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ABSTRACT 

We describe a pointerless representation of hierarchical regular simplicial meshes, based 
on a bisection approach proposed by Maubach. We introduce a new labeling scheme, 
called an LPT code, which uniquely encodes the geometry of each simplex of the hi
erarchy, and we present rules to compute the neighbors of a given simplex efficiently 
through the use of these codes. In addition, we show how to traverse the associated 
tree and how to answer point location and interpolation queries. Our system works in 
arbitrary dimensions. 

Keywords: Pointerless data structures; neighbor finding; hierarchical simplicial meshes. 

1. In t roduct ion 

Hierarchical simplicial meshes have been widely used in various application areas 
such as finite element computations, scientific visualization and geometric mod
eling. There has been considerable amount of work in simplicial mesh refinement, 
particularly in 2- and 3-dimensions, and a number of different refinement techniques 
have been proposed.1'2'3'4'5'6'7'8 Because of the need to handle data sets with tem
poral components, there is a growing interest in higher dimensional meshes. In this 
paper, we build on a bisection refinement method proposed by Maubach.7 

*This material is based upon work supported by the National Science Foundation under Grant 
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A hierarchical mesh is said to be regular if the vertices of the mesh are regularly 
distributed and the process by which a cell is subdivided is identical for all cells. 
Maubach developed a simple bisection algorithm based on a particular ordering of 
vertices and presented a mathematically rigorous analysis of the geometric struc
ture of the hierarchical regular simplicial meshes in any dimension d? Each element 
of such a mesh is a d-simplex, that is, the convex hull of d + 1 affinely indepen
dent points.9 The mesh is generated by a process of repeated bisection applied to 
a hypercube that has been initially subdivided into d\ congruent simplices. The 
subdivision pattern repeats itself on a smaller scale at every d levels. Whenever 
a simplex is bisected, some of its neighboring simplices may need to be bisected 
as well, in order to guarantee that the entire subdivision is compatible. Intuitively, 
a compatible subdivision is a subdivision in which pairs of neighboring cells meet 
along a single common face. A compatible simplicial subdivision is also referred to 
as a simplicial complex.10 (See Fig. 1 for a 2-dimensional example.) Compatibility 
is important, since otherwise, cracks occur along faces of the subdivision, which in 
turn present problems when using the mesh for interpolation. 

Fig. 1. Compatible simplicial mesh in the plane. 

In computer graphics, adaptively refined regular meshes in 2- or 3-dimensions 
have been of interest for their use in realistic surface and volume rendering.11'12'13 

In many such applications, efficiency of various operations such as traversal and 
neighbor finding on the mesh is most desired. Based on the 3-dimensional version of 
Maubach's method, Hebert14 presented a more efficient symbolic implementation of 
regular tetrahedral meshes by introducing an addressing scheme that allows unique 
labeling of the tetrahedra in the mesh, and he showed how to compute face neighbors 
of a tetrahedron based on its label. Hebert's addressing scheme could be generalized 
to higher dimensions, however the neighbor finding algorithms are quite specific to 
3-dimensions, and a generalization to higher dimensions is a definite challenge. In 
this paper, we present such an algorithm that works in arbitrary dimensions. 

Our interest in higher dimensions is motivated by another computer graphics 
application that accelerates ray-tracing15 through multi-dimensional interpolation. 
In this application, rays in 3-space are modeled as points in a 4-dimensional pa
rameter space, and each sample ray is traced through a scene to gather various 
geometric attributes that are required to compute an intensity value. (A ray is ac
tually a 5-dimensional entity, but when rays are shot from a distant origin, it is 
more efficient to ignore the ray's origin and model it by its supporting line in space.) 
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Since tracing a ray through a complex scene can be computationally intensive, our 
approach is to instead collect and store a relatively sparse set of sample rays in a 
fast data structure and associate a number of continuous geometric attributes with 
each sample. We then interpolate among these samples to reconstruct the value at 
intermediate rays.16 '17 Because of variations in the field values, it is necessary to 
sample adaptively, with denser sampling in regions of high variation and sparser 
sampling in regions of low variation. An adaptively refined simplicial mesh is con
structed over the 4-dimensional domain of interest, and the field values are sampled 
at the vertices of this subdivision. Given a query point, we determine which cell 
of the subdivision contains this point, and the interpolated value is an appropriate 
linear or multi-linear combination of the field values at the vertices of this cell. 

For interpolation purposes, compatibly refined simplicial meshes are preferable 
over quadtree-like subdivisions, since they guarantee C° continuous interpolants. 
The problem with decompositions based on hyp errect angles (such as quadtrees and 
kd-trees) is the problem of "cracks." These arise when neighboring leaf cells are re
fined to different refinement levels, and new sample vertices are inserted along the 
boundary of one cell but not the other. Although it is possible to eliminate cracks by 
further subdividing a quadtree subdivision to produce a simplicial complex,18'19'20 

these approaches do not scale well to higher dimensions due to the exponential in
crease in the number of vertices in each cell and combinatorial explosion of different 
cases that need to be considered. Another advantage with simplicial decompositions 
is that interpolation is simpler and more efficient because linear interpolations can 
be used, which are based on a minimal number of samples (d + 1 samples for d-
dimensional simplices) rather than multilinear interpolations (involving 2d samples) 
for hyperrectangles. To illustrate these advantages more concretely, consider the im
ages generated from our ray-tracing application in Fig. 2. Images (a) and (c) show 
the result of an interpolation based on kd-trees,17 and images (b) and (d) show the 
results of using the hierarchical simplicial decomposition described in this paper. 

In addition to our own motivation, higher dimensional meshes are of interest for 
visualization of time-varying fields, and efficient algorithms for performing traver
s a l and neighbor finding is required. 

Thus, our main objective in this paper is to present an efficient implementation 
of hierarchical regular simplicial meshes in any dimension d. Rather than repre
senting the hierarchy explicitly as a tree using parent and child pointers, we use 
a pointerless representation in which nodes are accessed through an index called 
a location code. Location codes21'22 have arisen as a popular alternative to stan
dard pointer-based representations, because they separate the hierarchy from its 
representation, and so allow the application of very efficient access methods, such 
as hashing. The space savings realized by not having to store pointers can be quite 
significant for large multidimensional meshes. Each node would nominally be as
sociated with d + 4 pointers. These are its pointers to its parent and each of its 
two children in the hierarchy, and pointers to each of its d + 1 face-neighboring 
simplices. 



598 F. B. Atalay & D. M. Mount 

* ~ « 

• i i • 

(c) (d) 

Fig. 2. Results of a ray-tracing application to produce an 800 x 800 image based on 4-dimensional 
interpolations using (a) a kd-tree based on 14,492 samples (96 CPU seconds) and (b) a simplex 
decomposition tree based on 6,072 samples (97 CPU seconds). Details of these images are shown 
in (c) and (d), respectively. Note the blocky artifacts in the kd-tree approach (c). 

We store the mesh in a data structure called a simplex decomposition tree. We 
present a location code, called the LPT code, which can be used to access nodes 
of this tree. Our hierarchical decomposition is based on the same bisection method 
given by Maubach.7 (Note that Maubach's representation is not pointerless.) In 
addition to efficient computation of neighbors, we show how to perform tree traver
sa l , point locations, and answer interpolation queries efficiently through the use of 
these codes. 

The remainder of the paper is organized as follows. In the next section we present 
prior work and discuss pointerless representations for hierarchical structures. In 
Section 3 we present basic notation and definitions. In Section 4 we introduce the 
LPT code and in Sections 5 and 6 we explain how to use the LPT code to perform 
tree traversals and compute neighbors. 

2. Pointerless Representations and Prior Work 

Regular subdivisions have the disadvantage of limiting the mesh's ability to adapt to 
the variational structure of the scalar field, but they provide a number of significant 
advantages from the perspectives of efficiency, practicality, and ease of use. The 
number of distinct element shapes is bounded (in our case by the dimension d), 



Pointerless Implementation of Hierarchical Simplicial Meshes 599 

and hence it is easy to derive bounds on the geometric properties of the cells, 
such as aspect ratios and angle bounds. The regular structure relieves us from 
having to store topological information explicitly, since this information is encoded 
implicitly in the tree structure. Additionally, the hierarchical structure provides 
a straightforward method for performing point location, which is important for 
answering interpolation queries. 

One very practical advantage of regularity involves performance issues arising 
from modern memory hierarchies. It is well know that modern memory systems are 
based on multiple levels, ranging from registers and caches to main memory and disk 
(including virtual memory). The storage capacity at each level increases, and so too 
does access latency. There are often many orders of magnitude of difference between 
the time needed to access local data (which may be stored in registers or cache) 
versus global data (which may reside on disk).23 Large dynamic pointer-based data 
structures are particularly problematic from this perspective, because node storage 
is typically allocated and deallocated dynamically and, unless special care is taken, 
simple pointer-based traversals suffer from a nonlocal pattern of memory references. 
This is one of the principal motivating factors behind I/O efficient algorithms24'25 

and cache conscious and cache oblivious data structures and algorithms.23,26 

In contrast with pointer-based implementations, regular spatial subdivisions 
support pointerless implementations. Pointerless versions of quadtree and its vari
ants have been known for many years.27'21 The idea is to associate each node of 
the tree with a unique index, called a location code. Because of the regularity of the 
subdivision, given any point in space, it is possible to compute the location code 
of the node of a particular depth in the tree that contains this point. This can be 
done entirely in local memory, without accessing the data structure in global mem
ory. Once the location code is known, the actual node containing the point can be 
accessed through a small number of accesses to global memory (e.g., by hashing). 

Prior work on pointerless regular simplicial meshes has principally been in 2-
and 3-dimensions. Lee and Samet presented a pointerless hierarchical triangulation 
based on a four-way decomposition of equilateral triangles.22 Evans, Kirkpatrick 
and Townsend28 considered triangulations based on bisection of right triangles. 
(This corresponds to the 2-dimensional case of the regular simplicial meshes we 
consider.) They developed a location code for this triangulation and provided an 
efficient neighbor finding method based on bit manipulation. Hebert presented a 
location code for bisection-based hierarchical tetrahedral meshes and a set of rules to 
compute neighbors efficiently in 3-space.14 Lee, De Floriani and Samet developed an 
alternative location code for this same tetrahedral mesh, and presented algorithms 
for efficient neighbor computation.29 Both approaches are based on an analysis of 
specific cases that arise in the 3-dimensional setting, and so do not readily generalize 
to higher dimensions. 

