Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

International Journal of Computational Geometry & Applications Vol. 2, No. 1 (1992) 1-27
© World Scientific Publishing Company

A RANDOMIZED ALGORITHM FOR SLOPE SELECTION *

MICHAEL B. DILLENCOURT !

Information and Computer Science Department
University of California, Irvine, California 92717-8425, USA

DAVID M. MOUNT!
Department of Computer Science and Institute for Advanced Computer Studies
University of Maryland, College Park, Maryland 20742, USA

and

NATHAN S. NETANYAHUS

Computer Vision Laboratory
Center for Automation Research
University of Maryland, College Park, Maryland 20742, USA

Received 12 November 1990
Revised 4 February 1992
Communicated by L. J. Guibas

ABSTRACT

A set of n distinct points in the plane defines (;‘) lines by joining each pair of
distinct points. The median slope of these O(n?) lines was proposed by Theil as a robust
estimator for the slope of the line of best fit for the points. We present a randomized
algorithm for selecting the k-th smallest slope of such a set of lines which runs in expected
O(nlogn) time. An efficient implementation of the algorithm and practical experience
with the algorithm are discussed.

Keywords: Slope selection, randomized algorithm, Theil-Sen estimator, line fitting, ro-
bust estimation.

1. Introduction

Consider a set of n distinct points in the plane. These points define (}) lines
by joining each pair of distinct points. The slope selection problem is that of de-

*A condensed version of this paper appeared in the Third Canadian Conference on Computa-

tional Geometry, Vancouver, Canada, 1991, 135-140.

t This research was supported by a UCI Faculty Research Grant and by the National Science

Foundation under grant IRI-88-02457.

$ This research was supported by the National Science Foundation under grant CCR-8908901.
$Present address: Mail Code 936, Space Data and Computing Division, NASA Goddard Space
and Flight Center, Greenbelt, Maryland 20771, USA. This research was supported by the Defense
Research Projects Agency (ARPA order No. 6989) and the U.S. Army Engineer Topographic

Laboratories under Contract DACA76-89-C-0019.

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

2 Michael B. Dillencourt, David M. Mount & Nathan S. Netanyahu

termining the k-th smallest slope among these lines. This problem is of interest in
statistical estimation. Given a set of n points which are hypothesized to lie on a
straight line, the median slope of the lines determined by these points was proposed
by Theil®® and Sen?® as a robust estimator of the slope of the line fitting the points.
The advantage of this method over mean-based methods such as least squares is
its lower sensitivity to outliers. More formally, the breakdown point of an estimator
is roughly defined to be the fraction of outlying data points that may cause the
estimator to take on an arbitrarily large aberrant value. (See Donoho and Huber®
or Rousseeuw and Leroy?? for an exact definition.) The Theil-Sen estimator in the
plane has a breakdown point of 1 — /1/2 = 29.3% (Ref. 24, p. 67). The least
squares estimator has a breakdown point of zero because a single outlier can bias
the estimator arbitrarily.

There are a number of methods for determining a linear approximation to a set
of points in the plane. In the following list, all but the last have a breakdown point
of zero.

e The L, (least squares) estimator can be computed in O(n) time (Ref. 5,
pp. 88-95).

e The Ly (Chebyshev) estimator can be computed in O(nlogn) time by first
finding the convex hull of the point set.?® Megiddo showed it could be com-
puted in O(n) time by linear programming in R3 (Ref. 20).

e The L, approximation was shown to be computable in O(n) time by Imai,
Kato and Yamamoto,!® also using Megiddo’s technique.

e The line minimizing the squared median of the residuals, least median of
squares, was proposed by Rousseeuw.?? This estimator was shown to be com-
putable in O(n?) time and O(n®) space by Souvaine and Steele.?® The space
bound was improved to O(n) by Edelsbrunner and Souvaine.® The break-
down point for least median of squares is 50%. Although this is better than
the Theil-Sen estimator, the computation time is relatively large.

Our motivation for studying the slope-selection problem arises from the problem
in computer vision of fitting a line to a set of points in an image. The use of a Theil-
like estimator by finding the median of intercepts for fitting a line to noisy images
was proposed by Kamgar-Parsi, Kamgar-Parsi, and Netanyahu.!® In addition to its
relative insensitivity to outliers, this approach makes no assumptions regarding noise
distribution, unlike the method of maximum likelihood estimation (Ref. 13, pp. 334~
339). Furthermore, the Theil-like estimator requires no artificial quantization of line
parameters, unlike the Hough transform 714 and the RANSAC paradigm of Fischler
and Bolles.!?

The problem of finding the k-th smallest slope was posed by Shamos.?? It was
subsequently considered by Cole, Salowe, Steiger, and Szemerédi,* who discovered
an optimal (deterministic) O(nlogn) algorithm for this problem. The algorithm of
Cole et al. relies on two ingenious but sophisticated techniques: Cole’s improvement

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 3

of Megiddo’s technique for parametric search based on parallel sorting algorithms,
and an algorithm for computing approximate ranks of elements in an array.

We present a simple O(n logn) expected time randomized algorithm for the slope
selection problem, describe an implementation of the algorithm including the han-
dling of degeneracies, and demonstrate the algorithm’s practical efficiency. While
our time bound is theoretically weaker than the deterministic bound of Cole et al.,
we feel that our algorithm will be of greater interest in practice, since (1) it is quite
easy to implement, relying only on simple modifications of mergesort; (2) the con-
stants of proportionality hidden by the asymptotic notation are small; and (3) the
O(nlogn) expected running time occurs with extremely high probability. The ran-
dom variation in the running time of our algorithm is solely due to randomization
and is not dependent on the structure of the input. This means that on any input
set of size n, irrespective of its structure or its closeness of fit to a line, the running
time depends only on the choice of random numbers. The algorithm always ter-
minates in worst case O(n?) time (although the probability of achieving this worst
case is extremely small for large n). When the algorithm terminates, its output
is correct (not just probabilistically correct as is the case with some randomized

algorithms).
Our algorithm is based on the basic subtasks of counting and sampling from a set
of inversions in a list. An inversion in a list a1, as, ..., ar of elements over a totally

ordered domain is a pair of indices i < j where a; > a;. In Section 2 we discuss the
relevance of inversion counting and random sampling to the slope selection problem
and present algorithms for these problems. In Section 3 we discuss how to apply
random sampling to refine the search for the desired slope. We present the complete
algorithm in Section 4, and we discuss its implementation and our experience with
the algorithm’s performance in Section 5.

2. Inversion Counting and Sampling

Let (a;,b;), for 1 < i < n, denote a set of n distinct points in the real plane.
Each of the ('21) distinct pairs of points determines a line. We wish to determine the
k-th smallest slope (the median slope being a special case). If multiple lines have the
same slope, then these slopes are counted multiply. We adopt the convention that
a vertical line has the largest possible slope, +00. As observed by Cole ef al.,* it
seems to simplify the problem to describe it in its planar dual form, by transforming
points into lines and vice versa. Consider the transformation that maps the point
(a,b) to the line y = az — b. For two points (a;, b;) and (aj,b;) the corresponding
dual lines y = a;x — b; and y = ajx — b;, respectively, intersect at the z-coordinate

p BiTh

a; —aj

Thus the slope of the line passing through points (a;,b;) and (a;,b;) is equal to
the x-coordinate of the intersection point of the two corresponding dual lines. We
make the convention that if a; = a; then these lines intersect at £ = +o00. This
is consistent with our earlier assumption that vertical lines have slope +0o. By

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

4 Michael B, Dillencourt, David M. Mount & Nathan S. Netanyahu

a similar derivation it follows that the y-coordinate of the intersection point of
the dual lines is just the negation of the y-intercept of the line determined by the
original points. Thus this same algorithm can be applied for computing the median
y-intercept of the set of lines determined by all pairs of points. In general, by the
use of other dual transformations, median parameters for other line representations
can be derived.

We have now reduced the slope selection problem to the following dual form.
Given a set of n lines y = a;x — b;, 1 < i < n, determine the k-th smallest z-
coordinate among the ('2') intersection points of these lines. As before, multiple
intersection points (where three or more lines intersect) are counted multiply. We
use the term intersection ordinate to denote the z-coordinate of the intersection
point between two lines. Note that this transformation is purely conceptual since
there is no effort spent in converting the initial input into this form-—we still assume
that the input consists of a sequence of pairs (a;, b;) and the output will be a single
real number, possibly +oo.

