
Computational Geometry 28 (2004) 89–112
o

om
gh
ry high
on their

that this
forming
.
ps. To

ned with

G’02),

iu.ac.il
www.elsevier.com/locate/comge

A local search approximation algorithm fork-means clustering✩

Tapas Kanungoa, David M. Mountb,∗,1, Nathan S. Netanyahuc,d, Christine D. Piatkoe,
Ruth Silvermand, Angela Y. Wuf

a IBM Almaden Research Center, San Jose, CA 95120, USA
b Department of Computer Science, University of Maryland, College Park, MD, USA

c Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
d Center for Automation Research, University of Maryland, College Park, MD, USA

e The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
f Department of Computer Science, American University, Washington, DC, USA

Available online 9 April 2004

Communicated by C. Bajaj

Abstract

In k-means clustering we are given a set ofn data points ind-dimensional space�d and an integerk, and
the problem is to determine a set ofk points in�d , calledcenters, to minimize the mean squared distance fr
each data point to its nearest center. No exact polynomial-time algorithms are known for this problem. Althou
asymptotically efficient approximation algorithms exist, these algorithms are not practical due to the ve
constant factors involved. There are many heuristics that are used in practice, but we know of no bounds
performance.

We consider the question of whether there exists a simple and practical approximation algorithm fork-means
clustering. We present a local improvement heuristic based on swapping centers in and out. We prove
yields a(9+ ε)-approximation algorithm. We present an example showing that any approach based on per
a fixed number of swaps achieves an approximation factor of at least(9 − ε) in all sufficiently high dimensions
Thus, our approximation factor is almost tight for algorithms based on performing a fixed number of swa
establish the practical value of the heuristic, we present an empirical study that shows that, when combi
Lloyd’s algorithm, this heuristic performs quite well in practice.
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1. Introduction

Clustering problems arise in many different applications, including data mining and know
discovery [15], data compression and vector quantization [19], and pattern recognition and
classification [11]. There are many approaches, including splitting and merging methods s
ISODATA [6,21], randomized approaches suchas CLARA [25] and CLARANS[34], and methods base
on neural nets [27]. Further information on clustering and clustering algorithms can be found in
23,25]. One of the most popular and widely studied clustering methods for points in Euclidean
is calledk-means clustering. Given a setP of n data pointsin real d-dimensional space�d , and an
integerk, the problem is to determine a set ofk points in �d , calledcenters, to minimize the mean
squared Euclidean distance from each data point to its nearest center. This measure is often c
squared-error distortion[19,21]. Clustering based onk-means is closely related to a number of ot
clustering and facility location problems. These include the Euclideank-median[3,28] and theWeber
problem[42], in which the objective is to minimize the sum of distances to the nearest center, a
Euclideank-center problem[13,39], in which the objective is to minimize the maximum distance. Th
are no efficient exact solutions known to any of these problems for generalk, and some formulations ar
NP-hard [18].

Given the apparent difficulty of solving thek-means and other clustering and location problems
actly, it is natural to consider approximation, either through polynomial-time approximation algor
which provide guarantees on the quality of their results, or heuristics, which make no guarante
of the most popular heuristics for thek-means problem isLloyd’s algorithm[17,30,31], which is often
called thek-means algorithm. Define theneighborhoodof a center point to be the set of data points
which this center is the closest. It is easy to prove that any locally minimal solution must becentroidal,
meaning that each center lies at the centroid of its neighborhood [10,14]. Lloyd’s algorithm star
any feasible solution, and it repeatedly computes the neighborhood of each center and then m
center to the centroid of its neighborhood, until some convergence criterion is satisfied. It can be
that Lloyd’s algorithm eventually converges to a locally optimal solution [38]. Computing nearest n
bors is the most expensive step in Lloyd’s algorithm, but a number of practical implementations
algorithm have been discovered recently [2,24,35–37].

Unfortunately, it is easy to construct situations in which Lloyd’s algorithm converges to a
minimum that is arbitrarily bad compared to the optimal solution. Such an example is shown in Fig
k = 3 and wherex < y < z. The optimal distortion isx2/4, but it is easy to verify that the solution show
at the bottom is centroidal and has a distortion ofy2/4. By increasing the ratioy/x the approximation
ratio for Lloyd’s algorithm can be made arbitrarily high. There are many other heuristics fork-means

Fig. 1. Lloyd’s algorithm can produce an arbitrarily high approximation ratio.
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clustering, based on methods such as branch-and-bound searching, gradient descent, simulated annealing,
and genetic algorithms [7,12,41]. No proven approximation bounds are known for these methods.

It is desirable to have some bounds on the quality of a heuristic. Given a constantc � 1, a
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c-approximation algorithm(for a minimization problem) produces a solution that is at most a facc
larger than the optimal solution. There is a classical tradeoff between approximation factors and
times. Some clustering algorithms are able to produce solutions that are arbitrarily close to optim
includes(1+ ε)-approximation algorithms for the Euclideank-median problem by Arora, Raghavan a
Rao [3] and by Kolliopoulos and Rao [28]. The latter achieves a running time of O(21/εd

n logn logk),
assuming that the dimensiond is fixed. It is based on applying dynamic programming to an adap
hierarchical decomposition of space. Another example is the(1 + ε)-approximation algorithm for the
Euclideank-center problem given by Agarwal and Procopiuc, which runs in O(n logk) + (k/ε)O(k1−1/d)

time [1].
Matoušek [32] achieved an important breakthrough by presenting an asymptotically efficient(1+ ε)-

approximation algorithm fork-means clustering, which runs in O(n(logn)kε−2k2d) time for fixed k

