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Abstract

We consider various algorithmic solutions to image registration based on the

alignment of a set of feature points. We present a number of enhancements

to a branch-and-bound algorithm introduced by Mount, Netanyahu, and Le

Moigne (Pattern Recognition, Vol. 32, 1999, pp. 17–38), which presented a

registration algorithm based on the partial Hausdorff distance. Our enhance-

ments include a new distance measure, the discrete Gaussian mismatch, and

a number of improvements and extensions to the above search algorithm.

Both distance measures are robust to the presence of outliers, that is, data

points from either set that do not match any point of the other set. We

present experimental studies, which show that the new distance measure

considered can provide significant improvements over the partial Hausdorff

distance in instances where the number of outliers is not known in advance.

These experiments also show that our other algorithmic improvements can

offer tangible improvements. We demonstrate the algorithm’s efficacy by

considering images involving different sensors and different spectral bands,

both in a traditional framework and in a multiresolution framework.

1.1 Introduction

Image registration involves the alignment of two images, called the refer-

ence image and the input image, taken of the same scene. The objective

is to determine the transformation from some given geometric group that

most nearly aligns the input image with the reference image. Our interest in

this problem stems from its application in remote sensing, and in particular

in the alignment of satellite images of the Earth taken possibly at different

times, by different sensors, and from different spectral bands. The goal is
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to establish very close alignment, say to within a fraction of a pixel. The

problem is complicated by issues such as obscuration due to the presence of

cloud cover, variations caused by time (such as coastline changes due to tidal

effects or variations in shadows at different times of the day), and variations

to surface features due to the differences in the sensors and spectral bands.

Image registration and point pattern matching are closely related compu-

tational problems. We refer the reader to surveys by Ton & Jain (1989),

Brown (1992), and Zitova & Flusser (2003), and Alt & Guibas (1999) for

further information on the many approaches to these problems.

There are two common approaches to image registration. One approach

makes direct use of the original image data and the other is based on match-

ing discrete geometric feature points. Both approaches have their relative

advantages and disadvantages. This paper focuses on methods based on

matching feature points. Features may be extracted by a number of meth-

ods. In our experiments, we have used a feature extraction process based

on identifying relatively high-valued coefficients from a wavelet decompo-

sition of the image (Le Moigne, Campbell & Cromp 2002). This approach

has the advantage that it can produce feature points at multiple levels of

resolution. This can be used to drive a progressive multiresolution regis-

tration algorithm, which registers images at increasing levels of accuracy

(Cole-Rhodes, Johnson, Le Moigne & Zavorin 2003, Netanyahu, Le Moigne

& Masek 2004, Zavorin & Le Moigne 2005). For the applications we have in

mind, the transformations to be considered involve 2-dimensional geomet-

ric similarities, that is, transformations resulting from the composition of

rotation, translation, and uniform scaling.

Accurate image registration (whether point-based or image-based) is a

computationally expensive task, especially when large images or point sets

are involved and when the transformation space has many degrees of free-

dom. Hence, it is of interest to develop algorithms that are both accurate

and efficient. The formulation that we shall consider in this paper is based

on the following characteristics, based on the taxonomy proposed by Brown

(1992):

Input space: The images are assumed to be presented as a discrete set of

2-dimensional feature points. In our experiments, extracted feature

points were based on the most significant coefficients of a wavelet

decomposition of each of the images (Le Moigne et al. 2002).

Search space: Our software system supports affine registration transfor-

mations (allowing for translation, rotation, uniform and nonunifom

scaling, and shearing). All of our experiments were conducted on a
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subspace consisting of similarity transformations (allowing for trans-

lation, rotation, and uniform scaling). The user provides intervals

limiting the maximum and minimum degree of translation, rotation,

and scaling.

Search strategy: Our algorithm is based on a search of the transformation

space for the optimal aligning transformation. Specifically, it employs

a geometric variant of a branch-and-bound search. See Section 1.3 for

a detailed description. This is an extension of the algorithm presented

by Mount, Netanyahu & Le Moigne (1999).

Distance metric: We used two different robust measures as the objec-

tive function of our search algorithm, the (directed) partial Haus-

dorff distance (phd) (Huttenlocher & Rucklidge 1993, Huttenlocher,

Klanderman & Rucklidge 1993) and a new smoothed version of the

symmetric difference distance called the discrete Gaussian mismatch

(dgm). Both measures are robust in that they allow for missing, as

well as spurious data points.