Our interest is in hierarchical regular meshes, however, note that there is also 
significant interest in compact representation of irregular simplicial meshes.30'31 

We introduce a new location code, which provides unique encoding of the sim-
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plices generated by Maubach's7 bisection algorithm. Unlike Hebert's approach, 
which only works in 3-dimensional space and relies on enumerations and look-up 
tables, our approach is fully algorithmic and works in arbitrary dimensions. We de
fine the components required to develop a pointerless implementation based on our 
location code. The geometry of the simplices and the operations required for navi
gation in the associated tree can be computed easily based solely on the code of a 
simplex. Our location code and the definitions of various operations on the simplex 
tree depend on the particular vertex ordering. We have adopted a different order
ing than Maubach's system, which we feel leads to simpler formulas. Our vertex 
ordering is a generalization of the vertex ordering used in Hebert's 3-dimensional 
system. 

The most challenging operation on the tree is neighbor computation. Maubach's 
system computes the neighbors of a simplex during construction of the tree 
recursively,32 and stores pointers to neighbors for each simplex. In contrast, we 
show how to compute an arbitrary neighbor of any simplex efficiently directly from 
its code, without storing any neighbor links, and without having to traverse the 
path to and from the root in order to compute neighbors. This is significant gain 
both in terms of storage, and computational efficiency, since our approach is local 
and runs in 0(d) time. In fact, it runs in 0(1) time, if the operations are encoded 
in lookup tables. 

3. Preliminaries 

Throughout, we consider real d-dimensional space, Rd. We assume that the do
main of interest has been scaled to lie within a unit reference hypercube of side 
length 2, centered at the origin, that is, [—1, l]d. We shall denote points in Rd us
ing lower-case bold letters, and represent them as d-element row vectors, that is, 
v = (t>i,i>2, • • • ,Vd) = (vi)f=1. We let e* denote the z-th unit vector. Note that we 
represent unit vectors as row vectors as well, for example, ei = (1,0,0) in 3-space. 
A d-simplex is represented as a (d+1) x d matrix whose rows are the vertices of the 
simplex, numbered from 0 to d. Of particular interest is the base simplex, denoted 
S$, whose i-th vertex is J2]=i ej ~~ X)j=i+i e i - ^ o r e x a mpl e> m ^ 3 w e n a v e 

F-1-1-11 

. 1 1 1 . 

Recall from basic geometry that two geometric objects are congruent if they are 
equivalent up to a rigid motion (translation, rotation and reflection). Coordinate 
permutations and coordinate reflections both preserve congruence. Two objects are 
similar if they can be made congruent by a nonzero uniform scaling. 
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3.1. Permutations and reflections 

Our decomposition will involve applying repeated affine transformations to the 
base simplex. Two basic operations involve permutations and reflections of the 
unit vectors. Let Sym(d) denote the symmetric group of all d\ permutations over 
{1 ,2 , . . . , d}. We denote a permutation II 6 Sym(d) by a tuple of distinct integers 
[TTI 7T2 ••• iTd], where 7Tj 6 {1,2 , . . . ,d}. We can interpret such a permutation as 
a linear function that maps the unit vector e, to the e ^ , or equivalently as a 
coordinate permutation given by a d x d matrix whose i-th row is the unit vector 
eVi. That is, II is associated with the matrix 

For example, the permutation II = [2 3 1] is associated with 

"e2" 
e3 

_ e i . 

= 

"0 10" 
0 0 1 
1 0 0 . 

and transforms the base simplex into a congruent simplex by mapping columns 
as follows 1 —> 2, 2 —> 3, and 3 
post-multiplied with the simplex. 

50n = 

1. Note that the transformation matrix is 

—1—1—1" 

1-1-1 
1 1-1 

. 1 1 1 . 

"0 1 0" 
0 0 1 
1 0 0 

—1—1—1" 

- 1 1-1 
- 1 1 1 
. 1 1 1 . 

It is well known that the collection of simplices {S^ : \I/ € Sym(d)} gives a 
simplicial decomposition of the reference hypercube, and further that this subdivi
sion is compatible (is a simplicial complex).33 These d\ simplices form the starting 
point of our hierarchical simplicial mesh. The matrix associated with the compo
sition of two permutations II o >]/, defined as 5(11 o *£) = (5'^/)n is given by the 
matrix product "I'll. 

Note that the notation [2 3 1] is not a vector in Md, but merely a convenient 
shorthand for a permutation matrix. Throughout, vectors will be denoted with 
parentheses, and square brackets will be used for objects that are to be interpreted 
as linear transformations, or equivalently a shorthand for a matrix. 

Another useful class of transformations are coordinate reflections, which can be 
expressed as a d-tuple R = [r\ r<± • • • rj\ where r* G {±1}; and is interpreted as 
a linear transformation represented by the diagonal matrix diag(r\,r2, • • •, r^). It 
will simplify notation to combine the composition of a permutation and a reflection 
using a unified notation. We define a signed permutation to be a <i-tuple of integers 
[ri7ri\t=\^ where [7Tj]f=1 is a permutation and [r^]f=1 is a reflection. This is interpreted 
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as a linear transformation that maps the i-th unit vector to r^e^. For example, 
in R3, the composition of the reflection R = [—1 —1 +1] and the permutation 
II = [2 3 1] is expressed as the signed permutation [—2 —3 +1], which is just a 
shorthand for the matrix product RH, that is 

- 1 0 0" 
0-1 0 

. o o+i_ 

"0 1 0' 
0 0 1 
1 0 0 . 

= 

" 0-1 0" 
0 0-1 

+1 0 0. 

An intuitive way to interpret the meaning of a signed permutation is as an 
operation involving a selective negation followed by a subsequent permutation of 
some of the components of a row vector or the columns of a matrix. For example the 
signed permutation [—2 —3 +1] can be interpreted as negating the first and second 
components of a vector, and then mapping the first, second, and third components 
of the resulting vector to positions 2, 3, and 1, respectively. Thus, the image of 
(vi,V2,vs) under this transformation is (^3, — vi, —^2). 

We define the following functions that act on a signed permutation II = [7Tj]^=1. 
The first, perm(H), extracts the permutation part of II, the second, refl(H), extracts 
the (unpermuted) reflection part as a vector in { ± l } d , and the third, orth(ll), 
returns the permutation of refl(H) under II. More formally, 

perm(U) = [1^1 }f=1 

refl{Tl) = (sign(nz))ti (2) 

orth(U) = refl(U)perm(U) = {sign{Ti~l))d
i=l, 

where 7T4~ denotes the i-th component of the inverse of II. Note that, since II is 
an orthogonal matrix, I I - 1 = IIT = [ne^ r2ej^ • • • r ^ e ^ ] , where (ri, r 2 , . . . , rd) 
denotes the reflection part of II. 

For example, if 11= [-2 - 3 +1] then perm{U) = [231] , refl(U) = ( - 1 , - 1 , +1), 
and ori/i(II) = (+ l , —1, —1). Note that refl(U) and orthill) are vectors. The associ
ated transformation matrices are diag(refl(H)) and diag(orth(H)), respectively. The 
following technical lemma is an easy consequence of these definitions, and will be 
useful in some of our later proofs. 

Lemma 1. Let II be a signed permutation. Then 

II = diag(refl(T[))perm(TV) = perm(H) diag(orth(Il)). (3) 

3.2. The simplex decomposition tree 

Recall that the initial simplicial complex is formed from the d\ permutations of 
the base simplex, that is, S$^, for \& G Sym(<i). Simplices are then refined by a 
process of repeated subdivision, called bisection, in which a simplex is bisected by 
splitting one of its edges determined by the specific vertex ordering.7 (Details will 
be given below.) The resulting child simplices are labeled 0 and 1. By applying 
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the process repeatedly, each simplex in this hierarchy is uniquely identified by its 
path, which is a string over {0,1}. The resulting collection of trees is called the 
simplex decomposition tree, or SD-tree for short. It consists of d\ separate binary 
trees, which conceptually are joined under a common super-root. Each simplex of 
this tree is uniquely identified by a permutation-path pair as S^p, where ty is the 
initial permutation of the base simplex, and p 6 {0,1}* is the path string. When 
starting with the base simplex ('J is the identity permutation) we may omit explicit 
reference to \I>. By symmetry, it suffices to describe the bisection process on just 
the base simplex 50. The ordering of the rows, that is, the numbering of vertices, 
will be significant. 

Maubach7 showed that with every d consecutive bisections, the resulting sim-
plices are similar copies of their d-fold grandparent, subject to a uniform scaling by 
1/2. Thus, the pattern of decomposition repeats every d levels in the decomposition. 
Define the level, £, of a simplex Sp to be the path length modulo the dimension, 
that is, £ = (|p| mod d), where |p| denotes the length of p. The 0-child Spo and 
1-child Spi of a simplex are computed as follows: 

vo 

V £ _ l 

V £ + l 

vrf 

Spo — 

vo 

V £ - l 

(v/ + v d) /2 
V<?+1 

Vd 

Spi — 

vo 

V ^ - l 

(v^ + vd) /2 
V€ 

Vd-1 

(4) 

A portion of the tree is illustrated in Fig. 3. Note that in both cases the first £ 
vertices are unchanged. The new £-th vertex is the midpoint of the edge between 
the £-th and last vertices. The remaining d — £ vertices are a subsequence of the 
original vertices, shifted by one position relative to each other. 

Equivalently, we can define 5po = BetoSp and Sp\ = B^iSp, where £^;o and -B^i 
are (d+1) x (d+1) matrices whose £t\\ row (starting from row 0) has the value 1/2 
in columns £ and d (starting from column 0), and all other rows are unit vectors. 
For example, in dimension d = 4 and for £ = 2 we have 

B, 

1 
0 
0 
0 
0 

0 
1 
0 
0 
0 

0 
0 

1/2 
0 
0 

0 
0 
0 
1 
0 

0 
0 

1/2 
0 
1 

B, IA 

1 
0 
0 
0 
0 

0 
1 
0 
0 
0 

0 
0 

1/2 
1 
0 

0 
0 
0 
0 
1 

0 
0 

1/2 
0 
0 

(5) 

Our bisection scheme is geometrically equivalent to the one defined by Maubach,7 

but we order the vertices differently from Maubach and reverse the names of the 0-
and 1-children. Although the differences are theoretically insignificant, our ordering 
results in somewhat simpler and more regular formulas for computing descendents 
and neighbors. 
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3.3. Reference simplices and the reference tree 

Since with every d consecutive bisections, the simplices are similar to, but half the 
size, of their d-fold grandparent, we can partition the decomposition tree into a 
collection of isomorphic, disjoint subtrees of height d. The roots of these subtrees 
are the nodes whose depths are multiples of d (where the root starts at depth 0). It 
suffices to analyze the structure of just one of these trees, in particular, the subtree 
of height d starting at the root. We call this the reference tree. Since the two children 
of any simplex are congruent, it follows that all the simplices at any given depth of 
the decomposition tree are congruent to each other. Thus, all the similarity classes 
are represented by d canonical simplices, called the reference simplices. These are 
defined to be £(0*), for 0 < k < d, and denoted by A^. (See Fig. 3.) Although it is 
not a reference simplex, we also define A^ = S'(rjd), since it is useful in our proofs. 