andd. First, Matoušek shows how to compute a set of O(nε−d log(1/ε)) candidate centers, called a
ε-approximate centroid set, from which an approximately optimal solution may be drawn. He then sh
that a near-optimal solution may be assumed to consist of awell-spreadk-tuple, which intuitively means
that no subset of thek-tuple is strongly isolated relative to the other points. Finally, he proves that g
a set ofm points, there are O(mε−k2d) such well-spread sets. The algorithm generates all these t
and returns thek-tuple with the minimum distortion. Unfortunately, the constant factors are well be
practical ranges unlessd andk are very small. In Section 4, we show that, under reasonable assum
about the way in which the candidate centers are chosen (which Matoušek’s algorithm satisfi
number of well-spreadk-tuples that the algorithm generates is at least(2/ε)k. In typical applications,k
may range from tens to hundreds, and so this is well beyond practical limits. The dynamic progra
approximation algorithm presented by Kolliopoulos and Rao for thek-median problem [28] is also
candidate for modification, but also suffers from similarly large constant factors.

Another common approach in approximation algorithms is to develop much more practical, e
algorithms having weaker, but still constant, approximation factors. This includes the work of Tho
solving location problems in sparse graphs [40] and by Mettu and Plaxton [33] on the use of suc
swapping for the metrick-means problem. The most closely related work to our own are the r
approximation algorithms for the metrick-median problem by Korupolu, Plaxton and Rajaraman [2
Charikar and Guha [9], and Arya et al. [5]. These algorithms are based onlocal search, that is, by
incrementally improving a feasible solution by swapping a small number of points in and out
solution set.

In this paper we present such an approximation algorithm fork-means based on a simple swapp
process. In Section 2 we derive an approximation ratio of 9+ ε for the heuristic. Our approach is bas
on the heuristic fork-medians presented by Arya et al. [5]. However, due to the different natu
the k-means problem, the analysis is different and relies on geometric properties that are parti
the k-means problem. In Section 3 we show that this bound is essentially tight for the class o
search algorithms that are based on performing a constant number of swaps. In particular, we
an example showing that any approach based on performing a fixed number of swaps cannot ac
approximation factor of better than(9− ε) in all sufficiently high dimensions.
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Approximation factors as high as 9 are of little practical value. Nonetheless, we believe that a
combination of local search and existing approaches results in a practical approximation algorithm with
performance guarantees. In Section 5 we present a hybrid approximation algorithm based on combining
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local search with Lloyd’s algorithm. We provide empirical evidence that this hybrid algorithm pro
results that are as good or better than Lloyd’s algorithm, both in terms of distortion and running ti

2. The local search algorithm

Givenu, v ∈ �d , let ∆(u, v) denote the squared Euclidean distance between these points, that i

∆(u, v) = dist2(u, v) =
d∑

i=1

(ui − vi)
2 = (u − v) · (u − v),

whereu · v denotes the dot product of vectorsu andv. Given a finite setS ⊂ �d , define itsdistortion
relative to any pointv to be∆(S, v) = ∑

u∈S ∆(u, v).
Consider a setP of n data pointsin �d and an integerk. Given any setS of k points, for anyq ∈ �d

definesq to be the closest point ofS to q. Our goal is to compute thek-element point setS that minimizes
the totaldistortionof S relative toP , defined as

∆P (S) =
∑
q∈P

∆(q, sq).

WhenP is understood, we will refer to this simply as∆(S).
The principal difficulty in extending existing approaches for the metrick-medians problem tok-means

is that squared distances do not define a metric, and in particular they do not satisfy the triangle ine
which states that for any pointsu, v and w, dist(u,w) � dist(u, v) + dist(v,w). When considering
squared distances we have

∆(u,w) �
(
dist(u, v) + dist(v,w)

)2

= dist2(u, v) + 2dist(u, v)dist(v,w) + dist2(v,w)

� ∆(u, v) + ∆(v,w) + 2dist(u, v)dist(v,w).

The final product term can be bounded by observing that 2ab � a2 + b2, for anya andb. Hence we have
the followingdoubled triangle inequality:

∆(u,w) � 2
(
∆(u, v) + ∆(v,w)

)
.

One obvious idea for producing a local improvement heuristic fork-means would be to generaliz
the methods of Arya et al. [5] for the metrick-median problem using this doubled triangle inequa
Unfortunately, this does not seem to work because their analysis relies crucially on the triangle ine
In particular, a cancellation of terms that arises in their analysis fails to hold when the triangle ine
is doubled.

Our approach is based on two ideas. The first is the introduction of an alternative to the t
inequality, which, unlike the doubled triangle inequality is sensitive to the ratio of the optima
heuristic solution (see Lemma 2.3 below). The second is based on the well-known fact that the
solution is centroidal (see [10]). LetNS(s) denote the neighborhood ofs, that is, the set of data poin
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that are closer tos than to any point inS. By treating points as vectors, the centroidal property implies
that
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s = |NS(s)|
u∈NS(s)

u.

An important property of centroidal solutions is presented in the following lemma. It states th
the purposes of computing distortions, a set of points may be treated like a point mass centered
centroid. It follows from a straightforward manipulation of the definition of distortion, but we includ
proof for completeness.

Lemma 2.1. Given a finite subsetS of points in�d , let c be the centroid ofS. Then for anyc′ ∈ �d ,
∆(S, c′) = ∆(S, c) + |S|∆(c, c′).

Proof. By expanding the definition of∆(S, c′) we have

∆(S, c′) =
∑
u∈S

∆(u, c′) =
∑
u∈S

(u − c′) · (u − c′)

=
∑
u∈S

(
(u − c) + (c − c′)

) · ((u − c) + (c − c′)
)

=
∑
u∈S

(
(u − c) · (u − c)

) + 2
(
(u − c) · (c − c′)

) + (
(c − c′) · (c − c′)

)

= ∆(S, c) + 2

(
(c − c′) ·

∑
u∈S

(u − c)

)
+ |S|((c − c′) · (c − c′)

)
= ∆(S, c) + |S|∆(c, c′).