Our basic approach is to maintain two z-values, z;, and zp;, —00 < z1, <
zhi < +oo. Let (24,,z4;] denote the half-open, half-closed interval of points z,
210 < z < zp;. Let I(24,, zhi] denote the set of intersection ordinates in this interval.
(Actually this is a multi-set because multiple equal ordinates are possible.) We will
maintain the invariant that the k-th smallest intersection ordinate is in I(z,, 2]
Initially ;, = —oo and zp; = +o00. Note that initially I(z, zs;] includes all (’2')
intersection ordinates because, by convention, no two lines intersect at —oo.

The algorithm operates in a series of stages. At the start of each stage the
k-th smallest intersection ordinate lies within an interval (z;,, z5;]. We contract the
interval into a smaller interval by randomly sampling from the set of intersection
ordinates. Using this sample, we can find a subinterval (z},, };] which contains
the k-th smallest ordinate. We choose this subinterval in such a way that, with
high probability, the number of intersection ordinates in the subinterval is only
O(1/+/n) times the number of ordinates in the original interv: ! (note that n here
is the number of initial data points, not the number of ordinates in the interval).
Since the number of intersection ordinates in the initial interval is O(n?) it follows
that (with high probability) after two stages the number of remaining intersection
ordinates in the interval will drop to O(n). At this point we will be able to simply
enumerate all of the remaining ordinates in O(nlogn) time and use any standard
selection algorithin to find the desired element. Each stage will take O(nlogn)
deterministic time, but the number of stages may vary due to randomization.

In order to describe the algorithm, we have to describe (1) how to count the
number of intersection ordinates in an interval efficiently, (2) the sampling proce-
dure, and (3) the strategy for selecting successive subintervals. The first two items
are discussed below and the third item is discussed in the next section. To simplify
the presentation, we will make the following general position assumptions.

e No two intersection ordinates are equal to one another.

e No two lines intersect the vertical lines ¢ = x;, or £ = z; at the same

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 5

y-coordinate.

Given the second assumption, it does not matter whether we consider interval
(210, zhi] to be open or closed, but we retain this notation because in Section 5
we will discuss how to augment the algorithm to handle these degeneracies prop-
erly.

2.1. Counting Inlersection Ordinales

First we consider how to count the number of intersection ordinates in the
interval (1o, Tp;]. For the purpose of this discussion, assume z;, and zj; are finite;
the cases xj, = —oo and zx; = +oo are considered in Section 5.1. We begin
by associating each line with the y-coordinate of its intersection with the vertical
line passing through the interval’s left endpoint. Thus, the line y = a;z — b; is
associated with the value a;z;, — b;. We sort the lines in increasing order by these
y-coordinates. Next we replace each entry in this sorted list with the y-coordinate of
the intersection of the line with the vertical line passing through the right endpoint
of the interval. Thus the line y = a;z —b; is associated with the value y; = a;zp; —b;.
Let P denote the resulting list.

Define an inversion in P to be a pair of values, y; and y; where y; is greater
than y; but i < j. If y; and y; are inverted in P, then the relative orders in which
the corresponding lines have intersected the two vertical lines £ = z, and & = zp;
are reversed. This means that the lines corresponding to y; and y; have intersected
somewhere between z = z;, and z = z;. It follows that the number of inversions
in P is exactly equal to the number of intersection ordinates that fall within the
interval (2o, zp;]. (See Figure 1.)

5

2
4 1
~
1 5
x = xlo x = xhi

Figure 1: Inversions and line intersections.

Thus, in order to count the number of intersections in the interval (z;,, za:] it
suffices to count the number of inversions in the list P. We describe a function
Ord.Count which returns the number of intersection ordinates between z;, and z;.
It invokes the procedure Inv_Count (described later) to count the inversions in a
list. The global variable n is the number of points and the global arrays A and B

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

6 Michael B. Dillencourt, David M. Mount & Nathan S. Netanyahu

contain the coefficients of the line equations y = a;z — b;. The integer parameter C
keeps a running count of the number of inversions.
function Ord_Count(zjo, 2;); (* Count intersection ordinates in (2o, i) *)
begin

for i := 1 to n do P[i] := A[i] » 1, — B[i]; (* evaluate at ¢ = 1, *)
Sort P and permute A and B in parallel;

for i := 1 to n do P[i] := A[{] % z4; — B[i]; (* evaluate at z = zp; *)
C:=0

Inv_Count(P, 1,n,C);

return(C)

end;

The problem of counting the number of inversions in a list is closely related to
sorting, and is discussed by Knuth.!® We describe a simple adaptation of mergesort
that solves this problem in O(nlogn) time. Assume that recursively, we wish to
sort the subarray P[l..u] of reals. Assuming that u > [, let m = [(I + u)/2]. We
divide the list into left and right subarrays P[l..m] and P[m + 1..u] and sort these
subarrays recursively and at the same time count the number of inversions within
each sublist. Finally these two sorted subarrays are merged together into a single
sorted list. In the process of merging for each j, m < j < u, the j-th element in
the right sublist implicitly discovers the index i of the next larger element in the
left sublist. It follows that each of the m — i + 1 larger elements in the left sublist
induces an inversion with the j-th element of the right sublist, and so we increase
the inversion counter by m — i + 1. Equivalently the line associated with the j-th
element in the right sublist intersects each of the lines associated with the k-th
elements of the left sublist for ¢ < k < i in the vertical strip zj, < z < z3;. As in
mergesort, this algorithm terminates in O(nlogn) time.

The procedure Inv_Count which counts the number of inversions in the portion
of the array P[l..u] of reals is described below. It calls the procedure Merge which
merges two sorted lists P[l..m] and P[m + 1..u] and counts inversions. A parallel
auxiliary array Auz[l..u] is used to hold the sorted output. Proper handling of ties
in sorting is discussed in Section 5. (The post-increment operator i+ returns the
current value of 7 and then increments the variable.)

procedure Inv_Count(P, 1, u,C); (* Count the inversions in P[l..u] %)
begin

if | = u then return;

m:= (I + u) div 2;

Inv_Count(P, I, m,C);

Inv_Count(P,m + 1,4, C);

Merge(P,l,m, u,C)

end;
procedure Merge(P,l, m,u, C); (* Merge P[l..m] and P[m + 1..u] *)
begin

i:=1 Jji=m4+ 1 h:=1

while (i < m and j < u) do begin

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 7

if (P[i] < P[j]) then (* copy from left *)
Auz[h++] := Pli++]
else begin (* copy from right and increment inversion count *)

Auzlh++] := P[j++];
C=C+(m-i+1)
end

end

while (j < u) do Auz[h++] := P[j++);

while (i < m) do Auz[h++) := Pli++];

copy Auz{l..u] to P[l..u]

end;

The Merge procedure as presented here suffers from the deficiency of having to
copy back the contents of the auxiliary array to P after each recursive call. In the
actual implementation, this is avoided by using two working arrays and switching
between them at alternate levels of the recursion.

2.2. Sampling Inlersection Ordinates

In order to select the next candidates for rj, and x;, we will need to do more
than simply count the number of intersection ordinates—we will need to uniformly
sample a subset of I(j,, zp;]. Suppose that we have already counted the number
of intersection ordinates in I(z,, zpi]. Let C be this count. We apply the following
adaptation of the above procedure to sample (with replacement) a subset of n
intersection ordinates. First we generate a set IS of n random integers distributed
uniformly in the range from 1 to C (allowing duplicates), and sort these integers.
Since C is O(n?) sorting can be done in O(n) time by two passes through radix
sort.!

Next, we run the mergesort algorithm of the preceding section again but instead
of counting intersections, for each IS_Indz € IS, we sample the IS_Indz-th intersec-
tion ordinate. To perform this sampling we modify the inversion-counting procedure
as follows. Each time we increase the inversion counter in procedure Merge, we
have discovered that P[j] induces an inversion with each of P[i’], i < i’/ < m. This
corresponds to the action of increasing the inversion counter C by some amount
AC = m — 14+ 1. We check the list of random integers for elements in the range
C +1to C + AC and select for the sample the z-coordinate at which the corre-
sponding pairs of lines intersect. Recall that two lines y = a;z —b; and y = a;z — b;
intersect at the z-coordinate ¢ = (b; — b;)/(a; — a;).

