yields at most !� � groups of t�regions� We �x a point p

in each t�region M and associate with it a table table�p� of a single entry� namely�

the faces covered by M and cost �cost of the corresponding large�tool BMA plus

placement cost�� Thus� we obtain at most ! � � groups of points each associated

with a table� We denote these groups by Gi�t� for � � i � !� �� Finally� we add

one last group G�
��t� which contains pt�C� along with table�pt�C�� for each cell

C � large cell�t� �i�e�� G�
��t� takes care of the small tool BMAs by t discussed in

section ��	�	��

Lemma �� There is a milling plan A�� in which each tour of a tool t beginning

and ending at the tool�change center visits only points in some Gi�t�� Moreover�

A�� approximates the optimal milling plan within a constant factor�

Proof� Consider the milling plan A� constructed in Lemma ��� Let T be a

tour of some t in A� beginning and ending at the tool center� We simply duplicate

T in all the groups� We repeat this for all other tours of all tools� The cost of

the resulting milling plan is at most ! � 	 times the cost of A� which is within a

constant factor of the optimal� �
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��
� The Complete Algorithm

By Lemma��� it su�ces to run a greedy heuristic to approximateA��� Lemma ��

also implies that for each tool t� we need to consider only t�subsets whose t�regions

have points in one single group� Thus� the complete greedy algorithm is as follows�

Recall that Ft is the number of faces currently in S covered by some t�region�

Algorithm Greedy
Input�

��The set of faces S in the subdivision�

	�The t�loci and t�regions for all tools�

��The groups Gi�t� of �xed points to be visited for all
tools� Each �xed point is associated with a table keep�
ing the cost and the number of faces covered by the
visit� Ft denotes the maximum number of faces in
some table entry in some Gi�t��

Output� An approximate milling plan
�� while S 
� � �� Loop until all faces are covered ��
	� do for each tool t �� Find min avg weight tour for each tool ��
�� do for � � j � Ft
�� do for each Gi�t�
�� do solve the j�WTSP on Gi�t�

�� Tj�t� � the tour with minimum weight among the j�

WTSP solutions

�� T �t� � minimum average weight fTj�t�	jg

�� Set T to be the tour of minimumaverage weight among T �t� for all tools

t

�� output T as a tour in the output milling plan

��� remove faces covered in T from S
 �� Update for next iteration ��
��� update Ft for all t

�	� update the numbers of faces in all tables


Fig� �
� Greedy heuristic�

Theorem � An approximate milling plan can be computed in O��mN �O���� time

with cost within O�logm � logN � of the optimal�

Proof� By Lemma ��� it su�ces to approximate A��� Due the nature of tours in

A��� the nested for loops clearly return the t�subset of minimumaverage weight� if the

j�WTSP could be solved exactly� The approximation factor would be O�ln jSj� �
O�logm�logN � by the well�known performance of greedy heuristic� The j�WTSP is

approximated to within a constant factor in time O��mN �O���� using the algorithm

in Refs� ������� An inspection of the analysis of greedy heuristic for weighted set

cover �see� e�g�� Refs� ������� reveals that this extra constant factor only increases

the constant hidden in O�logm � logN � �
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