A large number of papers have been written on the point pattern matching

problem in the fields of computer vision, pattern recognition, and compu-

tational geometry. It is beyond the scope of this paper to survey they area

in detail, and so we will focus on the most relevant results. Perhaps the

simplest similarity among point sets involve the Hausdorff distance and its

variants (Alt, Aichholzer & Rote 1994, Chew, Goodrich, Huttenlocher, Ke-

dem, Kleinberg & Kravets 1997, Goodrich, Mitchell & Orletsky 1999, Hut-

tenlocher, Kedem & Sharir 1993). The standard notion of Hausdorff dis-

tance is not suitable for our application, since it requires that every point

(from at least one set) have a nearby matching point in the other set. Com-

puting the optimal alignment of two points sets even under the relatively

simple Hausdorff distance is computationally intensive. In an attempt to

circumvent the high complexity of point pattern matching, some researchers

have considered alignment-based algorithms. These algorithms use align-

ments between small subsets of points to generate potential aligning trans-

formations, the best of which are then subjected to more detailed analysis.

Examples of these approaches include work in the field of image processing

(Stockman, Kopstein & Benett 1982, Goshtasby & Stockman 1985, Gosh-

tasby, Stockman & Page 1986) and in the field of computational geometry

(Goodrich et al. 1999, Heffernan & Schirra 1994, Gavrilov, Indyk, Motwani &

Venkatasubramanian 2004, Cho & Mount 2005, Choi & Goyal 2006). Align-

ments can also be part of a more complex algorithm. For example, Kedem

& Yarmovski (1996) presented a method for performing stereo matching un-
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der translation based on propagation of local matches for computing good

global matches.

For our applications it will be important that the distance measure be

robust, in the sense that it is insensitive to a significant number of feature

points from either set that have no matching point in the other set. Examples

of a robust distance measures include the partial Hausdorff distance (phd)

(Huttenlocher & Rucklidge 1993, Huttenlocher, Klanderman & Rucklidge

1993) and symmetric and absolute differences (Alt, Fuchs, Rote & Weber

1996, Hagedoorn & Veltkamp 1999). (See Section 1.2 for definitions.)

In this paper we discuss a number of extensions to the prior work of Mount

et al. (1999) on the problem of feature-based image registration. We have

extended the software system of theirs to include the following new elements:

New Distance Measure: In addition to phd, we introduce a new distance

measure, called the discrete Gaussian mismatch (dgm), which offers

a number of advantages over phd.

New Search Algorithms: In addition to the two search algorithms intro-

duced by Mount et al. (1999) (pure branch-and-bound and bounded

alignment), we introduce a new search algorithm called bounded least

squares alignment. We demonstrate that in many cases this new algo-

rithm exhibits significantly better performance. We have also added

new variants in which the aforementioned algorithms perform their

search, and showed that these variants were considerably more effi-

cient than those of Mount et al. (1999).

More Extensive Experiments: We extend the experimental results of

Mount et al. (1999) to consider registration of satellite images arising

from different platforms and covering different spectral bands.

The rest of the paper is organized as follows. In Section 1.2 we present the

two distance functions that will be used by our algorithm. In Section 1.3,

we present our registration algorithm. In Section 1.4 we discuss the results

of our experiments on these algorithms.

1.2 Distance Measures

The point-based registration can be defined abstractly as follows: We are

given two point sets A and B. We refer to A as the input set and B as the

reference set. We are given a space T of geometric transformations, including

some a priori limits on the range of transformations. (For example, we may

limit the range of rotations to some interval of angles.) We are also given

some distance function that measures the degree of dissimilarity of the two
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point sets. The problem is to find the transformation τ ∈ T that minimizes

the distance between τ(A) and B.

There are two natural sources of error. The feature extraction process is

subject to noise, i.e., small errors in the coordinates due to sensing errors

and digitization. The second source of error is the presence of outliers, i.e.,

feature points from either image that are not present in the other image.

As mentioned in the introduction, outliers can result from many different

sources, and may constitute a relatively large (often unknown) fraction of the

feature points. Following terminology from statistics (Rousseeuw & Leroy

1987), we say that a distance measure is robust if it is insensitive to the

presence of outliers.