The last step follows from the fact that ifc is S ’s centroid then
∑

u∈S(u − c) is the zero vector. �
2.1. The single-swap heuristic

To illustrate our method, we first present a simple local search that provides a(25+ ε)-approximation
to thek-means problem. Our approach is similar to approaches used in other local search heuri
facility location andk-medians by Charikar and Guha [9] and Arya et al. [5].

In the statement of thek-means problem, the centers may be placed anywhere in space. In o
apply our local improvement search, we need to assume that we are given a discrete set ofcandidate
centersC from whichk centers may be chosen. As mentioned above, Matoušek [32] showed thatC may
be taken to be anε-approximate centroid set of size O(nε−d log(1/ε)), which can be computed in tim
O(n logn + nε−d log(1/ε)). Henceforth, when we use the term “optimal”, we mean thek-element subse
of C having the lowest distortion.

This single-swap heuristicoperates by selecting an initial set ofk centersS from the candidate
centersC, and then it repeatedly attempts to improve the solution by removing one centers ∈ S and
replacing it with another centers′ ∈ C − S. Let S ′ = S − {s} ∪ {s′} be the new set of centers. If th
modified solution has lower distortion, thenS ′ replacesS, and otherwiseS is unchanged. In practice th
process is repeated until some long consecutive run of swaps have been performed with no si
decrease in the distortion. By extension of standard results [5,9] it can be shown that by sacri
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small factorε > 0 in the approximation ratio, we can guarantee that this procedure converges after a
polynomial number of swaps.

For simplicity, we will assume that the algorithm terminates when no single swap results in a decrease
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in distortion. Such a set of centers is said to be 1-stable. LettingO denote an optimal set ofk centers, a
setS of k centers is 1-stable then we have

∆
(
S − {s} ∪ {o}) � ∆(S) for all s ∈ S, o ∈ O. (1)

(In fact this is true no matter whatO is, but our analysis only relies on this weaker property.) Using
along with the fact that the optimal solution is centroidal, we will establish the main result of this se
which is stated below.

Theorem 2.1. Let S denote a1-stable set ofk centers, and letO denote the optimal set ofk centers.
Then∆(S) � 25∆(O).

Note that the actual approximation bound is larger by someε > 0, due to the errors induced by usi
a discrete set of candidate centersC and the approximate convergence criterion described above
analysis is similar in structure to that given by Arya et al. [5], but there are two significant differe
The first is that our notion of capturing a center is different from theirs, and is based on the dista
the closest center, rather than on the numbers of data points assigned to a center. The second is
permutation functionπ is not needed in our case, and instead we rely on the centroidal properties
optimal solution.

For each optimal centero ∈ O, let so denote its closest heuristic center inS. We say thato is captured
by so. Note that each optimal center is captured by exactly one heuristic center, but each heuristi
may capture any number of optimal centers. We say that a heuristic center islonely if it captures no
optimal center. The analysis is based on constructing a set ofswap pairs, considering the total change
distortion that results, and then apply Eq. (1) above to bound the overall change in distortion.

We begin by defining a simultaneous partition of the heuristic centers and optimal centers into t
of groupsS1, S2, . . . , Sr andO1,O2, . . . ,Or for somer , such that|Si| = |Oi| for all i. For each heuristic
centers that captures some numberm � 1 of optimal centers, we form a group ofm optimal centers
consisting of these captured centers. The corresponding group of heuristic centers consists ofs together
with anym − 1 lonely heuristic centers. (See Fig. 2.)

We generate the swap pairs as follows. For every partition that involves one captured cen
generate a swap pair consisting of the heuristic center and its captured center. For every p
containing two or more captured centers we generate swap pairs between the lonely heuristic

Fig. 2. Partitioning of the heuristic and optimal centers for analysis and the swap pairs. On the left, edges represent the
relation, and on the right they represent swap pairs.
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and the optimal centers, so that each optimal center is involved in exactly one swap pair and each lonely
center is involved in at most two swap pairs. It is easy to verify that:

)
e

gnment

ce, and
lways
ll

st twice
(1) each optimal center is swapped in exactly once,
(2) each heuristic center is swapped out at most twice, and
(3) if s ando are swapped, thens does not capture any optimal center other thano.

We establish an upper bound on the change in distortion resulting from any such swap pair〈s, o〉 by
prescribing a feasible (but not necessarily optimal) assignment of data points to the centersS −{s} ∪ {o}.
First, the data points inNO(o) are assigned too, implying a change in distortion of∑

q∈NO(o)

(
∆(q, o) − ∆(q, sq)

)
. (2)

Each pointq ∈ NS(s)\NO(o) has losts as a center and must bereassignedto a new center. Letoq denote
the closest optimal center toq. Sinceq is not inNO(o) we know thatoq 	= o, and hence by property (3
aboves does not captureoq . Therefore,soq

, the nearest heuristic center tooq , exists after the swap. W
assignq to soq

. Thus the change in distortion due to this reassignment is at most∑
q∈NS(s)\NO(o)

(
∆(q, soq

) − ∆(q, s)
)
. (3)

By combining over all swap pairs the change in distortion due to optimal assignment and reassi
together with Eq. (1) we obtain the following.

Lemma 2.2. LetS be a1-stable set ofk centers, and letO be an optimal set ofk centers, then

0 � ∆(O) − 3∆(S) + 2R,

whereR = ∑
q∈P ∆(q, soq

).