The ordinate sampling procedure, Samp_Ord(zi,, zpi, IS) is essentially the same
as the inversion-counting procedure given earlier, but the statement C := C+ (m —
i+ 1) is replaced with the code given below. The argument IS_Indz holds the next
index to be sampled from the global array IS. Initially IS_Indz := 1. We assume
a sentinel value of C' + 1 is stored in the location IS[n + I1].

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

8 Michael B, Dillencourt, David M. Mount & Nathan S. Netanyahu

procedure Merge2(P, 1, m, u, C, IS_Indz);
(+ Same as Merge but replace the statement C := C + (m — i + i) with: %)
begin

new-C:=C+(m—i+1),

while (IS[IS_Indz] < new.C) do begin
i’ 1= i+ IS[IS_Indx] — C;
Add z := (B[j] - B[¥'])/(AlJ] — A[]) to the sample;
IS Indz ++

end,;

C:=new.C,

end;
The total running time of the sampling procedure is O(nlogn). Because each
selected pair of lines induces an inversion, these intersection points will all lie within
the interval (z},, z5;] (recalling our assumptions about general position).

3. Contracting the Interval

In the previous section we introduced the necessary counting and sampling
tools. In this section we introduce the necessary probability-theoretic groundwork
on which the algorithm is based. Recall that our task has been transformed to that
of computing the k-th smallest intersection ordinate in the set I(zj,,zp;]. (Note
that the value of k£ may not be the same as the algorithm’s original input.) The set
I(z40, Th;] may contain O(n*) elements, but we have an O(nlogn) procedure that
counts the number of intersection ordinates in the set, and we have an O(nlogn)
procedure which samples n intersection ordinates (with replacement) at random.
In this section we show how to use the two procedures to contract the interval into
a smaller subinterval (2},,z};] which still contains the k-th smallest intersection
ordinate.

We assume that we have applied the counting procedure of the previous section
to determine the number of intersection ordinates C in I(z1,, zn;]. We will assume
that C > n. The case when C is smaller will be discussed in the next section.
Throughout this section we will make the same general position assumptions of the
previous section that the intersection ordinates in I(z,, z4;] are distinct. Handling
degenerate cases in which this condition is violated is discussed in Section 5.

We begin by applying the sampling procedure of Section 2.2 to sample,
with replacement, a subset of n intersection ordinates from I(zj,,zn;]. Let
S(1],S[2], ..., S[n] denote the elements of the sample, sorted in increasing order,
and let k* denote the nearest integer to kn/C. We claim that S[k*] should be
“close” in some sense to the desired intersection ordinate in the original set. This
can be informally justified as follows. Let z* denote the (unknown) k-th smallest
intersection ordinate in I(zj,, ;). Whenever we select a random element from
I(z1,, xp;] (assuming replacement), with probability k/C we select an intersection
ordinate that is less than or equal to z*. If we think of such an event as a “suc-

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 9

cess,” then it is as if we are performing n independent Bernoulli trials, each with a
probability of success equal to p = k/C. Let m denote the number of successes in n
trials. The value m is a binomial random variable with the well known probability
density function

b(m;n,p) = (;);)"‘q""" (g=1-p)

The mean of this distribution is g = pn = kn/C, and the standard deviation is
o = /npg < \/n/2. Since we expect kn/C elements of the sample to be less than
or equal to x*, the k*-th smallest element of the sample is a good estimator for z*.

Although it is quite unlikely that the k*-th smallest element of the sample will
actually equal z*, we can use the sample to place a bound on the location of * with
high probability. It is well known that when n is large and p is not too close to zero
or one, the binomial distribution can be approximated by the normal distribution.
A large portion of the normal distribution lies within a few standard deviations of
the mean. In particular, the probability that a given point sampled from a normal
distribution lies within, say, ¢ standard deviations of the mean rapidly approaches
unity as t increases

! T P B
I bBpo by
= -
o gec] L
T ! ! x [
x = xlo l { x = xhi
x = xlo' ' x = xhi’

!

sample median

Figure 2: IHlustration of the sampling procedure.

For some positive constant ¢ (whose exact value will be discussed in Section 5)
we define ki, and kp; to be indices of the ordinates in the sorted sample which lie
at least t standard deviations on either side of the mean:

kn /n
ko = o gD
! lC t‘zJ

kn /n
kp; — +t—].
h [C+ 2.‘

(Notice that we do not use the exact value of the standard deviation of \/npg but
the upper bound of \/n/2. As we will sce in the proof of Lemma 3.1 below, the use

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

10 Michael B. Dillencourt, David M. Mount & Nathan S. Netanyahu

of this bound provides more robust performance when p is close to zero or one.) If
ki, > 1 and kp; < n then define

Stkio)
1‘;"- = S[kh,‘] .

it

ol
Zio

If kio < 1 then let z}, = xy, and if kp; > n let &}; = zp;. The process is illustrated
in Figure 2. (Observe that since both 2], and z}; each coincide with at least one
intersection ordinate, our general position assumptions will be violated since the
two lines intersecting above this ordinate will generate a degeneracy at the next
stage. This will be addressed in Section 5.)

We claim that as the constant ¢ increases, the probability that z* is located
between zj, and z}; rapidly approaches unity. To justify this claim formally we
will make use of two theorems from probability theory: Chebyshev’s inequality!?
and Chernoff’s bounds on the sum of binomial probabilities (Ref 10, p. 18). At this
point, the presentation becomes significantly more technical, and the casual reader
may wish to skip to the next section.

e Chebyshev’s inequality: Let X be a random variable with mean y = E(X)
and variance 0? = Var(X). Then for any r > 0

2

- o
PriX—plzm < 5.

e Chernoff’s bounds: (This formulation is given in (Ref. 2)). For any positive
integer n and any reals 0 < p<land 0<3<1

> bmin,p) < exp(—B’np/2)
m<(1-6)np
Y. bdminp) < exp(~Fnp/3).

m2(148)np

We assume the convention that b(m;n,p) =0 for m > n or m < 0.

Lemma 3.1 Let I(xi,,zn;] be the set of C > n intersection ordinates between zj,
and z4; from which we wish to select the k-ith smallest. Let S be a random sample
of n intersection ordinates from I(ai,,xp;i], and let p = k/C. For any ¢ > 0,
we can select t such that for all sufficiently large n the probability that the k-th
smallest element of I(zio, zhi) lies within the subinterval I(z},, z},;] is at least 1 —e.
Furthermore, we can choose t so that, as a function of ¢, t € O(y/In(1/¢)).

Proof. Let z* denote the k-th smallest element of I(z),,zp;:]. As we argued
earlier, the number of sampled elements that are less than or equal to the k-th
smallest element is a binomial random variable X with mean p = np and standard
deviation ¢ = ,/npg where ¢ = 1 — p. By symmetry, it suffices to consider the
case when p < 0.5 (for otherwise, we can imagine we are looking for the (C' — k)-th
largest element instead).

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 11

Let P, denote the probability that z* is less than z},, and let Py; denote the
probability that &* is greater than z};. Clearly z* is less than 2}, if and only if
fewer than kj, sampled elements are less than 2*, and &* is greater than a}; if and
only if more than n — kj; sampled elements are greater than z*. The respective
probabilities of these events are

P, = Z b(m;n,p) < Z b(m;n,p), and

m<k;o msklo
Py = Z b(m;n,p) < Z b(m;n,p).
m>ky; m2kn;

Case 1: If p > t/(2y/n) then letting 8 = ¢/(2p\/n) we have

(1-Bynp = (1_%%),,,,

tyn
I S
_ kR
- C 2

Thus (1 — 8)np] = kie, and similarly [(1 + B)np] = ksi. Under our hypothesis it
is easy to see that 0 < 3 < 1, thus we can apply Chernoff’s bounds giving

P, < exp(—B°np/2) = exp(—t*/(8p)) < exp(—t*/4)
Pni < exp(—pB%np/3) = exp(—t?/(12p)) < exp(—t3/6).