In this paper we consider two robust distance measures. The first is the

partial Hausdorff distance (phd) introduced by Huttenlocher & Rucklidge

(1993) and Huttenlocher, Klanderman & Rucklidge (1993). Consider the

set of distances resulting from taking each point in one set, and finding

the nearest point to it in the other set. Rather than taking the sum or the

maximum of these distances, which may be affected by outliers, we consider

the median or, in general, the kth smallest distance. More formally, given a

set S ⊂ R, and 1 ≤ k ≤ |S|, let rankkS denote the kth smallest element of

S. Given a point set B and a point a, let dist(a, B) denote the distance from

a to its closest point of B. Given two point sets A and B, and an integer

parameter 1 ≤ k ≤ |A|, the directed partial Hausdorff distance (phd) of

order k from A to B is defined to be

phdk(A, B) = rankk{dist(a, B) | ∀a ∈ A}.

(Note that the standard directed Hausdorff distance arises as a special case

when k = |A|.) To avoid the dependence on the size of A, we will replace

the integer parameter k with a quantile q, where 0 < q ≤ 1 represents the

fraction of inliers of A. We then set k = ⌈q · |A|⌉. The resulting measure is

denoted by phdq(A, B).

One shortcoming of the phd is the need to estimate the value of k (or

q), that is, the expected number of inliers. Since this quantity depends on

characteristics of the images (such as the degree of cloud cover) that may

be unknown at the time of registration, we introduce an alternative distance

measure. This measure is motivated by the symmetric difference of two

sets, that is, the number of points that are present in one set but not in

the other. To allow for the presence of noise, we attach a weight to the

existence of a match by a function that decreases with the distances between

each point of A and its nearest neighbor of B. The user provides a positive

real parameter σ, which intuitively represents the standard deviation of a
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Guassian distribution. Each point a ∈ A is assigned a weight based on a

variant of the Gaussian distribution function applied to the distance to its

nearest neighbor of B, such that,

wσ(a) = exp

(

−
dist(a, B)2

2σ2

)

.

Note that the weight is 1 if and only if a coincides with a point of B, and

(depending on σ) decreases to zero as the distance increases. We define the

discrete Gaussian mismatch distance (dgm) between A and B to be

dgmσ(A, B) = 1−

∑

a∈A wσ(a)

|A|
.

Observe that if every point a ∈ A coincides with some point b ∈ B, then

dgmσ(A, B) = 0, and the distance increases to a maximum value of 1 as the

degree dissimilarity between the two points sets increases.

1.3 Framework of The Registration Algorithm

Our registration algorithms are based on a geometric branch-and-bound

framework. This framework has been used by others including Huttenlocher

& Rucklidge (1993), Rucklidge (1996), Rucklidge (1997), Hagedoorn & Velt-

kamp (1999), and Mount et al. (1999). Recall that we are given two points

sets, an input set A and a reference set B and a space of transformations T .

The problem is to find τ ∈ T that minimizes the distance function, which

is either phd or dgm. The phd is also parameterized by the inlier quantile

0 < q ≤ 1 and the dgm is parameterized by the standard deviation σ. Let

us assume that A and B will be fixed for the remainder of the discussion,

and let us define phdq(τ) and dgmσ(τ) to be the respective distance mea-

sures between the transformed input set τ(A) and the reference set B. Let

phdopt and dgmopt denote the minimum distances under phd and dgm,

respectively, over all transformations τ ∈ T .

There are a number of different ways to represent a transformation of T .

Henceforth we assume that T consists of the space of geometric similarities

(allowing for rotation, translation, and uniform scaling). We represent each

such transformation by a 4-element vector, whose entries are the rotation θ,

the translation vector (tx, ty), and the scaling factor s.

There are also a number of ways to define the approximation error for each

of our distance measures. We introduce four nonnegative error parameters:

• εrm: the relative metric error bound,

• εam: the absolute metric error bound,
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• εrq: the relative quantile error bound,

• εaq: the absolute quantile error bound.