Proof. Consider just the swap pair〈s, o〉. By Eqs. (2) and (3) and the fact thatS is 1-stable we have∑
q∈NO(o)

(
∆(q, o) − ∆(q, sq)

) +
∑

q∈NS(s)\NO(o)

(
∆(q, soq

) − ∆(q, s)
)
� 0.

To bound the sum over all swap pairs, we recall that each optimal center is swapped in exactly on
hence each pointq contributes once to the first sum. Note that the quantity in the second sum is a
nonnegative (becausesoq

∈ S ands is the closest center inS to q). Hence by extending the sum to a
q ∈ NS(s) we can only increase its value. Recalling that each heuristic center is swapped in at mo
we have

0�
∑
q∈P

(
∆(q, oq) − ∆(q, sq)

) + 2
∑
q∈P

(
∆(q, soq

) − ∆(q, sq)
)
,

0�
∑
q∈P

∆(q, oq) − 3
∑
q∈P

∆(q, sq) + 2
∑
q∈P

∆(q, soq
),

0� ∆(O) − 3∆(S) + 2R,

from which the desired conclusion follows.�
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The termR above is called thetotal reassignment cost. By applying Lemma 2.1 to each optimal
neighborhood, we have∑ ∑ ∑ ( )
R =
o∈O q∈NO(o)

∆(q, so) =
o∈O

∆ NO(o), so

=
∑
o∈O

(
∆

(
NO(o), o

) + ∣∣No(O)
∣∣∆(o, so)

) =
∑
o∈O

∑
q∈NO(o)

(
∆(q, o) + ∆(o, so)

)
.

Becauseso is the closest heuristic center too, for eachq ∈ NO(o), we have∆(o, so) � ∆(o, sq). This
yields

R �
∑
o∈O

∑
q∈NO(o)

(
∆(q, o) + ∆(o, sq)

) =
∑
q∈P

(
∆(q, oq) + ∆(oq, sq)

)
.

By applying the triangle inequality and expanding we obtain

R �
∑
q∈P

∆(q, oq) +
∑
q∈P

(
dist(oq, q) + dist(q, sq)

)2

=
∑
q∈P

∆(q, oq) +
∑
q∈P

(
dist2(oq, q) + 2dist(oq, q)dist(q, sq) + dist2(q, sq)

)
= 2

∑
q∈P

∆(q, oq) +
∑
q∈P

∆(q, sq) + 2
∑
q∈P

dist(q, oq)dist(q, sq)

= 2∆(O) + ∆(S) + 2
∑
q∈P

dist(q, oq)dist(q, sq).

To bound the last term we will apply the following technical lemma.

Lemma 2.3. Let〈oi〉 and〈si〉 be two sequences of reals, such thatα2 = (
∑

i s
2
i )/(

∑
i o

2
i ), for someα > 0.

Then
n∑

i=1

oisi � 1

α

n∑
i=1

s2
i .

Proof. By Schwarz’s inequality [16] we have

n∑
i=1

oisi �
(

n∑
i=1

o2
i

)1/2( n∑
i=1

s2
i

)1/2

=
(

1

α2

n∑
i=1

s2
i

)1/2( n∑
i=1

s2
i

)1/2

= 1

α

n∑
i=1

s2
i ,

as desired. �
To complete the analysis, let theoi sequence consist of dist(q, oq) over all q ∈ P , and let thesi

sequence consist of dist(q, sq). Let α denote the square root of the approximation ratio, so that

α2 = ∆(S)

∆(O)
=

∑
q∈P dist2(q, sq)∑
q∈P dist2(q, oq)

=
∑n

i=1 s2
i∑n

i=1 o2
i

.
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By applying Lemma 2.3 we have

R � 2∆(O) + ∆(S) + 2

α

∑
dist2(q, sq) = 2∆(O) + ∆(S) + 2

α
∆(S) = 2∆(O) +

(
1+ 2

α

)
∆(S).
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q∈P

Now we combine this with Lemma 2.2, yielding

0� ∆(O) − 3∆(S) + 2

(
2∆(O) +

(
1+ 2

α

)
∆(S)

)

� 5∆(O) −
(

1− 4

α

)
∆(S). (4)

Through simple rearrangements we can express this in terms ofα alone:

5

1− 4/α
� ∆(S)

∆(O)
= α2,

5� α2

(
1− 4

α

)
,

0� α2 − 4α − 5 = (α − 5)(α + 1).

This implies thatα � 5, and hence the approximation ratio of the simple heuristic is bounded byα2 � 25.
This completes the proof of Theorem 2.1.

2.2. The multiple-swap heuristic

We generalize the single-swap approach to provide a factor 9+ ε approximation ratio. Rather tha
swapping a single pair of points at any time, for some integerp, we consider simultaneous swaps betw
any subset ofS of sizep′ � p with anyp′-element subset of candidate centers. Otherwise the algo
is the same. We say that a set of centers isp-stable if no simultaneous swap ofp elements decrease
the distortion. Our main result is given below. As before, there is an additionalε term in the final error
because of the use of the discrete candidate centers and the approximate convergence condition

Theorem 2.2. Let S denote ap-stable set ofk centers, and letO denote the optimal set ofk centers.
Then∆(S) � (3+ 2

p
)2∆(O).

Again our approach is similar to that of Arya et al. [5], but using our different notion of capturing
define our swaps as follows. Recall the simultaneous partitions of heuristic and optimal centers
the simple heuristic. If for somei, |Si| = |Oi| � p, then we create a simultaneous swap involving the
Si andOi . Otherwise, if|Si| = |Oi| = m > p, then for each of them− 1 lonely centers ofSi we generate
individual 1-for-1 swaps with allm optimal centers ofOi . For the purposes of the analysis, the cha
in distortion due to each of these 1-for-1 swaps is weighted by a multiplicative factor of 1/(m − 1). (For
example, Fig. 3 shows the swaps that would result from Fig. 2 forp = 3. The swaps appearing in shad
boxes are performed simultaneously. The 1-for-1 swaps performed betweenS1 andO1 are each weighte
by 1/4.)