For example, in K3 the 3 reference simplices together with A3 are 

A0 

- 1 - 1 - 1 " 
1-1-1 
1 1-1 

. 1 1 1 . 

Ax 

(So) 

"0 0 0" 
1-1-1 
1 1-1 

.1 1 1. 

A2 

(Soo) 

r o o 
10 
1 1 -

. 1 1 

01 
0 

-1 
1. 

A 3 

(Sooo) 

0 0 0 
1 0 0 
1 10 
1 1 1 

(6) 

A 2 " ^00 

H . - 1 ) (1.-1) 

AO = S0 -1 -1 
1 -1 
1 1 

A 1 = S 0 0 
1 
1 

0 
-1 

1 

Si 

0 
1 
1 

0 
0 
1 

0 0 
1 0 
1 -1 

J010 Vz 
1 
1 

-V2 
0 

-1 

S011 

0 

1 

0 
-1 
-1 

Vz 
0 
1 

-Vz 
0 
0 

level 0 

level 1 

level 0 

level 1 

Fig. 3. The simplex decomposition tree. The corresponding bisected simplex is shown on the left. 
The newly created vertex is indicated by an arrow in each case. The reference simplices Aj are 
indicated as well. 

4. The LPT code 

So far we have defined a simplicial decomposition process and a tree structure that 
is naturally associated with this process. In order to provide pointerless implemen
tation of the hierarchical mesh, we define a location code, which uniquely encodes 
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each simplex of the hierarchy. The most direct location code is the combination 
consisting of the initial permutation ^ followed by the binary encoding of the tree 
path p. Unfortunately, it is not easy to compute basic properties of the simplex such 
as neighbors from this code. Nonetheless, Lee, De Floriani, and Samet showed how 
to compute neighbors from the path code in the 3-dimensional case.29 Instead we 
modify an approach presented by Hebert14 for the 3-dimensional case, by defining 
a location code that more directly encodes the geometric relationship between the 
each simplex and the reference simplex at the same level. We call this the LPT code, 
since, for each simplex, it encodes its Level, its signed Permutation, and its Transla
tion relative to some reference simplex. We shall show that it is possible to compute 
tree relations (children and parents) as well as neighbors in the simplicial complex 
using this code. 

Given any simplex S^p in the hierarchy, the LPT code is a 3-tuple (£,H,$), 
which consists of the following three components: 

Level: £ = \p\ mod d is the simplex's level. 
Permutation: II is a signed permutation relating S^p to the corresponding refer

ence simplex at this level. 
Translation: $ is a list of vectors, called the orthant list, which is used to derive 

the translation relative to the reference simplex. 

The permutation part II = U^p and orthant list <3? = $* iP are defined below as 
functions of *$> and p. Correctness will be established in Theorem 1 below. 

Permutation Part: Maubach proved that the vectors defined by the simplices of 
any level of the tree are essentially related to one another by a coordinate permu
tation and reflection. The purpose of the signed permutation part of the code is to 
encode these two elements. The signed permutation U^p is defined recursively as 
follows for a base permutation ^/ and binary tree path p: 

n.̂ ,0 = * n^po = n^p n^pi = u^p OE< = s^n^p, (7) 

where E^ is the permutation that cyclically shifts the last d — l elements to the right 
and negates the element that is wrapped around. That is, T,£ = [1 2 • • • £ (—d) (£ + 
1) (£+2) • • • (d—l)]. A portion of the simplex decomposition tree, and the associated 
permutation values are shown in Fig. 4. For example, observe that Si is related to 
Ai by the signed permutation [—2 +1], which negates the first column of Ai and 
then swaps the two columns. 

Orthant List: Recall that with every d levels of descent in the decomposition tree, 
the resulting simplices decrease in size by a factor of 1/2. The bounding hypercube 
of the resulting descendent is one of the 2d hypercubes that would result from a 
quadtree-like decomposition (indicated by broken lines on the left side of Fig. 4). 
Depending on the level within the tree, the translation of the descendent hypercube 
relative to its ancestor will be some power of (1/2) times a <i-vector over {±1}. Such 
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AO = S 0 

(-1,-1 

0 
1 
1 

0 
0 
1 

=+1 +2= 

1/2 

1 
1 

"+1 

-1/2 
-1/2 

-1 
-2" 

0 0 
1 -1 
1 1 

=+1 +2= 

1/2 

1 
1 

[+1 

-1/2 

0 
-1 
-2" 

-1 -1 
1 -1 
1 1 

=+1 +2= 

0 
1 
1 

=+1 

0 
0 

-1 

-i 

£ 

1 
1 

"+1 

-1/2 

-1/2 

0 
+2" 

0 
-1 

1 
=-2 

o" 
-1 
+ f 

1/2 

0 
1 

+2 

-1/2 
0 
0 

+1_ 

-•orth=(+1,-1) 

-«~orth=(+1,+1) 

Fig. 4. The signed permutations I I^p associated with each simplex are shown below each simplex 
matrix, and the entries of the orthant list are shown for the shaded simplex Soioi- The LPT code 
for this simplex is (0, [+1 +2], ( (+1, - 1 ) , (+1 , +1)}). 

a vector defines the orthant containing the descendent hypercube relative to the 
central vertex of its ancestor. Consider, for example, the shaded simplex in Fig. 4. 
Its translation relative to the base simplex is | ( + 1 , — l) + ^ ( + l , + l ) , indicated by 
the arrowed lines on the left side of the figure. The orthant list encodes these two 
vectors. 

I Q i = q i 

id 
i Q2= q^2 
id 

J- Q3= 111213 

Fig. 5. Orthant List 

To define the orthant list, we first remove the last I symbols of p, leaving a 
multiple of d symbols (possibly empty). We then partition the remaining symbols 
into L = [ \p\/d\ substrings, qiq2 • • -C[L, where |g |̂ = d. (See Fig. 5.) Since the 
reference tree structure repeats every d levels, each q, can be viewed as a complete 
path in one of these subtrees of height d. Let Q, denote the concatenation of the 
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first % substrings. For 1 < % < L, define rViP[i] to be the signed permutation for 
path Qi, that is, I I ^ Q ^ Define the orthant list for the pair (\f,p) to be the sequence 
of L vectors whose i-th element is orth(T^p [i]), that is 

$* iP = (orth(r%p[l}), orth(T^p[2}),..., oHh{Y^p[L})). (8) 

The orthant list can be computed incrementally along with the permutation 
part of the code as follows. Given the LPT code (&,H, $) for a simplex S^p, first 
observe that the orthant list only changes for the children if the current level is d— 1. 
If so, we compute the child's permutation II' from Eq. (7) and append orth(H') to 
the current list. For example, consider the incremental computation of the orthant 
list for simplex Soioi m Fig- 4- We start with the root simplex. The orthant list of 
50 is empty. For So, the orthant list remains the same as its parent, thus, is empty. 
To compute the orthant list of Soi, we need to append orth([+l — 2]) = (+1, —1) to 
its parent's orthant list since the parent is at level 1. Therefore, the orthant list of 
Soi is ((+1, — 1)}. For SoiOi the orthant list remains the same as its parent, thus, is 
( (+1,-1)} . For 5oioii we need to append orth([+l +2]) = (+1,+1) to its parent's 
orthant list since the parent is at level 1. Therefore, the orthant list of Soioi is 

< ( + l , - l ) , ( + l , + l ) > . 
The computation of the LPT code is summarized in the procedure LPT-

code shown in Fig. 6. The code for the simplex SytP is computed by the call 
LPTcode{$>,p). 

Input: A simplex defined b\ 
Output: The LPT code, {('., 
T.PTcode(<U,p) 

7 start with, the LPT r 

n < *, e < o , $ < 
•'/ incrementally update 
Express p as poPi •••Pk 
For (0 < i < k) 

(.*- (£+ 1) mwid 
if (pi = 1) IT < IT c 
if {(: ----- 0) * <- * + 

return {£,LI,*) 

* md p. 
11,'I'), of 

ode 

0 
the 

) T,f 

of tin 

LPT 

ort/((l'I) 

.he i 

roo 

eod( 

lput simplex. 

, simplex. 

along path p. 

Fig. 6. Procedure LPTcode, which computes the LPT code for the simplex 5vj/iP. 

We may now state the main result of this section, called the LPT Theorem, 
which establishes the geometric meaning of our LPT code by relating each simplex 
of the decomposition tree to its associated reference simplex. Hebert14 proved the 
analogous result for his 3-dimensional bisection system. But first, we will prove the 
following technical lemmas. Recall from the definition of reference simplices that 
^•e+i = BgfiAg. 
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Lemma 2. Given the reference simplex Ag, 0 < £ < d, 

BefiAe = BeAAe^\ (9) 

where E^ is as defined in Section 4-

Proof. Ê T = E j = [ej ... ef —ej &J+i • • • e J - i ] ; since E^ is an orthogonal 
matrix. When a matrix is postmultiplied by Ê ~ , the last column is negated, and 
then the last (d — £) columns are cyclically shifted to the right. Consider the general 
form of a reference simplex and its two children as shown in Fig. 7. It can be observed 
that, if we negate the last column of the 1-child of A^, and cyclically shift the last 
(d — £) columns to the right, we get the 0-child of Ag. See Fig. 8 for an example 
where d = 4 and 1 = 1. • 

Fig. 7. The two children of a reference simplex. 