Only three of these parameters will be relevant to a particular distance

measure. Intuitively, the metric error involves errors in the distance between

points and quantile error involves errors in the number of points. First, for

phd, define q− = (1 − εrq)q. Note that since q− ≤ q, we have phdq−(τ) ≤

phdq(τ), for any τ . We say that a transformation τ is approximately optimal

for phd relative to these parameters if either

phdq−(τ) ≤ (1 + εrm)phdopt or phdq−(τ) ≤ phdopt + εam.

Thus, the approximate phd solution is allowed to be less robust by a factor

of (1− εrq), and it may exceed the optimum distance by a relative error of

εrm or an absolute error of εam.

For dgm, define σ+ = (1 + εrm)σ. Observe that dgmσ+(τ) ≤ dgmσ(τ),

for any τ . We say that a transformation τ is approximately optimal for dgm

relative to these parameters if either

dgmσ+(τ) ≤ (1 + εrq)dgmopt or dgmσ+(τ) ≤ dgmopt + εaq.

Thus, the approximate dgm solution is allowed to match points in a neigh-

borhood that is larger by a factor of (1+εrm), and it may exceed the optimum

mismatch distance by a relative error of εrq or an absolute error of εaq. Note

that the parameters εrm and εrq are used for both distance functions. Their

meanings are slightly different but closely related.

Note that the earlier branch-and-bound algorithms of Huttenlocher &

Rucklidge (1993) and Hagedoorn & Veltkamp (1999) implicitly provide εam

but not the other two parameters. The algorithm of Mount et al. (1999)

does allow for the same error settings as used for phd above, but it does not

include the dgm distance.

We begin by describing the general structure of the algorithm. We will

not prove the algorithm’s correctness formally, but it is a straightforward

modification of the proof of Mount et al. (1999). As mentioned earlier, the

algorithm is based on a geometric branch-and-bound search of transforma-

tion space. The algorithm implicitly generates a search tree, where each node

of the tree is identified with an axis-parallel hyperrectangle in 4-dimensional

transformation space (for rotation, x-translation, y-translation, and scale).

Each such rectangle, or cell, represents a subspace of possible transforma-

tions. The user provides initial limits on the subset of transformations to be

considered, and the root of the search tree is associated with the associated

cell.
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The search processes each cell in a recursive manner, starting with the

root cell. At any time there are a collection of active cells and a candidate

transformation that is the best seen so far by the search. Let τ∗ denote this

best transformation, and let dist∗ denote the associated distance. When it

can be determined that a cell does not contain a transformation whose dis-

tance is smaller than dist∗, the algorithm kills the cell, that is, it eliminates

it from further consideration. If a cell cannot be killed then it is processed

as discussed below. The processing will generally involve hierarchically par-

titioning the cell into smaller cells, which will then be added to the list of

active cells. The algorithm terminates when all cells have been killed, or

when a user-supplied upper bound on the maximum number of cells to be

processed has been exceeded. Upon termination, the best transformation

encountered, τ∗, is returned.

Let us now present the algorithm in greater detail. For each cell T that

we process, we are interested in the transformation of this cell, for which the

distance measure is smallest. We compute an upper bound dist+(T ) and a

lower bound dist−(T ) on this smallest distance (explained below). For each

upper bound, there will be a specific transformation that serves as a witness

to this upper bound.

Upper bound. To compute the upper bound, we may sample any

transformation from within the cell. There are a few ways in which to do

this. Our software implements three different approaches. The first two were

introduced by Mount et al. (1999), and the third is new to this paper.

Pure: (pure) The midpoint of the cell is selected as the candidate trans-

formation to be used for the upper bound.

Bounded Alignment: (ba) When the cell satisfies a given set of con-

ditions (details given by Mount et al. (1999)) a small number of

point pairs is sampled repeatedly and at random from the subset of

points of A that have a unique nearby point of B (after applying the

cell’s midpoint transformation). Each such pair a1, a2 ∈ A is associ-

ated with its respective closest points b1, b2 ∈ B. There is a unique

transformation τ mapping the pair (a1, a2) to (b1, b2). The distance

(i.e., the similarity measure) of this transformation is computed. The

transformation that produces the smallest distance is chosen to pro-

vide the upper bound for the cell. In our experiments, 10 samples

were used.