The probability that the k-th smallest element lies between zj, and z}; is just
one minus the sum of these two probabilities,

1 - (Pio + Pri) > 1 — exp(—t*/4) — exp(—t*/6) > 1 — 2exp(—t/6).

Thus, by selecting
t > /6 In(2/¢), ()
we achieve the desired probability bound in this case for all n.
Case 2: If p < t/(2y/n) then
2 tyn

0¥ =npg S mp < .

The probability that the k-th smallest element lies between 2] and z}; is at least
the probability that the number of sampled successes differs from the mean of np
by no more than t/n/2. By Chebyshev’s inequality we have

o2

SOVIFIE
i t\/n/2

 (tv/n/2)?
2

1—

tyn’

1= (Pio+ Pri) >

v

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

12 Michael B. Dillencourt, David M. Mount & Nathan S. Neteanyahu

Thus, by chosing t to satisfy inequality (*) above, and then selecting n such that
V/n > 2/(te) the probability of trapping the k-th smallest element in all cases is at
least (1 —¢). O

Thus given any prespecified probability bound, we can select a large enough
sample range such that this range contains the k-th smallest element, z*, with at
least the desired probability. Of course we face a tradeoff since as ¢ increases the
size of the bounding interval, and hence the running time of the algorithm, also
increases. In Section 5 we discuss the choice of parameter ¢.

To complete the probability theory needed to justify our claims on the algo-
rithm’s running time, we need to consider the number of intersection ordinates that
remain to be processed in the subinterval (z],,z};]. Because the subsample be-
tween zj, and z}; represents essentially ¢,/n elements of the n elements sampled,
we would expect that of the original C elements in I(zy,, zp;], a fraction of about
t\/n/n = t//n would lie in the subinterval. The following result and its corollary
state that for any constant probability bound, we can assert that there are asymp-
totically O(Ct/+/n) ordinates within the subinterval with at least this probability.
The constant on the asymptotic bound depends on the probability bound.
Lemma 3.2 Consider the same hypotheses of Lemma 3.1. Given any € > 0 and
any constant d > t, for all sufficiently large n the probability that more than dC/\/n
elements of I(x1,, xni] lie within the open subinterval (z},,x%;) is at moste.

Proof. Define a sample of intersection ordinates to be good if no more than
dC/\/n elements of I(xi,, zp;} lie within the open subinterval (z},, z};), and define
a sample to be bad otherwise. Suppose that a sample is bad, containing C’' >
dC/.\/n ordinates in the open subinterval. Since each sample point is generated
independently with replacement we know that, excluding zj, and zj; (which are
part of the sample), the remaining n — 2 sampled ordinates form a random sample
of I(zio, xni] where each ordinate has an equal probability of being sampled. We
also know that the number of sampled ordinates in the interval (2},, z};) is at most
kni — ko — 1 < {t\/m

Thus the probability of generating a bad sample is no greater than the proba-
bility of generating at most [t\/n] sample ordinates in the interval (z],, z},;) given
that there are C’ ordinates within the subinterval. (To be formally correct here we
should also factor in the additional knowledge that there are at least kj, — 1 sam-
ple elements less than zj , but since the sampling is uniform, this does not affect
the conditional probability.) If we consider each sampled ordinate in the interval
(27,,x%;) to be a success and each other sampled ordinate to be a failure, we see
that the probability of generating a bad sample is equal to the probability of gen-
erating at most [ty/7] successes in n — 2 trials, where the probability p of success
is C'/C > d/+/n. This is the tail of a binomial distribution.

Since d > t we can select a constant § > 0 such that (1 — é)d > (1 + 6)¢. Let

_(+éy

b=l-T"9a

Clearly 0 < 8 < 1. For all sufficiently large n, n — 2 > (1 — é)n and [t/n] <

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 13

(1 + 8)t\/n. Thus

(1-8)(n~-2)p (1= B)(1 - 8)n(d//n)
(1=)1 = 8)dv/n
(1+ 8)tv/n

[tv/n].
Thus the probability of generating a bad sample is no greater than the probabil-

ity of generating at most (1 — 3)(n — 2)p successes in (n — 2) trials with probability
p of success. By Chernoff’s bounds this probability is bounded above by

Z b(m;n — 2,p) < exp(—A%(n — 2)p/2).

m<(1-8)(n-2)p

IV IV IV IV

Since 8 is a constant and (n — 2)p is O(y/n) this probability rapidly tends to zero
as n increases. For any e, there is no € Q(In*(1/¢)), such that for all n > ng the
lemma is satisfied. O

This is not exactly the desired result, because it only bounds the number of
ordinates in the open subinterval, (2}, z};). However, under our general position
assumptions, the elements of I{x},, z5;] are distinct, hence there can be at most one
additional element by closing the right side of the interval.

Corollary Given the same hypotheses of the previous lemma, with the additional
constraint thal the elements of I(xi,,zpi] are distinct, the probabilily thal more
than dC/+/n elements of 1(x1,, ;] lie within the half-open, half-closed subinterval
I(z},, x);] is at most ¢.

4. Complete Algorithm

At this point we have the necessary tools to describe the entire algorithm. As
mentioned earlier, the algorithm consists of a series of stages. During each stage we
are given an interval (zy,, zp;] within which we seek the k-th smallest intersection
ordinate. We also assume that we have been given a count C of the number of
intersection ordinates in this interval, and we assume that £ < C.

If C is sufficiently small, in particular, if C < ¢n, for some constant ¢ > 1,
we apply a simple enumeration algorithm to locate the k-th smallest value. (In
Section 5 we discuss the choice of the constant ¢.) The enumeration algorithm is
a simple modification to the inversion-counting procedure, which beyond counting
inversions, generates a list of inversion ordinates. (This can be accomplished by
modifying the sampling procedure to sample every ordinate in the interval.) After
this, any selection algorithm can be applied to determine the k-th smallest value
(e.g. Hoare’s O(n) expected time algorithm® modified to select the pivot element
at random).

If, on the other hand, C' > en, we apply the sampling procedure described earlier
to select a sample S of n intersection ordinates. As always let us assume that all the
intersection ordinates are distinct. We will consider the degenerate case in Section 5.

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

14 Michael B. Dillencourt, David M. Mount & Nathan S. Netanyahu

We sort the sampled intersection ordinates, and set 2}, to be the kj,-th smallest and
the set z}; to be kp;-th smallest elements from the sample, where ki, and kj; were
defined in the previous section. By Lemma 3.1, with high probability, we expect the
k-th smallest intersection ordinate to lie within I(z},, z};]. To verify that this is the
case, we apply the counting procedure twice to determine the r.amber of elements
in the left subinterval I(z;,,z},] and the center subinterval I(z},,z};]. Let L and
C’ be these respective values. (The number of ordinates in the right subinterval
I(z};, zpi] can be derived as the remainder C — L~ C'.) If L < k < L+ C’, then
indeed, the k-th smallest element lies within the desired subinterval, and we make
a recursive call to locate the (k — L)-th smallest element in I(z},, };]. In the rare
case k < L or k> L + C’, we either make a recursive call to find the k-th smallest
element of the left subinterval I(z;,,)], or we make a recursive call to find the
k — (L + C")-th smallest element of the right subinterval I(z};, zsi].