Lemma 3. Given the reference simplex Ae, 0 < £ < d, and a signed permutation 

l l * , p , 

-B^iA^n^p = A^+iIL^pi. (10) 

Proof. By definition, n^ j P l = E ^ i l ^ , that is, n^,iP = E^T1!!^^. Thus, 
Be,iAen^iP = A^+iE^n^p = Af+1E^E£ n^ i P l = Af+1n^ iP l. • 

Let l j + i denote a (d + l)-column vector of l's. The following theorem makes 
use of the observation that, for any d-row vector v, the matrix product l j + i • v is 
a (d + 1) x d vector whose rows are all equal to v, and hence adding this to any 
simplex matrix is equivalent to a translation by v. 
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t + 1 
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- l 
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. - i 

Fig. 8. The two children of reference simplex A i for d = 4. Notice that by negating the last column 
of the 1-child of A i , and cyclically shifting the last 3 columns to the right, we get the 0-child of 
Ai . 

Theorem 1. (LPT Theorem) Let S^p be the simplex of the decomposition tree 
associated with some initial permutation ^ and binary path p. Let (£, II, $ ) be the 
LPT code for this simplex, defined above. Then S^p is related to Ag, the reference 
simplex at this level, by the following similarity transformation: 

'-'*,£ 
1 

2^ 
A/II Ld+1 

L 1 

Y- *[i l ai) 
1 = 1 

where L = |_ \p\/d\. 

Proof. We will prove Theorem 1 by induction on the depth of the simplex 
in the decomposition tree. Recall that II = U^,p, $ = &yp, I = \p\ mod d and 
L=[\p\/d\. 

For the basis case, consider any of the root simplices, S^g. Since L = [IPI/^J = 
0, and £ = 0 at root level, we have 

1 ° 1 
5*.« = ^ o n ^ + i d + i H ^ ^ * . ^ * ] = A ° n * , 0 - (12) 

1 = 1 

Next, assume that the induction hypothesis holds for <S*,P, at level I = \p\ mod d. 
We will show that, it holds for the 0- and 1-children of S^tP. We distinguish between 
two cases, based on whether the level i is equal to d — 1. 

Case 1: (0 < £ < d — 2) For levels in this range we have |_|_p»0|/rfj = Lb^l/^J = L, 
which implies that there is no change in the orthant list, and hence 
no change in the translational component of the result. To simplify 
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the notation, let T denote this translational component, that is, T = 

lrf+i E , t i £***[*]• N o t e t h a t> 

L L 

T = i J + i E ^ $ * ^ W = i d + i E ^ ' W H - (13) 

Note that all the rows of T are equal to each other. Premultiplying by 
either Bcfl or B(ti has the effect of replacing each row of a matrix with 
either another row or the average of two rows. Thus it follows that B^QT = 
BgtiT = T. With this in mind, let's consider the two children of 5*iPo. 

0-Child: (Sl*iPo) By definition, II^^o = n $ i P , from which we have 

Sv,po = BcfiS^^p = S^o(^rA^n* i P + T) (by indue, hyp.) 

= 2L A^+in^p + T = grAf+iII^po + T. 
(14) 

1-Child: (S* iPi) By definition we have 

SW.pi = Be,iS^!P = Be,i(^tAiIl^fp + T) (by indue, hyp.) 

= ^rA^+iII*^! + T. (by Lemma 3) 
(15) 

Together, these complete the induction for Case 1. 
Case 2: (£ = d — 1) This case is more complicated because the children of Sy:P 

will be at level 0, implying that we need to consider the effect of the new 
orthant list entry and the resulting translation. Again, we consider the two 
children separately. 

0-Child: (SytPo) By definition, II^iPo = n^ ; P , from which we have 

S<s/tPo= Bd-ifiSy^ 

= Bd_i,0 ( ^ A ^ n ^ + lT
d+1 Ef=1 £$*,p[i]) 

= ^ A d n * ) P o + id+iZ)i=i ^^*,poW 

= 2^Adn^, i Po + l d + 1 Y^i=\ 2?^*,poW - 2L+i1d+l^,po\L + 1] 

(16) 

Since A^ = ° Jw-Dx^ where [l](d+i)Xd is a matrix of l's, and 
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(17) 

since $*iPo[-^ + 1] = orth(Jlq,,po), we have 

c _ 1 (Ao + [l](d+i)xd)-rT , i T v ^ L + 1 1 <h M 

- 2rTr1d+iOrt/i(n*ip0) 

= 2^+TAon*iPo + id+i YJ%=.\ F * * . P O W 

+ 2E+r([l](<2+i)xdn<i.,po - ld+iOrtft(n*iPo)) 

Now, by applying Lemma 1 we have 

lJ+ 1ort/i(n* i P 0) = l j + i ^ n * ^ ) ^ ^ ] ! * ^ ) 

= [l](d+1)xddm5(re/?(n* iPo))perm(n*,p0) (18) 

= [l](d+l)xdn*,po-

From this it follows that the last term in the above expression of «S*,pO 
is 0, and hence 

1 L+1 1 

i = l 

1-Child: (5*,pi) By definition we have 

S#,pi = Bd-i^S^^p 

Bd-i,i ^ A d _ i n * , p + l j+ i Z)j=i F**.i 

2 ̂ A d n * j P l + l j + 1 X) i=i 5?**,piW (by Lemma 3) 

= 2T^dn*,pl + ld+1 52i=i 2l®*,pl[i] ~ 2T+rld+l**,pl[i + 1] 
(20) 

Applying the same derivations as in the previous case, this can be 
reduced to 

1 L+l 1 

i = l 

Because ^ = d — 1, in both cases the child's level is L + 1, and so Eqs. (19) 
and (21) complete the induction for the Case 2. • 

Pointerless Implementa t ion: We can now describe a pointerless implementation 
of a simplex decomposition tree. For each simplex S^p in the tree, we create a node 
that is indexed by an appropriate encoding of the associated LPT code. Theorem 1 
implies that the geometry of this simplex is determined entirely from the LPT code, 
and, if desired, it can be computed from the code in time proportional to the 
code length. Note that, this node may also contain application-specific data. These 
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objects are then stored in any index structure that supports rapid look-ups, for 
example, a hash table. 

There are a number of practical observations that can be made in how to encode 
LPT codes efficiently in low dimensional spaces. Let D denote the maximum depth 
of any node in the tree. Each of the d\ permutations of Sym(d) can be encoded 
as an integer with log2(d!) bits.34 A (i-element reflection vector over {±1} can be 
represented as a d-element bit string (e.g., by the mapping +1 —> 0 and —1 —> 
1). Thus, a signed permutation II then can be encoded by a pair of integers. A 
convenient way to encode the vectors of the orthant list is to map them to bit strings 
and to store them as d separate lists, one for each coordinate. (The advantage of 
this representation will be discussed in Section 6.) The final code consists of the 
level £, expressed with [~log2 d] bits, the permutation and reflection, represented 
using [log2(ci!)] +d bits, and finally the orthant list, represented using d- length{<&) 
bits, which is at most d [D/d\ < D. 

Given a simplex at level D, the total number of bits needed to represent the 
code for this simplex is D + log2(d!) + 0(d). This is asymptotically optimal in the 
worst case, since there are 2Dd\ simplices at depth D in a full tree, which would 
require at least £> + log2(d!) = D + Q(dlogd) bits. Under the reasonable assumption 
that machine's word size is Q((D/d) + log2(d!)), the permutation part of the code 
can be stored in a constant number of machine words and the orthant lists can be 
stored in 0(d) machine words. 

Also, note that for small d, the multiplication tables for the various signed 
permutations (such as S^ of Eq. (7) and the neighbor permutations of Section 6 
below) can be precomputed and stored in tables. This allows very fast evaluation 
of permutation operations by simple table look-up. 

5. Decomposition Tree Operations 

In this section we present methods for performing useful tree access operations 
based on manipulations of LPT codes, including tree traversal, point location and 
interpolation queries. 

5.1. Tree traversal 

Consider a simplex SV,P of the tree whose LPT code is (£, II, $ ) . Let us consider how 
to compute the children and parent of this simplex in the tree. The LPT codes of 
the children of this simplex can be computed in 0(d) time by applying the recursive 
rules used to define the LPT code, given in Section 4. We can compute the parent 
from the LPT code by inverting this process, but in order to do so we need to 
know whether the simplex is a left child, a right child, or the root. A root simplex 
is distinguished by having an empty orthant list and level £ = 0. Otherwise, we 
make use of the following lemma. Given a simplex at level £ ^ 0, the nearest proper 
level-0 ancestor is defined to be its £-th ancestor. Given a nonroot simplex at level 
0, it is defined to be its rf-th ancestor. 
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Lemma 4. Consider a nonroot simplex S of the decomposition tree with LPT code 
(£, II, $ ) , and let S' be its nearest proper ancestor at level 0. Let H = [7Tj]f=1 be the 
signed permutation of S, let o = (oi)f=1 be the last entry of the orthant list of S', and 
let£* = !+((£—1) modd). Then S is a 0-child if and only if sign(irg*) = sign(o\Kt*\)-

This result is an easy corollary of the following more general lemma, which 
characterizes the child relations for a simplex's ancestors, up to the next Oth level. 
Lemma 4 follows by observing that S 0-child if and only if the last bit of the 
tree path (be in the statement of the following lemma) is zero. 

Lemma 5. Let S^p be a nonroot simplex, and let S^t be its nearest proper ancestor 
of level 0. Let o = orth(JX^t) be the last orthant list entry of S^t- Let bib? ... bn* 
denote the path from S*)t to SytP, where £* = l + ((£ — 1) modd). LetU^p = [7r,]^=1 

and o = (oi)f=1. Then 

r o if 
\ i i f 

sign(TTi) = sign(oM) , _ 
otherwise. 

Proof. We do not know what Hq,^ is, but since we know o, we know the signs 
of each coordinate axis in Il^ i t. We can determine &1&2 • • • h* by finding out which 
axes changed signs as we go down the tree from S^t to S^p. 