Bounded Least-Squares Alignment: (blsa) Each point of A is associ-

ated with its closest point of B (after applying the cell’s midpoint
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transformation). Given the resulting correspondences, the similarity

transformation that minimizes the sum of squared distances between

corresponding points is computed. This is done by an approach that

first computes the transformation that aligns the centroids of the

point sets, then computes the scale factor that aligns their spatial

variances, and finally computes the rotation the minimizes the sum

of squared distances. This is similar to an approach by Goshtasby

et al. (1986) and Agarwal & Phillips (2006).

Nearest neighbors are computed by storing the points of B in a kd-tree

data structure, and applying known efficient search techniques (Friedman,

Bentley & Finkel 1977, Arya, Mount, Netanyahu, Silverman & Wu 1998,

Arya & Mount 2001). Let dist+(T ) be the distance of the resulting sampled

transformation.

Lower bound. To compute the lower bound, we use a technique

presented by Mount et al. (1999), which is similar to that described by

Huttenlocher & Rucklidge (1993) and Hagedoorn & Veltkamp (1999). Given

any cell T ⊂ T , and given any point a ∈ A, consider the image of a under

every τ ∈ T .

We compute a bounding rectan-

gle enclosing this region, which we

call the uncertainty region of a rel-

ative to T . In this way, each cell is

associated with a collection of un-

certainty regions, one for each point

of A. (See Fig. 1.3. The input fea-

ture points of A are shown in white,

each transformed by the midpoint

of the transformation cell, the ref-

erence points of B are shown in

black, and the uncertainty regions

are shown as rectangles.)

Define the distance between an

uncertainty region and a point b ∈ B to be the minimum distance between b

and any part of the uncertainty region. (If b lies inside the uncertainty region,

then the distance is zero.) To derive our lower bound for T , for each point

a ∈ A, we compute the distance from the corresponding uncertainty region

to its nearest neighbor of B. Observe that this distance is a lower bound on

the distance from τ(a) to its nearest neighbor of B, for any τ ∈ T . We then
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apply the distance computation to these lower bounds. For example, for the

phd we compute the qth smallest among these nearest neighbor distances,

and for dgm we compute the match weights based on these distances. Let

dist−(T ) denote the result. Because it can never overestimate the distance

from any point of A to its closest point of B, it is a lower bound on the actual

phd or dgm distance for any τ ∈ T , and hence is indeed a lower bound for

the cell. The nearest neighbor to an uncertainty region is computed by a

straightforward generalization of the kd-tree-based nearest neighbor method

described above.

Cell processing. As mentioned above, the algorithm operates by

selecting an active cell T and processing it. Processing consists of the fol-

lowing steps. (A more detailed description is given by Mount et al. (1999).)

First, we compute the uncertainty regions for each point a and apply the

aforementioned procedures to compute the upper and lower bound distances,

dist+(T ) and dist−(T ). In the case of the phd distance we kill the cell if ei-

ther of the following two conditions hold:

dist−(T ) >
dist∗

1 + εrm
or dist−(T ) > dist∗ − εam.

The rule for dgm is the same but replacing metric error parameters with

their quantile counterparts. If dist+(T ) < dist∗, we set dist∗ ← dist+(T )

and save the associated transformation in τ∗. We then split the cell into two

smaller subcells, T1 and T2, which replace T in the set of active cells.

There are three strategies that we implemented for selecting the next cell

to be processed:

Maximum Uncertainty: (maxUn) The next cell is the active cell with

the largest average diameter of its uncertainty regions.

Minimum Upper Bound: (minUB) The next cell is the one with the

smallest upper bound.

Minimum Lower Bound: (minLB) The next cell is the one with the

smallest lower bound.

We refer to the above choices as the search priority. The maxUn method

was used by Mount et al. (1999) and the other two are new. Based on the

fact that it demonstrated the best performance in our preliminary analysis,

we used in minLB in all of our experiments.
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1.3.1 Multiresolution Registration

A common approach for improving the efficiency of image registration is

to apply a multiresolution framework. This framework has been considered

extensively in the context of image registration for remotely sensed images.