It is easy to verify that: (1) each optimal center is swapped in with total weight 1, (2) each he
center is swapped out with weight at most 1+1/p, and (3) if setsS ′ andO ′ are swapped, thenS ′ captures
no optimal centers outside ofO ′.
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Fig. 3. Swaps forp = 3. Shaded regions indicate swaps that are performed simultaneously.

The analysis proceeds in the same manner as the simple case. Because of the replacement of
2 with (1+ 1/p), the inequalities in the proof of Lemma 2.2 now become

0�
∑
q∈P

(
∆(q, oq) − ∆(q, sq)

) +
(

1+ 1

p

)∑
q∈P

(
∆(q, soq

) − ∆(q, sq)
)
,

0� ∆(O) −
(

2+ 1

p

)
∆(S) +

(
1+ 1

p

)
R.

The analysis and the definition ofα proceed as before, and Eq. (4) becomes

0� ∆(O) −
(

2+ 1

p

)
∆(S) +

(
1+ 1

p

)(
2∆(O) +

(
1+ 2

α

)
∆(S)

)

�
(

3+ 2

p

)
∆(O) −

(
1− 2

α

(
1+ 1

p

))
∆(S).

Again, by rearranging and expressing in terms ofα we have

3+ (2/p)

1− (2/α)(1+ 1/p)
� ∆(S)

∆(O)
= α2,

0� α2 − 2α

(
1+ 1

p

)
−

(
3+ 2

p

)
�

(
α −

(
3+ 2

p

))
(α + 1).

This implies thatα � 3 + 2/p, and hence the approximation ratio of the general heuristic isα2, which
approaches 9 asp increases.

3. A tight example

It is natural to ask whether the factor 9 is the correct approximation factor for swap-based heu
or whether it arises from some slackness in our analysis. In this section we provide evidence tha
probably close to the correct factor assuming an algorithm based on performing a fixed number o
We show that for anyp, there is a configuration of points in a sufficiently high dimensional space
that thep-swap heuristic achieves a distortion that is(9 − ε) times optimal. This example has the ni
property that it is centroidal. This implies that it is also a local minimum for Lloyd’s algorithm. H
neither the swap heuristic (assuming swaps with optimal centers) nor Lloyd’s algorithm would b
to make further progress. We make the assumption that centers may only be placed at a given
set of candidate locations. This candidate set is reasonable in that it contains anε-approximately optima
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solution. Overcoming this assumption would imply that the entire analysis method would somehow need
to be generalized to handle swaps with points other than the optimal centers.

Arya et al. [5] presented a tight example for their heuristic in a metric space. However, their example
e placed

,
logical
ed
its grid

al.

sider a
a

See

he

centers,
cannot be embedded in Euclidean space of any dimension and does not even allow centers to b
at data points. Our approach is quite different.

Theorem 3.1. Givenp andε > 0, there exists an integerk, a dimensiond, a finite set of pointsP ∈ �d ,
a finite set of candidate centersC, and a setS ⊆ C of k centers, such that the following hold:

(i) C contains anε-approximately optimal solution.
(ii) S is p-stable.

(iii) ∆(S) � (9− ε)∆(O), whereO is the optimalk-means solution.

In the rest of this section we provide a proof of this theorem. Letd (dimension) andN be even
integer parameters to be specified later. Our framework consists of a larged-dimensional integer grid
G = {0,1, . . . ,N − 1}d . To avoid messy boundary issues, we may assume that the grid is a topo
d-dimensional torus, by taking indices moduloN . ForN sufficiently large, this torus may be embedd
in (d + 1)-space, so that distances from each embedded grid point to the embedded image of
neighbors are arbitrarily close to 1. Thus the local neighborhoods of all the grid points are identic

The grid points ared-dimensional integer vectors, where each coordinate is in{0,1, . . . ,N − 1}. The
points of G are labeled even or odd, depending on the parity of the sum of coordinates. Con
parameterx, 0 < x < 1/2, to be fixed later. LetT (x) be the following set of 2d points displaced at
distance+x and−x from the origin along each of the coordinate axes:

(±x,0,0, . . . ,0), (0,±x,0, . . . ,0), . . . , (0,0,0, . . . ,±x).

The data setP consists of the union of translates ofT (x) each centered about an even grid point. (
Fig. 4.) Thus,n = dNd . We setk = n/(2d). It is easy to see that the optimal solutionO consists ofk
centers placed at the even grid points. The neighborhood of each center ofO consists of 2d points, each
at distancex. Consider a solutionS consisting ofk points placed at each of the odd grid points. T
neighborhood of each point ofS consists of 2d points at distance 1− x.

Fig. 4. Example of the lower bound in the plane. Black circles are the data points, hollow circles denote the optimal
and crosses denote the heuristic centers.
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Each optimal center has a neighborhood of 2d points at distancex, and each heuristic center has a
neighborhood of 2d points at distance(1− x). Thus we have
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We argue below that by choosingx = 1/(4− p/d), nop-swap involving points ofS andC can improve
the distortion. By makingd sufficiently large relative top, this implies that the approximation ratio
arbitrarily close to(3/4)2/(1/4)2 = 9, as desired.