The overall algorithm is described below. The global variable n contains the
number of input points. The line coefficients are stored in the global arrays A[l...n]
and B[l...n]. +INF and —INF are special values whose intended interpretation
is +00 and —oo, and ¢ and ¢ are constants which are used to tune the performance
of the algorithm (see Section 5 for details). The argument C contains the number
of ordinates in I(zj,, zn;], and k is the rank of the desired ordinate. The initial call
is Select_Slope(—INF,+INF, (3), k).

function Select.Slope(zy,, zhi, C, k);
begin
if C < cn then begin
Enumerate the ordinates in I(z,, Thi;
Select the k-th smallest by any selection algorithm;
Return this ordinate
end
else begin
Generate a sorted list of n random numbers from 1 to C, IS[I ...n];
(* Sample ordinates from I(zio, Zh;] *)
S[1..n] := Samp_Ord(z,, zni, IS);
Sort S[1..n};
ki, := max(1, |kn/C — t\/n/2]); zj, = Slkio];
kpi := min(n, [kn/C + t\/n/2)]); zh; = Slkni];

L := Ord_Count(z;,, 27,); (* Count left subinterval ordinates *)

C' := Ord-Count(z},, z};); (* Count center subinterval ordinates x)

if k < L then (* Search left subinterval #)
Select_Slope(xio, %}, L, k)

else if k < L + C’ then (* Search center subinterval *)
Select_Slope(z},, z};,C', k — L)

else (* Search right subinterval %)

Select_Slope(z},;, zni, C — (L + C'), k — (L + C"))
end
end;

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 15

To analyze the running time of this procedure notice that the only probabilistic
aspect of the algorithm is the number of stages which the algorithm performs (the
number of recursive calls to Select_Slope). Let T'(n, C') denote the expected running
time of the procedure for n lines on any interval (z;,, 24;] containing C intersection
ordinates. We define a stage of the procedure to be successful if the k-th smallest
intersection ordinate is located in the central interval (rj,, z};] (as expected), and
if this central interval has no more than dC//n elements, where d is a constant to
be defined later. The running time of each stage can be bounded above by enlogn
for some constant e, since as we have shown, each of the algorithm’s basic tasks can
be reduced to variations of mergesort. If all stages are successful, then the running
time of the algorithm is T'(n, (3)), where T(n, C) is given by the recurrence

T(n,C) < enlogn ifC<en
T(n,C) < T(n, %f—:) + enlogn otherwise.

After k successful stages, the remaining number of intersection ordinates is at most

£ k
() ()5
7

Thus, if ¢ and d are chosen such that d?/2 < ¢, then after only two successful stages,
the remaining number of intersection ordinates falls below en. From Lemmas 3.2
and 3.1, by adjusting the parameters d and ¢ (which in turn constrain the value of c)
we can make the probability of a successful stage arbitrarily high. Because success
is independent from one stage to another (depending only on the random number
generator) we can select ¢ and d sufficiently large so that the algorithm terminates
within two stages with arbitrarily high probability (while simultaneously slowing
the algorithm down by a constant factor).

The preceding considerations suggest the following mode of operating the algo-
rithm: select ¢ and d such that the probability of success of any one stage of the
algorithm is very high, say 0.99, which implies that after two stages the algorithm
terminates successfully with very high probability, say 0.98. In Section 5 we discuss
the choice of these parameters for our implementation. The values of these param-
eters should be derived empirically, because the bounds provided by Lemmas 3.1
and 3.2 are rather pessimistic. Once t and d have been selected, c is selected so that
¢ > d?/2. As argued earlier, with high probability (depending on the choice of d
and t) in two stages the number of intersection ordinates I(zj,, zp;] will fall below
cn, after which we apply the simple enumeration algorithm. If all goes as expected,
the running time will be O(nlogn).

Even if all stages are not successful, the ezrpected running time of the procedure
is still O(nlogn), provided that d and t are chosen so that the probability p of
a successful stage is bounded away from zero. If the stage is not successful, then
we recurse on either the left or right subinterval. To obtain an upper bound we
assume that in each unsuccessful stage no ordinates at all are eliminated (which is
pessimistic, since at least O(y/n) sample points will always be eliminated). If the

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

16 Michael B. Dillencourt, David M. Mount & Nathan S. Netanyahu

stage is not successful the running time of the algorithm is given by the recurrence

E(n,C) < enlogn ifC<en
E(n,C) < pE (n, %) + (1 -p)E(n,C)+enlogn otherwise.

It is straightforward to prove by induction that E(n, C) satisfies

log C
E(n,C) < (enlogn max(l, ————-———)
(m.C) {enlogm) plog(v/a/d)
Since C is O(n?) the last factor is O(1). Thus the algorithm’s expected running
time is O(n logn).

5. Implementation

In this section we describe a number of implementation issues concerning the
algorithm that were left unspecified in the preceding presentation. In particular we
consider the following issues:

¢ How to handle various degenerate and special cases. Degenerate cases arise,
for example, when values to be sorted or ranked are equal to one another.

o How to deal with limited numerical precision.

e How to choose the constant parameters referred to in earlier sections which
affect the probabilistic behavior and running time of the algorithm.

In addition to this we discuss a specific implementation of the algorithm which we
have used to test the algorithm’s performance on various data sets.

5.1. Degeneracies

Proper handling of special cases and degeneracies is an important aspect of the
implementation of any geometric algorithm. Since the algorithm deals exclusively
with lines, we could pass all the handling of degeneracies to a general purpose sys-
tem, such as Edelsbrunner and Miicke’s simulation of simplicity in which coincident
line intersections are broken in a systematic manner.? Because of the restricted na-
ture of degeneracies in this problem, and the fact that in application areas like
computer vision, digitized degenerate cases are often the norm rather than the ex-
ception, we decided to process the degeneracies on a case by case basis for greater
efficiency.

There are two places in the algorithim where degenerate and special cases can
arise. The first is when we sort the dual lines according to the y-coordinate of their
intersection with one of the vertical lines £ = x;, or ¢ = ;. Recall that each line is
represented in slope and intercept form: y = a;x — b;. One special case which needs
to be considered is when zj, = —00 or rp; = +00. At these extremes we simply
sort the lines by decreasing slope for —oo and by increasing slope for +oco. If two
lines share the same slope, then we sort them by increasing y-intercept at —oo and
by decreasing y-intercept at +00. By sorting in reverse order of y-intercept at +4-o0o

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 17

we insure that two parallel lines will induce an inversion in some interval (2o, Zp;)
if and only if &); = +oo. (Recall our convention that two parallel lines intersect at
z = 400.)

For finite values of ¢, and zp; we still need to consider the possible degeneracy
that two or more lines may intersect one of the vertical lines £ = z;, or ¢ = z; at
the same y-coordinate. In breaking ties we recall that we are interested in counting
the number of intersections in the half-closed interval (x,, zy;]. This is equivalent
to imagining that we are sorting along the vertical lines = z;, + ¢ and £ = zp; +¢,
for some sufficiently small ¢ > 0. If two lines intersect the vertical line £ = z;, at the
same y-coordinate, then their intersections with the line z = z;, + ¢ (from bottom
to top) will be in order of increasing slope. In other words, we sort lexicographically
by the pair (a;zi, — bi, a;). Since we assume that the pairs (a;, b;) are distinct, this
will break all ties. Similarly, in order to break ties along the vertical line & = xp;,
we sort lexicographically by the pair {a;zn; — b;, a;).

A second type of degeneracy that may arise is a multiple occurrence of the same
intersection ordinate within I{xj,,xzp;]. The problem here is considerably subtler.
Suppose that we seek the median intersection ordinate within the interval (z;,, 25],
and just over half of these ordinates are equal to z4;. In sampling ordinates, we
expect that about half will be equal to ;. For the next stage it is not unlikely that
we will generate a new subinterval (2] , z};] where a}; = zj;. Because the interval
is closed on the right side, we will fail to eliminate a single ordinate on that side of
the median!

To handle this kind of degeneracy, we note that the problem arises only when
the k-th smallest ordinate coincides with the right endpoint of the current interval.
(There is not a problem on the left endpoint, since the interval is open on the
left, so that degeneracies at xj, are ignored.) In order to solve this problem, we
alter our inversion-counting procedure so that instead of counting the number of
intersection ordinates C' in the half-open, half-closed interval (z;,, z5;], we create
two counts, one for the open interval (zy,, 1), denoted C}, and one for the single
point xp;, denoted Cs. Clearly C = C; 4 Cy. If C, < k, then we conclude that the
k-th smallest intersection ordinate is x; and terminate (recall that the algorithm
maintains the invariant £ < C). Otherwise we apply our algorithm on the open
interval (20, Zs;) rather than on the half-closed interval (z,, zni].