Consider the step, when we descend from 5'<i>tki...6i_i down to Sy^..^- Let 
n*,*6i...6i_i a n d H%tbi...bi denote the associated permutations. If 6, = 0, we follow 
the 0-path, and II*jt61...6i will be identical to II*it61...6i_1. Thus, the i-th entry in 
n*,tb1...6i remains with its original sign. On the other hand, if bi = 1, we follow the 
1-path, and so the d-th entry in Hy,tb1...bi-1 is negated and cyclically shifted to the 
i-th position in 1 1 ^ ^ . . . ^ . Thus, the i-th entry in n*]t()1...6i has changed its original 
sign. Since the subsequent steps apply cyclical shifts only to the last (d — i) entries 
of the permutation, the i-th location remains the same until we descend down to 
S^p. And so, looking at whether the i-th entry in H^p has changed its sign or not, 
we can determine bi. • 

[+1 - 4 - 3 + 2] - ^ [-2 + 1 - 4 - 3] - ^ [-2 + 1 - 4 - 3] -^ \-2 +1 +3 -4] 

61 = 1 b 2 =0 b3 = l 

To illustrate the proof more concretely, consider the above example where £ = 3. 
Note that (OJ)1 = (+1 ,+1 , —1, —1). Since 02 = +1 , it follows that the 2 entry has 
a positive sign in ILpit. On descending to the 1-child, this entry is negated and then 
shifted to the first element in n ^ p . After this its value is fixed. Next, on descending 
to its 0-child, the 1 entry remains positive and is then fixed in the second position. 
Finally, on descending to its 1-child, the 3 entry is negated and placed at the third 
location. And so, based on the final sequence, we can infer that the tree path leading 
from Syj t ° >5*,p is 101. 
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Lemma 4 can be applied as follows to determine the LPT code for the parent 
of a nonroot simplex S. Given S"s LPT code, (£,Tl,$), we distinguish two cases, 
depending on its level. If £ is nonzero, then its parent's level is £' = £ — 1 and 
otherwise its parent's level is £' = d — 1. If £ is nonzero, then the orthant vector o of 
the lemma is the last entry of $ . We apply this lemma to determine whether S is a 
0- or 1-child. From Eq. (7) and Theorem 1 we know that, if it is a 0-child, it has the 
same permutation code as its parent, and otherwise its parent's permutation code 
is II o T<J, . Its parent has the same orthant list. On the other hand, if £ = 0 then o 
is the second to last entry of $ . Again we apply the lemma to determine whether 
S is a 0- or 1-child, and derive its parent's permutation code. The last entry of S's 
orthant list is removed to form the orthant list of its parent. This can be computed 
in 0(d) time. 

5.2. Point location and interpolation queries 

In this section we consider how to compute the LPT code of the leaf simplex of the 
decomposition tree that contains a given query point q = (%)f=1. We assume that 
q lies in the base hypercube, that is, —1 < % < 1. If q lies on a face between two 
simplices, we will choose one arbitrarily. Locating the leaf simplex that contains 
the query point is performed by a descent in the decomposition tree. Because the 
decomposition is based on repeated edge bisections, there is a very elegant way 
in which to locate the containing simplex for a query point by maintaining the 
query point's barycentric coordinates (defined below) with respect to its enclosing 
simplex. 

The point-location process starts by determining the root simplex S^g that 
contains q. It is easy to see that a point q in the base hypercube lies in the base 
reference simplex, Ao, if and only if its coordinate vector is sorted in decreasing 
order. It follows that determining the permutation *$> of the root simplex reduces to 
sorting the coordinates of q in decreasing order and setting ^/ to the permutation 
that produces this sorted order. It is an easy matter to modify virtually any effi
cient sorting algorithm to produce a procedure sortDescending that computes this 
permutation in 0(dlogd) time. 

Given the root simplex 5^0 containing the query point q, let Vj denote the 
i-th vertex of this simplex. It is well known that q can be uniquely expressed as 
a convex combination of the vertices of 5^,0, that is, q = X î a« v* where a.i > 0 
and Xli aJ = 1- These coefficients are called the barycentric coordinates of q with 
respect to this simplex.35 Let a = (oti)f=0 denote this (d + l)-vector. To start the 
point-location process we compute the barycentric coordinates of q with respect to 
its containing root simplex, which we do with the aid of the following lemma. 

Lemma 6. Let (q\, qi,. •., q<i) be the cartesian coordinates of a point q lying in the 
base reference simplex, AQ . Then, the barycentric coordinates of q with respect this 
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simplex are a = (ai)f=0, where 

r ( l - 9 i ) / 2 if i = 0 
«< = \ ( f t~9i+i) /2 if 0 < z < d (23) 

{ (qd + l ) /2 if i = d. 

Proof. To simplify notation, it is convenient to define qo = 1 and qd+i = — 1-
Thus we have a, = (q, — <ft+i)/2 for 0 < i < d. Because q lies in the base reference 
simplex, from the observations above we have 

- 1 = qd+i < % < • • • < 9i < qo = 1. (24) 

It follows easily that c^ > 0 for all i, and ^ a, = 1, which constitute the first 
two conditions for barycentric coordinates. To establish that q is the desired linear 
combination, recall from Section 3 that the i-th vertex of base reference simplex is 
V, = X^i=i ej ~ 12i=i+i ej- It follows that for 1 < j < d, the j - th coordinate of the 
linear combination J2i CKJVJ is 

2 X ~ ( * ~ 9i+i) + J2 (qi~ qi+1"> • 
\0<i<j j<i<d J 

By simple telescoping we see that most of the terms of the two sums cancel leaving 
^(~(QO — Qj) + (Qj — Qd+i))- By substituting the definitions of qo and qd+\ we find 
that the j - th coordinate of the linear combination is qj, as desired. • 

Combining Lemma 6 with the observation above about using sorting to deter
mine the root simplex containing q, it follows easily that procedure findRoot shown 
in Fig. 9 correctly computes these initial barycentric coordinates. 

After this initialization, we recursively descend the hierarchy until finding a leaf 
simplex. We use the barycentric coordinates of q relative to the current simplex to 
determine in which child it resides. Then we generate the barycentric coordinates of 
q with respect to this child. The remainder of the point-location algorithm is pre
sented in procedure search given in Fig. 9. Its correctness is established formally in 
Lemma 7. To simplify the presentation, we have omitted the orthant list processing, 
but it is essentially the same as in the code block given in Fig. 6. 

Lemma 7. Consider a nonleaf simplex S^p of the hierarchy at level £ with the 
associated permutation code U^p = [ni]f=1. Suppose that q lies within this simplex 
with the barycentric coordinates a = (cti)f=0. 

• If ae < ad, then q lies in the 0-child. Let a' be the (d + l)-vector that is 
identical to a except that a'e = 2ae and a'd = ad — a£. Then the barycentric 
coordinate vector of q relative to this child is a'. 

• Otherwise, q lies in the 1-child. Let S^ be a (d+ 1)-permutation that shifts 
the last d+l—£ coordinates circularly one position to the right. Let a' be the 
(d+ 1)-vector that is identical to a except that a'd = 2ctd and a'e = al ~ ad-
Then the barycentric coordinate vector of q relative to this child is a'E^. 
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Input: a. query point q lying in 
Output: 

the base hypereube. 

ty: denotes the root simplex that 
a: baryeentric coordinates 

findHoot(ci) 
ty <— sortDesce.nding{{q)f=^ 

ao< (1 <7vJ/2 
for (0 < i < d) ai *- {q^ 

" d < - (g*,j + l ) / 2 

rcturn(ty. a) 

of q w 

) 

- <lVi-

contains q. 
th respect to root 

-J/2 

simplex A\J,J. 

Input: 
q. query point. 
{(,11): current s 
o: current barv 

Output: {£,U): the 
•?earch{q, {(,11), a ) 

implex that contains q. 
:entric coordinates of q with respect to 
leaf simplex that contains q. 

if {{(, II) is a leaf) return 
a' *— a 
if {ae < ad) 

a'f < 2a c a'd < « d 

return s«m:/t(q, {{( r 
else 

a'd < 2 « d ; QJ < at 

return s«m:/i(q, {{('. + 

{(,11) 

at 
l ) m o d r f , n ) , a ' ) 

<*d 

\)motld,UoY;,),a'Z:'e) 

(«,n). 

Fig. 9. The procedures findRoot and search, which are used to locate a query point q in the hier
archy. The permutation S^ is defined in Lemma 7 and the permutation Y,£ was given in Section 4, 
Eq. 7. Note that search is initially called as search{q, (0, "J), a) where {ty, a) <— findRoot{q). 

Proof. Let a = (ajf= 0 denote q's barycentric coordinates with respect to S^tP. 

Let Vj denote the i-th vertex of Sq,tP. Recall that the newly created 

vertex that bisects this simplex and that 

S%p = [v0...ve...vd]
T, 

S*,po = [v0 . . . v^_i m ve+1... vd]
T, 

>3*,pl v 0 . . . v € _ ! m v € . . . v d _ i 

And so, v^ = 2m — v<j, and v^ = 2m — v^. Thus, q can be written in terms of 
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barycentric coordinates as, 

q = a0vo + • • • + aeve + . . . + ad\d 

= a 0 v 0 + • • • + ut-ivg-i + a{(2m - vd) + ai+1ve+1 + ...+ advd 

= a 0 v 0 + . . . + a^_iV£_i + 2ae.ro. + ae+1vi+i + . . . + (ad - at)\d, 

and similarly, 

q = a0vo + • • • + aeve + . . . + a d v d 

= a 0 v 0 + . . . + ag-ivi-i + aeve + . . . + ad(2m - ve) 

= a0vo + • • • + ae-i-ve-i + 2adm + (ae - ad)ve + . . . + a d _iv d _i . 

By the nonnegativity requirement of barycentric coordinates we see that if (ad — 
cue) > 0, then q lies in S^po, and otherwise it lies in 5*]Pi. From the above equations, 
we can also see the barycentric coordinates of q with respect to S*]Po or S^tPi. • 

In summary, the point-location process works as follows. Given a query point q, 
the findRoot procedure is called to determine the root simplex \f containing q and its 
barycentric coordinates a. Then it invokes the recursive procedure search(0, "J, a ) 
to locate q within the appropriate root simplex. The recursion stops when a leaf 
simplex has been reached. 

Given the containing leaf simplex, interpolation queries can be answered as 
follows. We access the stored vector field values at each of the simplex vertices, and 
then weight these values according to the barycentric coordinates of q. The result 
is a piecewise linear, continuous interpolant. 

It is interesting to note that normally one would expect 0(d) time to determine 
the child containing the query point since it involves determining which side q 
lies relative to a (d — l)-dimensional hyperplane that splits the simplex. A nice 
feature of using barycentric coordinates (as seen in procedure search) is that this 
determination can be made based on just two of the barycentric coordinates at each 
level of the search, irrespective of the dimension. 