To show that nop-way swap improves the distortion, consider any simultaneous swap be
two p-element subsetsS ′ and O ′ of heuristic and optimal centers, respectively. Because the op
neighborhoods are disjoint and each contains 2d points, the change in distortion due to assigning th
points to their new optimal center is

2dp
(
x2 − (1− x)2) = 2dp(2x − 1).

No other points are assigned to a closer center.
Now consider the 2dp neighbors of heuristic centers that have now been removed. These data

must be reassigned to the nearest existing center. After performing the swap, there are at mostp2 pairs
〈s, o〉, wheres ∈ S ando ∈ O, such thats ando are adjacent to each other in the grid. For these po
no additional reassignment is needed because the point has been moved to its optimal center
remaining neighbors of the heuristic centers, of which there are at least 2dp − p2, we need to reassig
each to a new center. The closest such center is at distance

√
1+ x2. Hence the change in distortion d

to reassignment is at least

(2dp − p2)
(
(1+ x2) − (1− x)2) = 2dp

(
1− p

2d

)
2x.

Combining these two, the total change in distortion is at least

2dp

(
2x − 1+

(
1− p

2d

)
2x

)
= 2dp

((
2− p

2d

)
2x − 1

)
.

This is nonnegative if we setx = 1/(4− p/d), and hence thep-swap heuristic cannot make progress
this example. This establishes Theorem 3.1.

4. Analysis of well-spread k-tuples

In the introduction we pointed out that Matoušek presented an asymptotically efficientε-approximation
to thek-means problem, under the assumption thatk, d andε are fixed constants [32]. Although this
a very important theoretical result, the constant factors arising in this algorithm are too large to
practical value, unlessk is very small. This raises the question of whether these large constant facto
merely an artifact of the analysis, or whether they are, in some sense, an inescapable conseque
approach. In this section, we will argue that the latter is the case.

Let us begin with an overview of the essential elements of Matoušek’s algorithm. First, recall
set of candidate centers is called anε-approximate centroid setif, by restricting the selection of cente
to this set, the average distortion is larger by a factor of at most(1 + ε). Matoušek shows that givenn
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points in�d , such a set of sizem = O(nε−d log(1/ε)) can be computed efficiently. Given such a set the
algorithm proceeds by selecting a judicious subset ofk-tuples from these candidate points, and argues
that one of these subsets provides the desired approximate solution to thek-means problem. Given a real
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numberr and two point setsY ⊂ X, the setY is r-isolatedin X if every point inX \ Y is at distance a
leastr ·diam(Y ) from Y . A setX is ε-well-spreadif there is no proper subset ofX of two or more points
that is (1/ε)-isolated inX. Matoušek shows that, given a set ofm points in�d , an ε-well-spread se
of k-tuples of size O(mε−k2d) can be computed efficiently, and that restricting attention to suchk-tuples
produces anε-approximation. Applying this procedure to the set of candidate points produces the d
approximation.

Of course, the constant factors suggested above are well beyond the bounds of practicality, bu
smaller set suffice? We will prove a lower bound on the number of well-spreadk-tuples that would nee
to be generated in order to guarantee a relative error ofε. Our analysis is based on alocality assumption
that the choice of candidate centers is based only on the local distribution of the points, and
knowledge of which cluster each point belongs to in an optimal clustering. This assumption is s
by any reasonable selection algorithm, including Matoušek’s algorithm.

Theorem 4.1. There exists a configuration of points in the plane, such that ifε � 1/(3
√

k ), the number
of well-spreadk-tuples that need to be tested by Matoušek’s algorithm is at least(2/ε)k.

Our approach is to present a configuration of points in the plane and argue that, in order to ac
relative error that is less thanε, the points of the candidate centroid set must be sampled with a c
minimum density. This in turn provides a lower bound on the size of the candidate centroid set,
the number of well-spreadk-tuples.

Our analysis assumes thatk is a perfect square and that the points lie in a 2-dimensional square do
of size

√
k×√

k, which is subdivided into a grid ofk pairwise disjoint unit squares. (See Fig. 5(a).) Po
are distributed identically within each of these squares. Consider any unit square. LetT be a closed squar
of side length 1/7 centered at the midpoint of the unit square. (The factor 1/7 is rather arbitrary, and onl
affects the constant factor in the analysis. We assume this value is independent ofε.) The points of this
unit square are placed uniformly along the boundary of a squareS of side length 5/7 that is centered a
an arbitrary point ofz within T . (See Fig. 5(b).) It is easy to see that for largen, the optimalk-means
solution involves placing one center in each unit square at the center pointz.

Fig. 5. Analysis of the number of well-spreadk-tuples.
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For the purposes of producing a lower bound, it suffices to limit consideration to candidate points lying
within T . By our locality assumption, the candidate selection algorithm cannot know the location of the
optimum center, and, since the distribution of points surroundingT looks about the same to every point
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of T , the candidate selection process can do no better than select points uniformly throughoutT . Let us
assume that the candidate pointsC are taken to be the vertices of a square grid of side lengthx, where
the value ofx will be derived below. See Fig. 5(c). (The exact pattern of candidates is not importa
our proof, only the assumption of uniformity.) By adjusting the location ofz within T , we can placez so
that the closest candidate centerz′ to z is at a squared distance of 2(x/2)2 = x2/2 from z. By applying
Lemma 2.1 (wherez plays the role ofc, andz′ plays the role ofc′), it follows that the absolute increase
the average squared distortion is equal to the squared distance betweenz andz′, which isx2/2. To derive
the relative error, we first need to compute the expected optimal average distortion. Since the po
uniformly distributed alongS ’s boundary, and assuming thatn is large, we can estimate this by integrati
the squared distance from each point on the boundary ofS to the center ofS. Straightforward calculation
show this to be(4/3)(5/14)2 � 1/4. Therefore, in order to achieve a relative approximation error ofε, we
require thatx2/2 � ε/4, that is,x �

√
ε/2. From this it follows that the number of candidate points inT

must be at least 1/x2 = 2/ε. (This lower bound is much smaller than Matoušek’s upper bound bec
our assumption that points are uniformly distributed allows us to ignoren altogether.)