See, e.g., Cole-Rhodes et al. (2003), Netanyahu et al. (2004), and Zavorin &

Le Moigne (2005). The approach involves representing the two images at a

series of increasingly finer spatial resolutions. Feature points are extracted

from each of these images. This is followed by progressive registration of the

resulting point sets by applying the registration process from the coarsest

level to the finest. As we proceed from one level to the next, the spatial

resolution increases by a factor of two. Thus, the coarsest level involves

the greatest degree of spatial uncertainty, but also involves the smallest

number of feature points. The process begins by registering the images at

the coarse level, using a significantly wider range of transformations. The

transformation generated by our program at each stage is used as a center

point for the transformation cell at the next stage. Thus, as we proceed level

by level, the accuracy of the aligning transformation is expected to improve,

while the running time increases, due to the increased number of feature

points expected with higher resolution images.

As observed by Zavorin & Le Moigne (2005), there are a number of ad-

vantages of using a multiresolution approach compared to working solely

with the original images. It can reduce computation time by performing

much of the work at coarse resolutions, leaving minor adjustments to later

stages. Since this type of image decomposition usually involves low-frequency

smoothing, this regularizes the registration problem thus yielding better con-

vergence properties and improved accuracy of the search algorithm. Finally,

if image scales differ significantly, decomposition could be used to bring the

two images into similar scales, which may be advantageous for some regis-

tration algorithms.

1.4 Experimental Studies

In order to assess the performance of our registration algorithms, we have

implemented a number of variants and tested their performance on a com-

bination of remotely-sensed satellite imagery. The algorithms have been im-

plemented in C++ (g++ version 3.2.3), and all experiments were run on a

PC with a 2.4 GHz processor running Linux 2.4. Nearest neighbor and range

queries were performed using kd-trees as generated by the ANN library for

approximate nearest neighbor searching (Arya et al. 1998). In particular, we

were interested in studying the relative performance of:
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Distance function: dgm versus phd.

Search algorithm: pure versus ba versus blsa.

Our experiments involved satellite images that were taken from three dis-

tinct locations: Konza (Konza Prairie in State of Kansas, July to August

2001), Virginia (Virginia’s Hog Island Coast Reserve Area, October 2001),

Cascades (Cascades Mountains, September 2000). In each case the images

were taken from two satellite platforms (sensors), IKONOS (4 meters per

pixel) and ETM+ (30 meters per pixel), and involved the Red and near

infrared (NIR) spectral bands. Thus, by considering all possible combina-

tions, we have four images, denoted IKONOS-Red (IR), IKONOS-NIR (IN),

ETM+-Red (ER), and ETM+-NIR (EN), for each location, resulting in six

possible ways of pairing them for registration. Some examples are shown in

Fig. 1.1.

We tested the performance of our algorithms for both the single-pair and

multiresolution frameworks. The results of the multiresolution experiments

will be discussed in Subsection 1.4.3. In all of our experiments we consid-

ered matches under similarity transformations. Unless otherwise stated, the

transformation width allows 4◦ of rotation, 4 pixels of x- and y-translation,

and 20% of scaling. The initial cell of the search was centered at a random

point whose maximum distance from the ground truth transformation was

25% of the transformation width. For the phd we used an inlier quantile

of q = 0.5 and for dgm we used a standard deviation of σ = 1.0. In all

cases the program was allowed to execute for at most 10,000 cells, but it

usually terminated well before then. We also used the following settings for

the various error parameters:

Relative metric error: εrm = 0.1 (for both phd and dgm),

Relative quantile error: εrq = 0.2 (for both phd and dgm),

Absolute metric error: εam = 0.4 (for phd),

Absolute quantile error: εaq = 0.05 (for dgm).

Most of our experiments involve computing two measures of performance.

The first is running time, measured in CPU seconds. The second is a measure

of accuracy, called the transformation distance. This is designed to measure

how close the computed transformation is to our best estimate of “ground

truth.” We estimated the ground truth by visual inspection of the data sets

and consensus of other image registration programs combined with prior

analysis of these image (Le Moigne, Morisette, Cole-Rhoades, Netanyahu,

Eastman & Stone 2003). Examples of alignments produced for three of the

data sets under the ground truth transformation are shown in Fig. 1.1. The
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Virginia data set.

Cascades data set.

Konza data set.

Fig. 1.1. Feature point sets for Experiment 3. Pixels of input and refer-
ence images are shown, respectively, as hollow and black points. Both sets
are shown on the left, under our estimate of best aligning transformation.
Detailed figures of highlighted subimages are shown on the right.
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transformation distance of a transformation τ is defined to be the average

Euclidean distance of each point p ∈ A of the input data set from its im-

age under this transformation, τ(p), and its image under the ground truth

transformation.