This two stage counting can be performed with very little additional effort.
Rather than applying the inversion-counting routine to the half-closed interval
(215, Zni], we apply it only to the open interval (zj,,zp;). The only change to
the procedure is to modify the tie-breaking rule given above so that we sort along
the line z = zp; — ¢, for some sufficiently small € > 0. This is equivalent to sorting
lexicographically on the pair {a;zn; — b;, —a;). The resulting count is C;. The in-
tersection ordinates at x; can be counted in only O(n) additional time as follows.
We scan the sorted list of y-coordinates at which the lines intersect the vertical
line £ = z;. (This is the same as the sorted order along z); — € which was just
computed.) These y-coordinates can be grouped into bunches of equivalence classes
in O(n) time (by ignoring the second component of the lexicographical sort). Let

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

18 Michael B. Dillencourt, David M. Mount €& Nathan S. Netanyahu

my,my,...,my denote the sizes of these bunches. Each bunch of size m corre-
sponds to m lines intersecting at a common point with z-coordinate xy;, implying
that there are m(m — 1)/2 intersection ordinates at ¢ = x,;. By computing the
sum ZLI m;(m; +1)/2 we have computed Ca, the number of degenerate ordinates
at rp;.

This use of an open interval does not affect any of the proofs of the algorithm’s
correctness. (The proof of Lemma 3.1 made no assumptions about the interval
endpoints, and Lemma 3.2 assumed an open interval.) The asymptotic running
time cannot deteriorate as a consequence, since processing the open interval can
only reduce the number of ordinates which need to be considered at later stages
of the algorithm. Our practical experience has shown that when the input data
is perturbed by random noise, this modification has little effect on the algorithm’s
performance since the probability of degeneracies is small. In cases where the data is
nearly exact and many degeneracies are present, the algorithm often terminates after
only one iteration (rather than the expected two) because intersection ordinates
bunch heavily around the median point.

5.2. Limited Numerical Precision

The proofs of the algorithm’s correctness have been based on the assumptions
that all calculations have been carried out exactly. In practice, where calculations
are typically performed using floating point representation, this assumption may
not be valid. In our algorithm there are two places where roundoff errors may
affect the correctness of the final result. One situation occurs when computing the
intersection ordinate for two lines, say y = a2 — b; and y = asz — by:

by — by
r=——-

al-—ag'

The second situation arises when computing the y-coordinate at which a line, y =
aszz — bs, intersects either the vertical line x = z;, or & = 23;. Since the values of
zj, and zj; are themselves intersection ordinates, the typical y-coordinate results
from an expression of the following form:
y= aafl__b_? — bs.
a — a2

These y-values are not involved in further computations except for the purposes of
comparisons in sorting.

If the input values are represented in fixed-point notation or as integers con-
taining at most d bits of precision (a very reasonable assumption in the application
area of computer vision where the input data consists of pixel indices), this com-
putation can be restructured so that it is performed exactly with at most 2d + 3
bits of precision. In particular, each intersection ordinate is represented as a pair
{(p, q), where p = by — by and ¢ = a; — aa. Each of p and ¢ requires at most d + 1
bits. We can compare two intersection ordinates p;/q; and p2/q2 by determining
the sign of the difference p1gs — p2q1, which requires at most 2(d+1)+1=2d +3

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 19

bits. Suppose that one of the endpoints of the current interval, say z;, is given by
p/q. In order to sort the y-coordinates at which the lines intersect ¢ = p/q, namely
y = as(p/q) — bs, we may equivalently sort the values yg = azp— baq, which requires
at most 2d + 3 bits.

If floating point calculations are performed throughout, the final output will be
imprecise, but as mentioned above the degree of the relative error will be bounded
because the depth of the computations is bounded. A more serious problem is that
roundoff errors associated with floating point computations can cause the algorithm
to fail altogether, because the inversion-counting and intersection sampling may be
inconsistent. For example, the inversion-counting algorithm may determine that
two lines y = a;z — by and y = e,z — by intersect within some interval (25, ;]
but the computed intersection ordinate ¢ = (by — b2)/(a; — a2) lies outside of this
interval. (The error may have occurred in either computation.}) This phenomenon
has been observed on actual data, and in certain cases can cause the algorithm to
loop infinitely because the interval size may oscillate.

One way to avoid this problem is to compute the intersection ordinate by a more
robust formula so that if an inversion is detected, then the computed intersection
ordinate must lie within the interval. This can be done by computing the z-ordinate
as a weighted average between xj, and xj; where the relative weights are propor-
tional to the differences in the y-coordinates at which the lines intersect 2 = a2,
and & = zp;. Let

Alo
Ahi

(ar1715 — b1) — (azzi, — ba);

(a1zp: — b1) — (aszpi ~ ba).

These equations should not be optimized algebraically. Notice that an inversion will
be detected in the interval (zi,, 2p;] if and only if either Ahi = 0.0 exactly, implying
that the intersection ordinate is determined to lie at * = xz;, or else if Alo and
Ahi are both nonzero and have opposite signs. In the latter case observe that the
relative distance of the intersection ordinate z* between zj, to a; is proportional
to the ratio R = Alo/(Alo — Ahi), which is guaranteed to be between 0 and 1
by our assumption that these quantities have different signs. (This is true for any
reasonable model of floating point calculations.) Thus by computing z* by the
following formula we will generate an intersection point between ;, and xp;:

R = Alo/(Alo— Ahi);
z* = =z + R* (xni — 210).

Although the intersection ordinates may be computed to lower accuracy than
before (because their computation depends on floating point quantities Alo and
Ahi), they will be consistent with the inversion sampling in the sense that if an
inversion is generated then the sampled ordinate will lie within the interval (z;,, 25
Even so, when the size of the interval (z,, ;] becomes very small (relative to
floating point precision) the algorithm may fail to contract the interval at all, or
may contract it only slightly. We suggest that if floating point calculations are

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

20 Michael B. Dillencourt, David M. Mount & Nathan S. Netanyahu

used, then an extra test should be included which terminates the algorithm if either
the interval size shrinks to within some prespecified accuracy or if the number of
intersection ordinates does not decrease by at least one half over two successful
iterations.

5.8. Choice of Parameters

In Section 4 we mentioned that there is a tradeoff between the constant factors
in the algorithm’s running time and the probability that each stage of the algorithm
is successful. The constants on which this tradeoff is based are: (1) ¢, which is used
in the definition of k;, and ky; (see Lemma 3.1); (2) ¢, the factor such that when the
number of intersection ordinates falls below cn we simply enumerate the remaining
inversions; and (3) d, the factor such that dC//n is the bound on the number of
remaining ordinates after a successful stage (see Lemma 3.2). The value of d is
really not used by the algorithm (only in its analysis) but its value constrains the
choices of ¢ and ¢. It was shown in Section 4 that the algorithm requires only two
stages, provided that ¢ and d satisfy ¢ > d*/2. In Lemma 3.2 it was assumed that
d was strictly larger than ¢.

Although in theory we could apply Lemmas 3.1 and 3.2 directly to determine
bounds on t and ¢ which would guarantee termination in two stages with some
specified probability, the resulting bounds would be pessimistic because these lem-
mas do not provide tight bounds. To see why this is, observe that (1) we are
always dealing with reasonably large n (e.g. n > 50), since for small n we can
simply apply the O(n?) brute force algorithm, and (2) the values of p tend to be
close to 0.5 in many instances because we select each subinterval symmetrically
about the expected location of the k-th smallest element. Fo: large n and when
p is reasonably close to 0.5, Chernoff’s bounds are somewhat pessimistic. Tighter
bounds may be achievable by better approximating functions, such as that given
by the DeMoivre-Laplace Theorem with error terms (Ref. 31, p. 129). However,
we chose instead to use our experimental experience with the implementation to
(conservatively) determine suitable values.

In our experiments with the algorithm, which involved over 1,000 invocations of
the algorithm on input sizes n ranging from 50 to 50,000, we observed that setting
t = 3 was sufficient to capture the k-th smallest intersection ordinate in over 99% of
the cases run. The reason is as follows. If p is near 0.5, then the normal distribution
is a good approximation to the binomial distribution, and three standard deviations
from the mean captures most of the area under the normal curve. On the other
hand, if p is very close to 0 or 1, then the standard deviation o = ,/npq is much
smaller than the upper bound of \/n/2 which we use in the algorithm. So even
though the normal distribution is a much poorer approximation for the skewed
binomial distribution, we are taking a much larger number of standard deviations
on either side of the mean.