Now, consider anyk-tuple formed by selecting any one candidate from each of the candidate s
the unit squares. We claim that each such set isε-well-spread, for all sufficiently smallε. The closest
that two candidate points can be is 6/7, and the farthest they can be is at most 2

√
k. Thus any subse

of two or more points has a diameter of at least 6/7, and the next closest point is at most a distanc
2
√

k away. It follows that if(2
√

k ) � 6/(7ε), any suchk-tuple isε-well-spread. This is satisfied give
our hypothesis thatε � 1/(3

√
k ). Thus, the number of suchk-tuples that the algorithm needs to test,

order to guarantee anε relative error in the average distortion for this 2-dimensional example is at
(2/ε)k . This completes the proof.

5. Experimental results

Given the relatively high approximation factors involved and the tight example, an important qu
is whether the swap-based heuristics perform well enough to be of practical value. In this sec
argue that indeed these heuristics can be of significant value, especially if applied in conjunction
locally optimal heuristic such as Lloyd’s algorithm.

It is quite easy to see why such a merger is profitable. As mentioned earlier, Lloyd’s can ge
in local minima. One common approach for dealing with this is to run this algorithm repeatedly
different random starting sets. In contrast, the swap heuristic is capable of moving out of a
minimum, but it may take very long to move near to a local minimum. By alternating between th
methods, we have a simple heuristic that takes advantage of both methods’ strengths. This is s
spirit to methods based on simulated annealing [26], but without the complexities of defining temp
schedules and with the advantage of provable performance guarantees.

Our implementation of the swap heuristic differs from the description in this paper in a c
of respects. First, we sampled pairs for swapping randomly, rather than applying some sys
enumeration. This allows the heuristic to be terminated at any point. Also, rather than performp

swaps simultaneously, our heuristic performs swaps one by one. After each individual swap, we c
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the change in distortion. If the distortion decreases after any one swap, we stop immediately, without
completing the full sequence ofp swaps. This was done so that any improvement that arises from a swap
is not undone by a subsequent swap.
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One other difference involves the selection of candidate centers. We did not explicitly con
an ε-approximate centroid set as in Matoušek’s algorithm [32]. Since the size of such a
O(ε−dn log(1/ε)), storing such a set in higher dimensions is not practical. Instead, we impleme
procedure that is designed to simulate Matoušek’s scheme but samples candidate centers on dem
original points are stored in a kd-tree, in which each leaf node contains one data point. Each nod
tree is associated with an axis-aligned hyper-rectangle, called itscell, which contains all the descende
data points. We generate a node of the tree at random. If this is a leaf node, we sample the as
point that is stored in this node. If this is an internal node, we consider the factor-3 expansion of
and sample a point uniformly at random from this expanded cell. In this way, about half the can
points are sampled randomly from the data set (when a leaf node is sampled), and otherwise the
points in�d .

For purposes of comparison, we also implemented a common variant of Lloyd’s algorithm,
iterated Lloyd’s. In this heuristic, centers are chosen randomly, and some number of stages of L
algorithm are performed. Recall that each stage consists of computing the neighborhood of eac
point, and then moving each center point to the centroid of its neighborhood. Stages are repea
the following convergence condition is satisfied: over three consecutive stages, the average d
decreases by less than 10%. We call such a sequence of stages arun. After each run, a new random s
of centers is generated and the process is repeated until the total number of stages exceeds a pr
bound. The centers producing the best distortion are saved.

Finally, we implemented ahybrid heuristic, which is combination of the swap heuristic with iterat
Lloyd’s algorithm. This heuristic augments the swap step by first applying one step of the swap h
and then follows this with one run of Lloyd’s algorithm, as described in the previous paragraph.

The programs were written in C++, compiled with g++, and run on a Sun Ultra 5 workstation
considered the following two synthetic distributions.

ClusGauss:The data consist ofn = 10,000 points in�3, which were generated from a distributio
consisting ofk clusters of roughly equal sizes, with centers uniformly distributed in a cube o
length 2. The points of each cluster are drawn from a multivariate Gaussian distribution ce
at the cluster center, where each coordinate has a given standard deviationσ . We considered
k ∈ {25,50,100}, andσ = 0.05.

MultiClus: The data consist ofn = 10,000 points in�3, which were generated from a distributio
consisting ofk multivariate Gaussian clusters of various sizes and standard deviations.
cluster centers were sampled uniformly from a cube of side length 2. The cluster siz
powers of 2. The probability of generating a cluster of size 2i is 1/2i . The coordinate standar
deviation for a cluster of sizem is 0.05/

√
m, implying that each cluster has roughly the sa

total distortion. We consideredk ∈ {50,100,500}.

The MultiClus distribution was designed to be a adversary for clustering methods based on
random sampling. Because most of the points belong to a constant number of the clusters,
sampling will tend to pick most of the centers from these relatively few clusters.
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We also ran experiments on the following data sets taken from standard applications ofk-means in
vector quantization and pattern classification.

ector
e
na44
. We

ndom
ts in

ta set
first
ly 0’s).
ion 54.

e sake
s. Each
the set
the

uted the
for all
ta points

es.

n each
shown in

iterated
oyd’s
ch run
ed and

stages
s. Since
r only

od does
rough
hod and
yd’s
erforms
Lena22 and Lena44:These were taken from an application in image compression through v
quantization. The data were generated by partitioning a 512× 512 gray-scale Lena imag
into 65,536 2× 2 tiles. Each tile is treated as a point in a 4-dimensional space. Le
was generated using 4× 4 tiles, thus generating 16,384 points in 16-dimensional space
consideredk ∈ {8,64,256}.