1.4.1 Experiment 1: Comparison of Distance Functions

Our first experiment involves a comparison of the effectiveness of each of

the distance functions. We used the simplest of the algorithms, namely pure

branch-and-bound (pure) together with the minimum lower bound (min-

LB) search priority. We tested all six combinations of sensor-band pairs for

each of the three images. For the discrete Gaussian mismatch, we tested val-

ues of σ ∈ {0.5, 1.0, 2.0}. For each experiment, we computed both execution

time and transformation distance, and reported the average over five trials

in each case. The results are presented in Fig. 1.2.

There are a number of conclusions that can be drawn from the experi-

ments. First, increasing the standard deviation parameter σ in dgm tends

to result in faster execution times but also results in poorer performance

with respect to transformation distance. (The is most clearly seen in the

cases of Virginia and Cascades.) This is because increasing σ has the ef-

fect of making each feature point “fuzzier,” which in turn makes it easier

to localize matches but makes the algorithm less sensitive to minor errors

in placement. If we compare phd with dgm 0.5, we see that dgm takes

comparable time to compute and achieves as good or better transformation

distances than phd. In one case (Virginia IR-IN) the difference is quite dra-

matic. The problem with this data set is evident from Fig. 1.1. This data set

has a high number of distinctive features that match very well, and it has a

much lower number of outliers that do not match at all. The dgm measure

seeks to match as many points as possible, while phd is satisfied once it has

matched the given quantile of points (which was q = 0.5 in this case). We

feel that its greater degree of sensitivity to the actual number of outliers is

the principal strength of dgm. Note that many of the Konza registrations

were not successful. With the exception of IR-ER and IN-EN (both of which

involve the same spectral band) the sets of feature points between the two

images are very different.

A deeper understanding of the nature of distance functions is illustrated

in Fig. 1.3. We first computed the value of the distance function with respect

to ground truth. We then applied an additional horizontal shift of the input

set A to both the left and right and reevaluated the cost function. One

would expect the distance function to achieve a minimum at an offset of 0
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Fig. 1.2. Results of Experiment 1 comparing the various distance functions.
Relative performance, in terms of speed and accuracy, is shown as a function
of distance measures.

and then to increase on either side. The ideal shape of an objective function

is one that gradually descends towards a single, well concentrated global

minimum (at 0). The figure illustrates the challenges of doing this with

the existing images. First, observe that both distance functions for Virginia
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Fig. 1.3. Comparison of objective functions subject to a horizontal shift
relative to the ground truth transformation (at 0).

exhibit not one, but many local minima. The phd cost function is worse

(note the different vertical scales), since it exhibits multiple local minima

with identical distance values for q = 0.25 and q = 0.5. Thus, it is not

surprising that the algorithm does not distinguish among these minima and

produces an erroneous transformation. In the case of dgm, as the value of

σ increases, the local minima are smoothed out (which explains the faster

execution times) but the accuracy decreases as well. In the case of Konza,

the objective function shows a single global minimum, but the objective

function is not well concentrated for all parameter settings. Setting the σ

value too small is problematic (as seen in the case of Konza for σ = 0.1)

since there may be no transformation under which a significant number of

feature points match within the σ bound.
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1.4.2 Experiment 2: Different Sensors and Bands

Given the relatively large number of possible experimental combinations

(six pairs for registration from each of the three principal locations, for a

total of 18), in our next experiment we compared the performance of the

algorithms in all instances, in order to identify a relatively small set of

representative cases. The hypothesis on which this experiment is based, is

that the greater degree of commonality among the input images, the easier

the registration should be in terms of running time and accuracy. Because

some features are apparent only at certain spectral bands, we have noted

that in the images tested, differences in the spectral band seem to be more

significant the differences in the sensor. To test these effects, we grouped

registration pairings into the following three groups:

Case 1: Images of the same spectral band but from different sensors (IR-

ER, IN-EN),

Case 2: Images from the same sensor but from different spectral bands

(ER-EN, IR-IN),

Case 3: Images from different spectral bands and different sensors (IR-EN,

IN-ER).