Our next task is to determine the value of ¢, such that when the number of
intersection ordinates falls below ¢n we switch to the simple enumeration algorithm.
We face the following tradeoff. By iterating one more time, we incur the additional

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 21

cost of sampling and counting, but we then can apply enumeration to a smaller set
of points. Thus, the value of ¢ depends on the relationship between the running
times of each inversion-counting phase and the enumeration phase. Let en(n, C)
denote the running time needed to determine the k-th smallest intersection ordinate
out of the remaining C ordinates by simple enumeration. Let inv(n) denote the
running time needed for one stage of basic inversion sampling and counting (this
quantity is independent of C). Our goal is to determine the maximum ¢, such that
for all C < cn the time needed to solve the problem by brute force enumeration is
less than the expected time needed to iterate through one more stage followed by
an enumeration on a smaller list. Because the expected decrease in the number of
intersection ordinates is 3/y/n, the choice of ¢ should satisfy

3C
en(n, C) < inv(n) + en (n, —\/1—7> .
The running time for each iteration is O(nlogn), and the running time for
enumeration is O(nlogn + C). We used the following models for the running time
of these two parts of the algorithm:

inv(n) = Iinlogn+ Ixn,
en(n,C) = FEinlogn+ Eyn+ E3C,

where I, I, and Ey, E5, E3 are constants depending on the particular implemen-
tation. These values can be derived empirically. Substituting the mode] into the
equation above yields

o (1 - —3—) E3 < Iinlogn + Inn.

/n

By setting C to cn we have
< Iilogn + I3

¢ .
"B (1- %)

We timed the inversion-counting algorithm and the enumeration algorithm with
n ranging from 100 to 10,000 and with values of C varying between n/2 and 40n.
Based on these running times (in milliseconds), we used least squares to fit running
times to the models above and determined that I; &~ 0.3, I & 0.8 and F3 = 0.09.
As a function of n, ¢ is rather flat, ranging between 20 and 30 over all “practical”
values of n (50 < n < 100,000). We conclude that ¢ = 20 is a conservative choice.
It should be mentioned that it may be advantageous to make ¢ smaller if memory
is tight at the potential expense of running an extra iteration. The reason is that
en words of memory must be used for the enumeration. Qur experience is that for
n > 100, when ¢ = 10 the algorithm failed to terminate after two iterations only
when it failed to trap the k-th smallest intersection by sampling. Finally, note that
the expected number of ordinates remaining after two iterations is 9n/2 (assuming
that t = 3), so values of ¢ smaller than, say 7, have a greater risk of running a third
iteration.

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

22 Michael B. Dillencourt, David M. Mount & Nathan S. Nelanyahu

5.4. Ezperimental Results

We ran the algorithm on a number of data sets in order to study the overall
performance of the algorithm and also to study the statistical behavior of various
parameters on which the running time depends. In order to establish a certain
degree of statistical validity to the empirical results obtained, we experimented with
numerous sets of data. We ran two types of experiments: a standard experiment
in which the algorithm was run over data sets which we felt were likely to arise
in practice, and a special case experiment in which the algorithm was run on more
skewed data sets. The following input descriptions are stated in terms of the original
problem of selecting the k-th smallest slope determined by a set of n points (as
opposed to the dual problem of selecting the k-th smallest intersection ordinate).

The standard experiment considered nearly 100 different data instances for each
value of n. In each case a set of n points was generated inside a unit square with
respect to a specific line equation, characterized by its slope and vertical intercept.
To avoid degeneracies we perturbed the y-coordinate of each point by adding to it
the value of a Gaussian randomly generated variable multiplied by some specified
standard deviation, 0. We used the algorithm of (Ref. 17, pp. 116-117) to produce
these values. Notice that ¢ = 0 corresponds to an “exact fit case” which is consid-
ered in the special case experiment below. For each data instance, we invoked our
algorithm to find the 50% quantile, an approximation to the median element, and
recorded the running time, and the values obtained for the various parameters of
interest, ,

For comparison, the running times of the brute force algorithm (which sim-
ply enumerates all O(n?) pairs of points and selects the k-th smallest by Hoare’s
selection algorithm?!) have also been recorded. This could be done only for data
instances where n < 1000 because of the limitations of main memory and the fact
that this algorithm needs O(n?) space. Letting Ty(n) denote the running time of
our inversion-counting algorithm and Tg(n) denote the running time of the brute
force algorithm, we used least squares to derive the following linear models for the
running times of these algorithms in milliseconds. The running times have been
scaled down by a factor of n to reduce the residuals for large n.

T,
—’7(11'—) = 0.7logon +5.2,
Z%("—) = 0.03n+2.5.

These results are summarized in Figure 3. Logarithms are base 10. Figure 3(a)
shows Tg(n)/n, (b) shows Tr(n)/n, and (c) shows both fits superimposed. From
these models we conclude that for values of n greater than 10213 & 135 our algo-
rithm performs better than the brute force algorithm.

The other purpose of the standard experiments was to investigate the statistical
behavior of some of the algorithm’s parameters. It was mentioned in Lemma 3.2
that between successive iterations of the inversion-counting algorithm the number of
intersection ordinates is expected to decrease by a factor of 3/\/n. Thus if C and C’

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

Figure 3: Comparison of inversion counting and brute force algorithms.

{msec] / n

20
15
10

A Randomized Algorithm for Slope Selection

(a)

[msec] / n

85

7.5

6.5

200

400 600

(b)

1000

55

[msec] / n

15
10

()

15

2 213 25

log n

log n

(%] (%] {%]
40 n =100 40 n = 500 40 n=1000
30 30 30
20 20 20
L N JJ“L v /PJ\L
05 1 15 05 1 15 05 1 15 32
% % %
(%} (%] (%] n = 50000
40 R = 5000 40 n = 10000 40
30 30 30
20 20 20
10 10 10
05 1 1% 05 113 05 1 15 3

Figure 4: Histograms of the ratio (C"/C) : (9n).

23

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

24 Michael B. Dillencourt, David M. Mount & Nathan S. Netanyahu

represent the number of intersection ordinates before and after sampling, we would
expect that the ratio (C’/C) : (3/+/n) should be close to 1, and the approximation
should be closer for larger values of n. Letting C” be the rumber of ordinates
remaining after two iterations, we would expect that the ratio (C" /C) : (9/n) should
be close to 1. This ratio is important because it indicates how many intersection
ordinates (above the expected 9n/2) remain to be enumerated after two iterations.
We recorded this ratio after every iteration that was successful in trapping the k-th
smallest intersection ordinate by sampling. We found that this ratio never exceeded
2 for n > 100 and did not exceed 1.5 for n > 1000. Histograms of these ratios are
shown in Figure 4 for values of n ranging from 100 to 50000. Even with skewed
data sets (mentioned below) this ratio only tended to be smaller.

[%] %] [%]
20 n =100 20 n =500 20 n = 1000
15 15 15
10 10 10
5 5 5
6 05 1 15 0 05 1 15 0 05 1 15
(%] (%} (%)
20 n = 5000 20 n = 10000 20 n = 50000
15 15 15
10 10 10
5 5 5
0 05 1 15 0 05 1 15 6 05 1 15

Figure 5: Histograms of relative ranks of the true k-th smallest ordinate.

It was mentioned earlier that one of the reasons that the algorithm performs
faster than the bounds suggested in Lemmas 3.1 and 3.2 is that the k-th smallest
intersection ordinate tends to lie in the middle of the interval (z;,, zp;]. This is of
interest because the normal approximation to the binomial is best when the k-th
smallest element is not too close to one endpoint or the other. We recorded the
relative rank of the true k-th smallest element with respect to the contracted set
of intersection ordinates I(z),, rp;] at the end of the first and second iterations for
the standard experiment (where the median element was sought). This quantity is
between 0 and 1 if the k-th smallest element lies within the interval, and it is equal
to 0.5 if the k-th smallest element is the median element of the interval. Histograms
for this statistic are shown in Figure 5 for values of n ranging from 100 to 50000.
Notice that if k approaches the extreme values of 1 or (g) the location of the k-th
smallest element tends to be closer to the extremes of the interval during the early
stages.