This simple sequential search makes as many memory accesses to the decompo
sition tree as the depth of the final leaf simplex that contains q. A more efficient 
procedure in terms of global memory accesses would be to employ a doubling binary 
search, which computes (using only local memory) the LPT codes for the simplices 
at depths 0, 1, 2, 4, 8, and so on, until first finding a depth whose simplex does 
not exist in the hierarchy. We then use standard binary search to determine the 
exact depth of the leaf simplex that contains q. Although the computation of the 
LPT codes is performed sequentially in time linear in the depth of the final simplex, 
the number accesses to the simplex decomposition tree is only logarithmic in the 
final depth. Thus, the running time is 0(dD), where D is the maximum depth of 
the tree, and 0(log D) global memory accesses are made. 

http://2ae.ro
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6. Neighbors in the Simplicial Complex 

As we mentioned earlier, when a simplex of the decomposition tree is bisected, it 
is necessary to bisect some of its neighbors in order to guarantee that the final 
subdivision is a simplicial complex. Henceforth, let us assume that the simplex tree 
decomposition has been constructed so that the underlying subdivision is a sim
plicial complex. In order to know what additional simplices must be bisected, it is 
necessary to compute neighbors within the complex. Two simplices are neighbors if 
they share a common (d — l)-dimensional face. In addition to this major need for 
fast neighbor computation, in general, computing facet neighbors of a simplex effi
ciently is of great interest for many applications that require moving along adjacent 
simplices, such as direct volume rendering and isosurface extraction techniques. 

Consider a simplex S in the complex defined by the decomposition tree. For 
0 < i < d, let v, denote its i-th vertex. Exactly one (d— l)-face of S does not contain 
Vj. If this face is not on the boundary of the base hypercube, its neighbor exists in 
the complex. If so, we define N^(S) to be the same depth neighboring simplex to 
S lying on the opposite side of this face. Let (£, II, <&) denote the LPT code for S 
and let ( £ « , I I « , $ « ) denote the LPT code for N^(S). We present rules here for 
computing LPT codes of these neighbors. 

The rules compute the LPT code for the neighbor simplex at the same depth 
as S, and hence £^ = £. Of course, this simplex need not be in the decomposition 
tree because its parent may not yet have been bisected. In fact, in a compatible 
subdivision, a (d— l)-face neighbor of S could also appear at one level higher or one 
level lower than S. We also show how to compute the LPT codes of those neighbors. 

6.1. Neighbor permutation code 

Each neighbor's permutation code is determined by applying one of a set of special 
signed permutations to II. The permutation depends on whether S is a 0-child 
or a 1-child, which can be determined using the test given in Section 5.1. These 
permutations are illustrated in Fig. 10, and include the following: 

• rN E 0 ) i , negates the first element, 
• rR0T)^, shifts the last d — £ elements cyclically one position to the right and 

negates the element that was wrapped around, 
• rLFT)^ shifts the last d — £ elements cyclically one position to the left and 

negates the element that was wrapped around, 
• rS W P j j , swaps elements i and i + 1, 
• rNSW)£, swaps and negates elements £ and d. 

The neighbor rules are given in Theorem 2. A number of the rules involve the 
parent's level, and so to condense notation, we define £~ = (£ — 1) mod d and 
£* = £~ + 1. Observe that £~ = £ — 1 and £* = £, except when £ = 0, in which case 
they are larger by d. These can be computed in 0(d) time, and in fact in 0(1) time 
if permutations are encoded in look-up tables as described below. 
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NEG.l ( ' 

i e 
RGTJ 

1 £ 

i i+1 

u NSW.^ 1 1 
L^J 

Fig. 10. Neighbor permutations. (The circle with a minus sign indicates that the element is 
negated.) 

Theorem 2. Let S denote a simplex at level I, and let II denote its associated 
permutation code. ForO < i < d, if the neighbor N^1' {S) exists, then its permutation 
code is given by the following rules: 

if (S is a 0-child) 

if (S is a 1-child) 

iV(°)(5) 

N®(S) 

NW(S) 

N<-°\S) 

NV'\S) 

N®(S) 

n(°) =nor N E G ] 1 

(o < i < d) n « = n o rSWPii 

n(rf) =nor R G T i , -
n(°) =nor N E G , 1 

n( r ) = norLFT^-
( 0 < i < d , t ^ r ) n w =nor S W P , , 
(d^e) n « = n o r N S W / 

(25) 

The proof of this theorem involves a straightforward but lengthy induction ar
gument involving many cases. The proof is presented in the Section 6.5. 

Implementation Issues: In our implementation, we treat the signed permutation 
component as a reflection and a permutation separately, as in the initial descrip
tion given in Section 3.1. Recall that the reflection could be one of 2d reflections, 
and the permutation could be one of d\ permutations. Both the reflection and the 
permutation are represented by a unique integer identifier. The operations defined 
on the permutation-reflection component such as cyclical shifts and swaps are per
formed through use of tables, which can be computed once the dimension d is 
given. Each possible operation is also given a unique integer identifier. We precom-
pute two tables, one for permutations, and one for reflections. There is an entry 
for each possible permutation/reflection and each possible operation combination. 
The permutation/reflection integer identifier and the operation identifier could be 
used as indices to these tables to get the integer identifier of the resulting permu
tation/reflection. By these tables, all operations are performed in 0(1) time. 
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6.2. Neighbor orthant list 

In order to compute the orthant list component of the neighbor from the LPT code 
of 5, we distinguish three cases: 

(i) I f ^ O o r l <i<d,N^(S), is in the same final orthant as S, and so <&'-l> = <E>. 
(ii) If £ = 0, N^ is in a different orthant than S, but, N^ is the sibling of S in 

this case. Thus, 4> and ^d' differ only in their last element, which is orth(Tv-d>) 
in $(d>. Thus the orthant list can be updated in 0(d) time in this case. 

(iii) The only remaining case is $(°). This case is the most complex because the 
final enclosing quadtree box of N^°\S) is disjoint from 5"s final quadtree box. 
Further, it may be arbitrarily far away, in the sense that the least common 
ancestor of the two nodes may be the root of the tree. This case is described 
below. 

*2 

7 \ 

(a) 

[+-] h - ] h + ] 

[- +] [+ +: 

A[+- ] B [ - -

(b) 

Fig. 11. Orthant B is a neighbor of orthant A in +X± direction, (a) The quadtree-like subdivision 
of space, (b) The corresponding tree representation. 

To compute $(°\ we use a method similar to the one for computing neighbor 
quadrants in quadtrees.21 In our representation, the path from the root to the or
thant is the list of orthants in $ . Consider the 2-dimensional example in Fig. 11(a). 
The orthants A and B are neighbors, and their associated orthant lists, written as 
column vectors are as follows. (+1 and —1 are denoted with their signs only, as + 
and —, respectively.) 

$ , 

$ 7 

+ 
It is easy to see that, paths to A and B have a common prefix corresponding 

to their common ancestors, that, is the orthant (—,+) in the example. Orthant 
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entries axe identical for the remainder of the paths except that one coordinate (in 
our example, X{) is complemented. Fig. 11(b) illustrates the paths to A and B. 
The axis which has to be complemented depends on which neighbor we are looking 
for. This generalizes to a d-cube which is subdivided in a quadtree-like manner. 

The problem of finding a neighbor orthant can be stated as follows: Given an 
orthant A whose path from the root is represented by 3>A, and a direction defined as 
a 2-tuple (D,Xi) where Xi is the i-th coordinate axis, and D £ {—,+} represents 
the direction of Xi, find the path to the neighbor orthant B of equal size located 
in the given direction with respect to A. 

Similar to the algorithm described for quadtrees by Samet,21 the algorithm for 
finding the path to the neighbor orthant B is a two-step process. Let the direction 
of the neighbor be (D,Xi). In terms of the tree representation, we first perform a 
bottom-up traversal starting from A, until we find the closest ancestor, C such that 
C is the parent of the lowest ancestor of A whose i-th. coordinate is the complement 
of D. This is the desired common ancestor of A and B. If no such ancestor exists, 
then the desired neighbor B is outside the bounding box, and so, it does not exist. 
Otherwise, let the path from C to A be denoted as PCA- In the next step, we 
complement the X, coordinates in PCA, to get the path from C to B, PCB- Since the 
path from the root to C, $ c is common for both A and B, $ s = &c + PCB- Thus, 
finding the common ancestor C by bottom-up traversal corresponds to processing 
$ A back-to-front, complementing the Xi coordinate of each orthant, until we come 
across an orthant whose Xi coordinate is —D. We complement this coordinate as 
well. This completes the complementing part. Rest of the list remain the same. The 
resulting list is &B-

Thus, in order to compute $(°), which represents the path from the root to 
the final orthant of M°\S), all we need is to determine which direction N(°'(S) 
is located with respect to S. Consider the LT and IT0) corresponding to S and 
N(°\S) respectively. By the given neighbor rules, these two permutation-reflection 
codes differ only in the sign of their first element. This is the sign corresponding 
to the X\ni\ axis, given that II = [7Tj]f is the code for S. The sign of iri determines 
in which direction of X\Vl\ axis S resides in its final orthant. And so, the neighbor 
N(°\S) is also in that direction. Thus, the axis component of the direction is X\ni\, 
and the sign component of the direction is sign(iri). 

Implementation Issues: This operation can be implemented very rapidly 
through a simple trick with bit manipulations. The neighbor computation21 es
sentially involves an operation, which is applied to a bit string that consists of the 
i-th coordinate of each entry of the orthant list. Recall from our earlier discussion 
of implementation issues, that the orthant list is stored as d separate bit strings, 
one per coordinate, and packed into machine words as binary numbers. The key 
operation needed for the neighbor computation involves complementing a maximal 
trailing sequence of matching bits. For example, given a bit string of the form u;10fe, 
for w S {0,1}*, the desired result is w01k (and vice versa). By packing these bits 
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into a single word, we can compute this function with a single arithmetic operation 
by subtracting (or adding) 1 from the resulting binary number. (Similar tricks has 
been applied elsewhere in the context of neighbor finding.29) Under the assumption 
that the machine's word size is £l(D/d), where D is the maximum depth of any 
simplex, the orthant list for the neighbor can be computed in 0(1) time. 

6.3. Compatible refinement and the simplicial complex 

We have earlier mentioned that compatibility is important, since otherwise, cracks 
occur along faces of the subdivision, which in turn present problems when us
ing the mesh for interpolation. In order to keep the subdivision compatible at all 
times, whenever a simplex is bisected a series of bisections will be triggered in 
other simplices. Hebert14 and Maubach7 describe the process for their systems. For 
completeness we include a short description here as well. 