For each of the three locations, we ran all six combinations of image pair-

ings. The interpretation of the labels is given below. Based on the results

of Experiment 1, we set σ = 0.5 for our experiments involving dgm, since

this almost always produced the most accurate results. Throughout we con-

sidered matching under similarity transformations and used minLB as the

search priority. We tested all three search algorithms. As before, we mea-

sured execution time and transformation distance averaged over five trials.

The results are presented in Fig. 1.4. Each plot is split into three groups;

the leftmost group corresponds to Case 1, the middle group to Case 2, and

the right group to Case 3.

The experiments show that there are similarities among the various cases.

This is most dramatically true for Konza and Cascades, where the patterns

of execution times and transformation distances are notably similar within

each group and dissimilar between groups. Among the different search al-

gorithms, pure and blsa demonstrated generally steady and predictable

performance. In contrast, ba was almost always the fastest of the algo-

rithms, but it demonstrated the highest degree of variation in the quality

of the results. In some instances (e.g., Virginia ER-EN), the ba algorithm

convincingly outperformed the optimal transformation. However, in other

instances (e.g., Virginia IR-EN and IN-ER), its performance was signifi-

cantly worse. Inspection of the individual trials showed that in two out of
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Fig. 1.4. Results of Experiment 2 comparing the performance of the algo-
rithms for various choices of sensor and spectral bands.

five trials it found the optimal transformation and in three cases it was off

by a full pixel.
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1.4.3 Experiment 3: Multiresolution Framework

For this experiment we considered the performance of the algorithm in a

multiresolution framework as described in Subsection 1.3.1. The algorithm

was applied to four different resolution levels, and in each case the output

from one level was used as the starting transformation for the next level. At

the coarsest level of resolution we used a relatively high range of transfor-

mations, allowing for 16◦ of rotation, 32 pixels of x- and y-translation, and

30% of scaling. At all the other levels the transformation width allows 6◦ of

rotation, 6 pixels of x- and y-translation, and 30% of scaling. Subsequent

levels used the more restrictive transformation ranges described at the start

of Section 1.4. Otherwise, we used the same parameter settings as in Ex-

periment 2. As always, the results were averaged over five trials, each with

a different random starting transformation. The other parameter settings

were the same as in Subsection 1.4.2. We tested three cases, Virginia IR-IN

(Case 2), Cascades IN-ER (Case 2), and Konza IR-ER (Case 1).

To determine the relative performance of our algorithms in the multireso-

lution framework, we measured execution time and transformation distance.

The results are shown in Fig. 1.5. (Note that plots are on a logarithmic scale,

and values less than 0.01 have been rounded up to 0.01.) A number of trends

are apparent from the plots. First, as expected, the running times of the al-

gorithm increase roughly exponentially with each subsequent level, since the

image sizes and, hence, number of feature points increase similarly. Also, as

expected, the transformation distances tend to decrease monotonically, since

the accuracy of the feature points is increasing. There are two notable ex-

ceptions. In the case of phd for Virginia IR-IN, the accuracy either exhibits

very little change or actually gets worse (in the case of blsa). Virginia is

known to be a hard case for phd, and this anomalous behavior reflects this

fact. In contrast, dgm does quite well in this case. Other than this anomaly,

both distance functions and all algorithms tended to perform quite similarly.

As in the previous experiment, ba is the fastest of the methods. In terms of

accuracy, it tends to be slightly worse in some instances than others.

Conclusions

In this paper we have presented a number of enhancements to a feature-based

registration algorithm introduced by Mount et al. (1999). In particular, we

have considered a new distance measure, the discrete Gaussian mismatch

(dgm), new search algorithms based on a new method (blsa) for computing

the upper bound associated with a cell, and variants for selecting the next

active cell to be processed, based on the cell’s lower or upper bounds (min-
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Fig. 1.5. Results of Experiment 3 on multiresolution registration. The units
for transformation distance are pixels at the highest level of resolution.

LB and minUB, respectively). Our experimental studies show that dgm is

almost always as good as phd, providing significant improvement in a few

difficult cases. The other innovations offer tangible improvements, but these

improvements are less pervasive and of lesser significance. Finally, we have
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demonstrated the algorithm’s efficacy in significantly more general instances

than reported by Mount et al. (1999), by considering images from different

sensors and covering various spectral bands. We have further demonstrated

the algorithm’s efficacy in both a traditional single-pair framework and in a

multiresolution framework.
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