The special case experiments involved the invocation of our implementation to
find various k-th smallest elements per each data instance in a number of instances
which we felt would be less likely in practice (given our application of line fitting),
but these cases are important in checking that the algorithm’s performance does
not vary significantly over its performance for nominal data sets. Letting Cy = ('.;)

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

A Randomized Algorithm for Slope Selection 25

1 sigma =0 1 sigma = 0.01
0.8 slope = 0.5 08 slope = 0.495
vl
0.6 / 06 MW
— M”"'ﬂ)
04 — 04 o
0.2 02 {
0.2 0.4 0.6 08 1 0.2 04 0.6 08 1

sigma =0.1 slope = 0.011
slope = 0453 -

02 04 06 08 1 05 04 06 08 1

Figure 6: Examples of experimental data points.

denote the maximum range of k, we sought values of k in the set

1
{1, Cé/é, v Co, '2'00, Co — o, Co—CéM, Co}

for each n € {100, 1000, 10000}. We experimented with data instances correspond-
ing to several slopes of lines (including 0° and 90°) and with various degrees of
perturbation (e.g., & = 0,107%,1072,10~!) and on uniformly random data. Ex-
amples of data instances for n = 1000 and various ¢ values with respect to the
line y = 0.5z + 0.25 are shown in Figure 6. (The corresponding slope values given
are those computed by the algorithm for the 50% quantile.) In cases of exact data
with very small perturbations the algorithm would usually terminate after only one
inversion sampling stage largely because of the fact that slopes “bunch up” signifi-
cantly more in these cases and are caught by the bunch counting mentioned earlier
in this section. In other cases the algorithm’s performance was not significantly
different from the standard cases.

6. Concluding Remarks

We have described a randomized O(n log n) expected time algorithm for selecting
the k-th smallest line slope determined by all pairs of n points in the plane. Our
empbhasis has been on designing an algorithm which is provably efficient (with very
high probability), which handles degenerate cases correctly, and which has a simple
and efficient implementation. In much the spirit of Bentley’s work on the traveling
salesman problem,® we have experimented extensively with the implementation in
order to establish its efficiency and robustness.

One problem suggested by this work is the extension of this technique to higher
order or higher dimensional estimators. For example, one could fit a set of data
points in the plane to a quadratic curve, y = az? + br + ¢, by generating all triples

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

26 Michael B. Dillencourt, David M. Mount & Nathan S. Netanyahu

of data points and for each triple deriving the equation of the resulting curve. From
these O(n®) curves we could then select the median of each of the three coefficients.
This generates a three-dimensional instance of the Theil-Sen estimator. Similarly, a
d-dimensional Theil-Sen estimator can be defined to fit a function of d parameters.
An O(n%!logn) time and O(n) space algorithm was recently proposed for the
d-dimensional generalization of the Theil-Sen estimator.?1:22

Another question regards the choice of the median slope as a line estimator.
Although the median slope is preserved under translation and scaling, the median
slope of a rotated set of points need not be equal to the rotated median slope. For
example, when points are nearly vertical, we may find two clusters of slopes at +oo
and —oco. An estimator with the property that the estimator of a rotated point set
is always equal to the rotated estimator is called a rotation-equivariant estimator.
Stein and Werman have proposed a rotation-equivariant generalization of the Theil-
Sen estimator and shown that it can be computed in O(nlog®n) time.?® Can this
result be improved to O(nlogn)?

7. Acknowledgements

An algorithm for slope selection similar to the one presented in this paper was
discovered, independently, by Matousek.!® We would like to thank Peter Cucka,
Azriel Rosenfeld, Joseph Sanjour, and Chris Welsh for their suggestions and valuable
assistance.

References

1. A.V. Aho, J. E. Hopcroft, and J. D. Uliman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts, 1974.

2. D. Angluin and L. G. Valiant, “Fast probabilistic algorithms for Hamiltonian circuits
and matchings,” J. Comput. System Sci. 19 (1979), 155-193.

3. J. L. Bentley, “Experiments on traveling salesman heuristics,” in Proc. First ACM-
SIAM Symp. on Discrete Algorithms, San Francisco, California, 1990, 91-99.

4. R. Cole, 1. S. Salowe, W. L. Steiger, and E. Szemerédi, “An optimal-time algorithm
for slope selection,” SIAM J. Comput. 18 (1989), 792-810.

5. G. Dahlquist and A. Bjérck, Numerical Methods, translated by N. Anderson, Pren-
tice Hall, Englewood Cliffs, New Jersey, 1974.

6. D. L. Donoho and P. J. Huber, “The notion of breakdown point,” in A Festschrift
for Erich L. Lehman, eds. P. J. Bickel, K. Doksun, and J. L. Hodges, J1., Wadsworth
International Group, Belmont, California, 1983, 157-184.

7. R.O. Duda and P.E. Hart, “Use of the Hough transformation to detect lines and
curves in pictures,” Comm. ACM 15 (1972), 11-15.

8. H. Edelsbrunner and E. P. Miicke, “Simulation of simplicity: A technique to cope
with degenerate cases in geometric algorithms,” ACM Trans. Graphics 9 (1990),
66-104.

9. H. Edelsbrunner and D. L. Souvaine, “Computing median-of-squares regression lines
and guided topological sweep,” J. Amer. Stat. Assoc. 85 (1990), 115-119.

10. P. Erdés and J. Spencer, Probabilistic Methods in Combinatorics, Academic Press,
New York, 1974.

Int. J. Comput. Geom. Appl. 1992.02:1-27. Downloaded from www.worldscientific.com

by UNIVERSITY OF MARYLAND @ COLLEGE PARK on 09/26/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

11

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217,

30.

31.

A Randomized Algorithm for Slope Selection 27

. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, John
Wiley, New York, 1950.

. M. A. Fischler =.ad R. C. Bolles, “Random sampling consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,” Comm.
ACM 24 (1981), 381-395.

R. V. Hogg and E. A. Tannis, Probubility and Statistical Inference, third edition,
MacMillan, New York, 1983.

P. V. C. Hough, “Method and means for recognizing complex patterns,” U. S. Patent
3,069,654, 1962.

H. Imai, K. Kato, and P. Yamamoto, “A linear-time algorithm for linear L; approx-
imation of points,” Algorithmica 4 (1989), 77-96.

B. Kamgar-Parsi, B. Kamgar-Parsi, and N. S. Netanyahu, “A nonparametric method
for fitting a straight line to a noisy image,” IEEE Trans. Patt. Anal. Mach. Intell.
11 (1989), 998-1001.

D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algo-
rithms, second edition, Addison-Wesley, Reading, Massachusetts, 1981.

D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching,
Addison-Wesley, Reading, Massachusetts, 1973.

J. Matousek, “Randomized optimal algorithm for slope selection,” Info. Proc. Letters
39 (1991), 183-187.

N. Megiddo, “Linear time algorithms for linear programming in R® and related
problems,” SIAM J. Comput. 12 (1983), 759-776.

D. M. Mount and N. S. Netanyahu, “Computationally efficient algorithms for high-
dimensional robust estimators,” technical report in preparation, University of Mary-
land, College Park, 1992.

N. S. Netanyahu, “Computationally Efficient Algorithms for Robust Estimation,”
PL.D. Thesis, University of Maryland, College Park, 1991.

P. J. Rousseeuw, “Least median-of-squares regression,” J. Amer. Stat. Assoc. 79
(1984), 871-880.

P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, John
Wiley and Sons, New York, 1987.

P. K. Sen, “Estimates of the regression coefficients based on Kendall’s Tau,” J.
Amer. Stat. Assoc. 63 (1968), 1379-1389.

M. I. Shamos, “Comput.ational Geometry,” Ph.D. Thesis, Yale University, 1978.

M. I. Shamos, “Geometry and statistics: Problems at the interface,” in Algorithms
and Complezxity: New Directions and Recent Results, ed. J. F. Traub, Academic
Press, New York, 1976, 251-280.

. D. L. Souvaine and J. M. Steele, “Efficient time and space algorithms for least

median of squares regression,” J. Amer. Stat. Assoc. 82 (1987), 794-801.

. A. Stein and M. Werman, “Robust statistics in shape fitting,” in Proc. Fighth Israeli

Symp. on Artificial Intelligence and Computer Vision, Ramat-Gan, Israel, 1991,
285-302.

H. Theil, “A rank-invariant method of linear and polynomial regression analysis,”
Proc. Kon. Ned. Akad. v. Wetensch. A 53 (1950), 386-392.

J. V. Uspensky, Introduction to Mathematical Probability, McGraw Hill, New York,
1937.