Consider a simplex S which is about to be bisected, and let e denote the next 
edge of S to be split. The simplices of the subdivision that share this edge, denoted 
Ee(S), must be bisected as well. The rules given in Section 6 provide a means to 
locate same depth neighboring simplices that share a common (d — l)-face with S, 
that is, the same depth facet neighbors of S. Let Ne(S) denote the same depth facet 
neighbors of S that contain the edge e. In order to access all the simplices of Ee(S) 
we compute facet neighbors recursively. The algorithm was given by Maubach,7 

and is shown as the recursive function compatBisect in the codeblock shown in 
Fig. 12. The procedure simpleBisect performs the basic bisection step described in 
Section 3.2. 

compatBiaa:t(S) 
mark S as pending 
for (5 

if 

if 

simple 

e ,\XS)) 
( S' does not exist ) 

compat Bis ec I (paren l.[ 
( S' is a leaf and not m 

compa.lBiseeL(S') / / 
Bisect(S) 

*)) I 
arked 
bisecl 

/ 
as 
S 

low ' •>"' exists 
ponding ) 
and its neighbors 

Fig. 12. Procedure compatBisect, which bisects simplex S and bisects surrounding simplices to 
maintain compatibility. 

Maubach proved that in a compatible subdivision, the facet neighbors of S 
needed to be bisected in this refinement, either appear at the same depth as S or 
one level closer to the root.7 For this reason, if the compatBisect procedure does 
not find a simplex S' in the tree, then it knows that its parent exists, and bisecting 
the parent will being S" into existence. Note that the bisection of the parent may 
trigger recursive bisections on levels £ — 1 and £ — 2, and so on. 
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6.4. Neighbors at different depths 

The neighbor rules of Theorem 2 provide the LPT code for the same depth neigh
bors. However, as mentioned above, in a compatible subdivision, a neighbor could 
possibly appear one level closer or one level further from the root, that is, some 
neighbors of a simplex Sp at depth \p\, could appear at depths \p\ — 1 or \p\ + 1. 
We can categorize the neighbors of a simplex into two groups: neighbors that share 
the edge to be bisected and those that do not. A neighbor sharing the edge to be 
bisected is either at depth \p\ or at depth \p\ — 1, and such a neighbor at depth \p\—l 
is the parent of the same depth neighbor which did not come into existence yet. 
And so, for a neighbor at depth \p\ — 1, we first compute the LPT code for the same 
depth neighbor by the rules of Theorem 2, and if the same depth neighbor does not 
exist in the tree, we compute its parent's LPT code as described in Section 5. 

In addition, any (d-l)-face neighbor of Sp that does not share the edge to be bi
sected could possibly be at depth |p| + l. Specifically, same depth neig 
and N^(Sp), might have been bisected without triggering bisection of Sp, and so, 
one of their children will now share a face with Sp. Moreover, the child of N^ (Sp) 
or N^(Sp) that shares a face with Sp, is the same depth neighbor of one of the 
children of Sp. So, we can compute a neighbor at depth \p\ + 1 by computing the 
appropriate same depth neighbor of one of the children of Sp. Formally, 

if(N^\Sp) is a bisected simplex) 
iVM(Spo) is the^-th neighbor of S„. 

if(iVW(5p) is a bisected simplex) 
iVM(Spi) i s thed- th neighbor of 5V,. 

It can be easily shown that these neighbors cannot exist at depths higher than 
\p\ + 1 . Intuitively, same depth neighbor N^e\Sp) (resp. N^d\Sp)) have exactly one 
vertex different from Sp. Let that vertex be u. It can be shown that when N^(SP) 
(resp. N(d\Sp)) is bisected, u is one of the endpoints of the bisected edge. So, one 
of the children of N^(SP) (resp. N^d'(Sp)) will have two vertices different from Sp, 
and cannot be a neighbor. The other child has exactly one vertex (u) different from 
Sp, thus is a neighbor of Sp. If that child is further bisected however, its children 
will have an additional new vertex created by bisection of an edge which does not 
contain u, hence these children at depth \p\ + 2 cannot be neighbors of Sp. 

6.5. Proof of neighbor-rules theorem 

In this section we present a proof of Theorem 2. The following notation will be used 
throughout the proof. 

• S denotes any simplex. 
• SW = N^(S), i.e. the i-th neighbor of S. 
• II and IjW denote the signed permutation code associated with S and S^ 

respectively. 
• For c € {0,1}: 
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— Sc denotes the c-child of S, and «Sc denotes the c-child of S^ 
— (Sc)^ denotes the i-th neighbor of child Sc. 

c , and (IIC)W denote the signed permutation codes for Sc, Sc
1', 

(Sc)(
l\ respectively. 

n c ,n and 

• m and m ' are used to denote new vertices generated by bisection. 
• u is used to denote the vertex that differs in the neighbor simplex. 

Induction Hypothesis: Let S = [v0 . . . vg ... v^J be a simplex at level £ = 
\p\ mod d. Let t~ = (£ — 1) mod d and £* = £~ + 1. Let u be the vertex of the 
neighbor simplex that is not a vertex of S. The rules of the theorem can be stated 
more explicitly as: 
if (S is a 0-child) 

5 W = [ U Y L . . Y / 

[v0 . . . VJ_I u v l + i . . . vd] ,(0<i<d) 
S(d) = [v0 . . . ve- uve, ... vd_i] 

if (S is a 1-child) 

5(°) = [ u v ^ . v / 
S(r) = [v0 . . . ve- ve-+2 . . . vd u] 
5 W = [v 0 . . .Vj_! u v i + i . . . v d ] T , (0 <i <d,i^. 

SW [v 0 . . . v d _ i u] (d^£* 

n(°) = n o rNEG4 
n(<) = n o rSWP,8 
n(d) = n o rRGT,,_ 

n(°) = n o rNEG4 
n ( f ) = n o r L F T , t 
n « = n o rSWPii 
n w = n o rNSW , 

Basis: We show that the neighbor rules hold for the d\ root simplices. Root sim
plices are all at level 0, and the rules are the same whether the simplex is a 0-child, 
or a 1-child. Let S denote any root simplex whose 11= [TTI ... ir^ iii+i. •. 7rd]. 

• For all root simplices, S^ = 0, and 5 ( d ) = 0, that is, the 0-th and the d-th 
neighbors do not exist. This is because the faces lying opposite these vertices 
are faces of the reference hypercube, and so the neighbors lying opposite these 
vertices are outside the reference hypercube. 

• We will show that the other neighbors, SW, for 0 < i < d, are obtainable by 
swaps. Recall that the base simplex S% can be represented as, 

S® = [y i - . . y d ] , where yt 

and any root simplex S can be written as a column permutation 7r of 50, that 
is, S = [ y i . . . y d ] , where y'v. = yt. Letting j = 7Tj and k = ni+i, we have 

Vifi 

m,i-i 

Vi,i 

Vi,d 

= 

" - i " 

- l 
l 

l 

y ' = yi and y'k y j + 1 , and so the associated permutation code is 

1 1 = [7r i . . .7Tj_i j k 7 T i + 2 . . . 7 r d ] 
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It is easy to see that swapping columns y^ and y'k of S gives us another 
valid root simplex, 5", that differs from S only in the i-th row, that is, the i-th 
vertex. Because it differs only in this one vertex, it follows that S' is the i-th 
neighbor of S, that is, S' = S^. Let II' denote the signed permutation for S'. 
Then, 

I I ' = [wi . . . Tli-i k j 7Tj+2 . . . 7Td]. 

This shows that the i-th and the (i + l)st entries in II are swapped to obtain 
II', and so 

n « = n' = norS W P , , . 

This completes the basis. 

Induction Step: Let S be a simplex at level £~ such that the induction hypothesis 
holds. We will show that the induction hypothesis holds for the two children of S. 
We consider two cases, for the 0-child and the l-child. 

First, consider the 0-child of S, that is, So- Let £ denote the level of So- Recall 
that £~ = {£ — 1) mod d, and £* = £~ + 1. Letting i denote the neighbor number, 
there are a number of cases to be distinguished. 

C a s e 1: (i = 0) 

If 0 < £- < d - 1 then 

S = [V0 V ! . . . V ^ Vd]
T, So 

S(°> = [ u v 1 . . . v , - . . . v d ] r , 4 0 ) 

Otherwise if £~ = 0 then 

S = [v0 v1...vd\
T, 

S(°> = [u V l . . . v d F , 

In either case, (So)<°> = ^ 0 ) . And so, 

= [v0 

= [ u 

So = 
c(0) _ D0 — 

(n0)(°) 

Vl . . . V^ 

Vi . . . Ve-

[m v i . 

[m' v i 

- n(0) -
— n0 — 

-_i m ve v d ] T 

_i m ve*...vd]
T. 

IT 

IT 

n(°) = n o rNEG,i = 
iio °rN E G ; i . 

Case 2: (i = d) 
By definition of the bisection rules, the d-th neighbor of So is its sibling, Si, 

and so, (n0)(d) = n i = n 0 o rR0T)^-. 
Case 3: (0 < i < £~) 

S = [ v 0 . . . V j _ i Vi Vj+i . 

5 ( i ) = [ v 0 . . . V j _ i u Vj+i . 

S0 = [ v 0 . . . V j _ i Vi Vj+l . 
S0 = [V0---Vj_l U V i + i . 

i e ( 5 0 ) w = 5 ^ ) , a n d s o ( n 0 ) ( i ) = 

..ve-

..ve-

..ve-

..ve-

l x o • 

- l ve-

- 1 vt-

- l m 

_ i m 

= n(<) = 

. . . v d F , 

. . . v d ] r , 
v^ vd)

T 

vt v d ] T 

: I l ° l swp,i = no°rSWPi,. 
Case 4: (i = £~, £~ ^ 0) We distinguish two cases, depending on whether S is a 

0-child or l-child. 
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C a s e 4a: If S is a O-child then 

S = [ v 0 . . . V f - _ ! V£ Vd)
T , £ 0 = [ v 0 . . . V ^ - _ i m . . . V d ] T 

S ^ _ ) = [ v 0 . . . V f - _ ! y . . . v d ] T , S ^ ) = [ v 0 . . . v ^ - _ i m'...vd]
T. 

Then, (50) ( '_) = sg~\ And so, ( n 0 ) ^ = itf_) = n<'~> = riorSWP,£- = 
n o ° r S W P > £- . 

C a s e 4b: If S is a 1-child then 

5 = [ v 0 . . . V £ - _ ! ve- vg*...vd]
T 

S^ ) = [ v 0 . . . V £ - _ ! V̂  Vd U]T 

S0 = [ v 0 . . . V £ - _ ! m v^ v d ] T 

S f } = [ v o . . . v £ - _ ! m' v^ v d ] T . 

Then, (5o)(£") = fif _ ) . 

n 0 = n = [7Ti... 7Td], 

Il(£ ) = [7T! . . .7r^-_! 7I>...7Td -71^- ], 
T T ( ^ ~ ) r i 

J-1! = F 1 - - - 7 T ^ - - 1 ?*> Kg- -Kf+1 . . . 7TdJ. 

And so, (n0)(' ) = n f ) = no o r. SWPi" 

C a s e 5: {£r < i < d) 

S = [ v o . . . V £ - _ ! V( Vj_! Vi...Vd]
T 

S'W = [ v o . . . V £ - _ ! v^ Vj_! y . . . v d ] T 

S0 = [ v o . . . V £ - _ ! m V J _ I Vi...vd]
T 

Sol) = [ vo - . -Vf - - ! m v»_i y . . . v d ] T . 

in this case (s„)w = s£>. Thus, (n0)« = 4 ° = nw = norSWP]I = n0orSWPji. 

This completes the case of the 0-child. Next, consider the 1-child of 5 , tha t is, 

Si. As before we let £ denote the level of Si, and define £~ = [£ — 1) mod d and 

£* = £~ + 1. Letting i denote the neighbor number, again, there are multiple cases. 

C a s e 1: (i = 0) We consider two cases depending on the value of £~. 

C a s e l a : [£r = 0) 

S = [v0 v i . . . v d _ i v d ] T , Si = [m v 0 . . . v d _ i ] T 

S™ = [v0 v i . . . v d _ ! u]T, S[d) = [m' v 0 . . . v d _ 1 ] T . 

Then, (Si)W = sf). 

Il=lKl...ird}, III = [-7Td 7Ti...7Td_i], 

Il(d) = [7Tl...7Td_l -7Td], I I ^ = [lTd 7Tl . . . 7Td_l]. 

And so, (ni)(°) = 1 1 ^ = III o r N E G ) i . 



Pointerless Implementation of Hierarchical Simplieial Meshes 627 

Case l b : (£~ ^ 0) 

s 
5(0) 

Si 

s{0) 

= [v0 

= [ y 
= [v0 

= [ y 

V l -

V l - . 

V l -

V l . . 

• • V £ - . . . V d ] T 

• • V £ - . . . V d ] T 

. - V £ - _ i m v ^ - . 

. . v £ - _ ! m v^- . 
. . v d _ i ] T 

. . v d _ i ] r . 

Then, OSi)(°) = S{0). 

II = [iTi . . . ITd], I I I = [7I"l • • • 7T£- -7Td 7I> . . . 7 T d - l ] , 

n ( ° ) = [—7Ti...7rd], I I ^ = [-7T! . . . TT -̂ -7Td 7T€ 7Td_l]. 

And so, (ni)(°) = n(0) = niorN E G i l . 

Case 2: (0 < i < £~) 

S = [v0 . . 
5 ( i ) = [vo-. 

Si = [v0 . . 

Si° = [vo-. 

o = s«. 

• • V j _ l 

• • V j _ l 

• • V j _ l 

• • V i - 1 

V j . . 

y-
V j . . 

y-

..ve-

..ve-

..ve-

..ve-

-l v £ -

- 1 V £ -

_ i m 

- l m 

I T 

I T 

V£- . . . V d - l ] T 

v<? v d _ i ] T 

Then, (5i) ( 

II = [7Ti...7Td], 

I I I = [^1 • • • Ke- -7Td 7I> . . . 7 T d _ i ] , 

I lW = [7r i . . .7Ti_i TTi+i 7Tj TTi+2 . . . TTd], 

1 1 / = [ni . . . 7Tj_i 7T i+i 7Tj . . . 7T£- -7Trf 7I> . . . 7Td_l]. 

And so, (IIi)W = I I ^ =Uio rSWP)l. 
Case 3: (i = £~) We consider two cases depending on whether S is a 0-child or a 

1-child. 

Case 3a: If S is a 0-child then 

5 = 
sw = 

Si = 

D 0 — 

[v0. 
[v0. 
[v0. 

[v0. 

• • V « - - l 

• • V « - - l 

• • V « - - l 

• • v ^ - _ i 

v<?-

y 
m 
m' 

• • • Vrf-

V € - . . 

V £ - • • 

v * - • 

-i v d ] T 

• V d - l ] T 

• V d - l ] T 

. . v d _ i ] T 

Then, (5i)(€ ) = S# (d) 

II = [7Tl . . .7r d ] , 

I I I = [71"1 • • • 7T£- -7Td 71> . . . 7Td_l], 

n ( d ) = j j(d) = [7ri _ _ _ We_ _ i _ 7 r d TT^ ... T T ^ ] 

And so, (ni)(€ ) = ir*d) = n i o r . S W P i " 
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Case 3b: If S is a 1-child then 

S = [v„.. 
S ( d ) = [v0 . . 

Si = [v0 . . 

S? = [vo.. 

Then, (Si)«~> = fif0. 

I I = [7Ti . . . TTd], 

I I I = b n . . . 7T£-

n(d) = [7n...7r,-
n(d ) = [7n...7r,-

Andso, (ni)(^) = n ^ = ni 

. V € - _ i V £ V d _ i V d ] T 

. V € - _ i V £ V d _ i U ] T 

.V1--1 m v £ v d _ i ] T 

.v^-_i m' ve- . . . v d _ i ] T . 

-TTd 71> . . . 7 T d - l ] , 

- 1 -T^d 7I> • • -TTd-1 —ftf 

- 1 -TTd " > - • • -VTd- l ] . 

. ° r s w p , £ - • 

Case 4: (i = £*) By definition, the (£*)-th neighbor of Si is its sibling, So, and 
(ni)( r) = n0 = i i io r L F T / - . 

Case 5: {£* < i < d, £ =£ 0) We consider two subcases, depending on i. 

Case 5a: (£* < i < d, £ ̂  0) 

S = [ v 0 . . . V f - . . . V j _ 2 V j _ i V j . . . V d _ l V d ] T , 

5(»-!) = [ v 0 . . . v ^ - . . . V j _ 2 u V j . - . v ^ i v d ] T , 
S i = [ v 0 . . . V ^ - _ ! HI V ^ - . . . V j _ 2 V j _ i V j . . . V d _ i ] T , 

S i l l ) = [vo---v^-_i m v € - . . . v i _ 2 u v , . . . v d _ i ] T . 

Then, (Si)W = S<<_1). 

I I = [7Ti . . . 7 T £ - . . . 7 T j _ i 7 T j . . . 7 r d ] , 

I I I = [7Ti . . . Kg- —ltd ^f • • • Ki-1 7T» • • • TTrf-l], s i n c e l — 1 > £~ 

U(i-D [ 7 T i . . . 7 T j _ 2 7Tj 7Tj_l 7T i + i . . . 7TdJ, 

r r ( » - l ) r i 
111 = F 1 - . - ^ - - T d 7 r ^ . . . 7 T j _ 2 7Tj 7Tj_i 7Tj+i . . . 7Td_iJ. 

And so, (IIi)W = ltf_1) = III ° rSwP,i. 
Case 5b: (i = d, £ ̂  0) 

[v 0 . . . v € v d_ 2 vd_i vd]
T, 

[v 0 . . . v € v d_ 2 u v d ] T , 
[ v 0 . . . v € - _ i m v £ - . . . v d _ 2 v d _ ! ] T , 

[ v 0 . . . v^ -_ ! m wt vd_2 u ] T . 

Then, (Si)(d) = S[d_1). 

I I = [7Ti . ..TTt- . . .TTd-i TTd], 

I I I = [7Ti . . . 7T^- "TTd 7T£* . . . 7Td_i ] , s i n c e d — 1 > £~ 

n ( d - 1 ) = [ 7 r i . . . 7 T d _ 2 7Td 7 T d _ i ] , 

U l = | 7 T i . . . 7 T £ - - 7 T d _ l 7 I > . . . 7 T d _ 2 TTdJ • 

And so, ( n i ) ^ = n ^ _ 1 ) = iii o rNSW)€, = n i o rNSW>e. 

s«-

s{d~ 

s 
-1) 

Si 
-1) 
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7. C o n c l u d i n g R e m a r k s 

We have presented a representation of hierarchical regular simplicial meshes based 

on Maubach 's 7 simplex bisection algorithm. Unlike Maubach's approach, which 

requires the use of recursion or an explicit tree structure, our representation is 

pointerless, tha t is, the simplices of the mesh are uniquely identified through a 

location code, called the L P T code. We have shown how to use this code to traverse 

the hierarchy, compute neighbors, and to answer point location and interpolation 

queries. 

The space savings realized by not having to store pointers (to the two children, 

the parent, and d + 1 neighbor simplices) is significant for large multidimensional 

meshes. If desired, the vertices of a simplex need not be stored either, and can be 

computed entirely from the code of the simplex. For example, for a 4-dimensional 

SD-tree consisting of 13.2 million cells, the storage requirements when storing point

ers and vertices is 708MB, whereas it is 354MB without pointers, and 222MB with

out pointers and vertices (in fact pointers to vertices) within the cell. (Note that 

these numbers also include application specific da ta associated with vertices.) 

Processing of L P T codes is quite efficient. Given a tree of maximum depth D in 

dimension d, we showed tha t , under the reasonable assumption tha t the machine's 

word length is Q((D/d) + l o g 2 d\), it is possible to pack the L P T code into words so 

tha t all traversal and neighbor-finding operations can be performed in 0(d) t ime 

through the use of s tandard integer arithmetic and bit masking and shifting. In fact, 

by precomputing multiplication tables for the small number of possible operations 

defined on codes these operations can be performed in 0 ( 1 ) time. (Computing the 

orthant list component of the code for children or parent has worst-case 0(d) t ime 

complexity, however the amortized cost is 0 ( 1 ) , since orthant list is updated only at 

every d levels.) In addition, point location can be performed with O( logD) global 

memory accesses with the pointerless representation, in contrast with 0(D) global 

memory accesses with the pointer-based one. 
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