Kiss: This is from a color quantization application. 10,000 RGB pixel values were sampled at ra
from a color image of a painting “The Kiss” by Gustav Klimt. This resulted in 10,000 poin
3-space. We consideredk ∈ {8,64,256}.

Forest: This data set came from the UCI Knowledge Discovery in Databases Archive. The da
relates forest cover type for 30× 30 meter cells, obtained from the US Forest Service. The
10 dimensions contain integer quantities, and the remaining 44 are binary values (most
We sampled 10,000 points at random from the entire data set of 581,012 points in dimens
We consideredk ∈ {10,50,100}.

For all heuristics the initial centers were taken to be a random sample of the point set. For th
of consistency, for each run the various heuristics were started with the same set of initial center
time the set of centers is changed, the distortion is recomputed. The combination of modifying
of centers and recomputing distortions is called astage. We measured convergence rates by tracking
lowest distortion encountered as a function of the number of stages executed. We also comp
average CPU time per stage. We use the filtering algorithm from [24] for computing distortions
the heuristics. The results in each case were averaged over five trials having different random da
(for the synthetic examples) and different random initial centers. We ran the swap heuristic forp ∈ {1,2}
swaps. Because they lack a consistent termination condition, all heuristics were run for 500 stag

5.1. Comparison of convergence rates

In order to compare the quality of the clustering produced by the various heuristics, we ra
heuristic for 500 stages and plotted the best average distortion after each stage. These plots are
Fig. 6 for the ClusGauss, MultiClus and Lena44 data sets.

A number of observations can be made from these plots. After a small number of stages both
Lloyd’s and the hybrid algorithms converged rapidly. However, after this initial start the iterated Ll
algorithm rarely makes significant gains in distortion. The problem is that this algorithm begins ea
with an entirely new set of random centers, without accounting for which centers were well plac
which were not. In contrast, the swap heuristics tend to converge very slowly, and even after 500
they do not surpass the progress that the iterated Lloyd’s algorithm makes in its first 10–50 stage
these heuristics do not use Lloyd’s algorithm for descending to a local minimum, their gains occu
through the relatively slow process of making good random choices. As expected, the hybrid meth
best of all. It has the same rapid initial convergence as with the iterated Lloyd’s algorithm, but th
repeated swaps, it can transition out of local minima. For most of the real data sets, the hybrid met
Lloyd’s method produce very similar distortions. (This is not surprising, given the popularity of Llo
algorithm over many years.) Nonetheless, we observed instances where the hybrid method p
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Fig. 6. Comparison of the average distortions versus number of stages of execution for ClusGauss (k = 50), MultiClus (k = 100),
and Lena44 (k = 256). Note that they-axis is plotted on a log scale and does not start from 0.

significantly better than the iterated Lloyd’s algorithm, and we never found it to perform signific
worse. The hybrid algorithm tends to outperform the iterated Lloyd’s algorithm in instances invo
large numbers of well separated clusters.

Our results comparing the performance on all the data sets is given in Table 1. It shows t
distortions at stages 50, 100 and 500, and CPU times. To facilitate comparison, single-swap and
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Table 1
Summary of experiments. Absolute values are indicated for Lloyd’s algorithm, and the other values are given as a percentage
of increase (positive) or decrease (negative) relative Lloyd’s algorithm

e

c)

entage
here.
DataSet k Method Best distortion Time/Stag

Size/Dim Stage 50 Stage 100 Stage 500 (CPU se

Lloyd’s 0.048834 0.045096 0.041236 0.00989
25 1-swap 80.2% 61.2% 41.3% 10.0%

hybrid 2.3% −0.2% −7.6% −24.8%

ClusGauss Lloyd’s 0.014546 0.013956 0.011758 0.01852
n = 10,000 50 1-swap 131.6% 92.3% 15.0% −8.0%
d = 3 hybrid 15.7% −6.4% −30.9% −18.7%

Lloyd’s 0.005953 0.005914 0.005868 0.03318
100 1-swap 141.7% 104.2% 22.4% −2.0%

hybrid 6.1% −0.6% −2.9% 1.2%

Lloyd’s 0.036752 0.03633 0.03428 0.02437
50 1-swap 83.6% 49.9% 11.1% −15.1%

hybrid 1.5% −7.7% −16.6% −27.7%

MultiClus Lloyd’s 0.020258 0.01981 0.01839 0.03658
n = 10,000 100 1-swap 100.5% 68.5% 15.3% −6.9%
d = 3 hybrid 12.7% 6.8% −20.0% −18.5%

Lloyd’s 0.004123 0.00393 0.00372 0.11064
500 1-swap 194.0% 186.7% 102.7% 4.2%

hybrid 4.2% 2.3% −13.3% −6.3%

Lloyd’s 349.28 342.48 339.62 0.07312
8 1-swap 26.6% 21.7% 10.6% 1.7%

hybrid 0.4% 0.2% −0.3% 1.5%

Lena22 Lloyd’s 107.82 107.00 106.32 0.29192
n = 65,536 64 1-swap 38.8% 32.2% 16.5% −1.0%
d = 4 hybrid −0.2% −1.9% −4.3% −7.6%

Lloyd’s 56.35 56.35 55.54 0.57020
256 1-swap 63.4% 55.9% 33.8% 4.9%

hybrid −3.3% −5.8% −7.8% −8.5%

Lloyd’s 2739.2 2720.0 2713.2 0.20412
8 1-swap 20.2% 11.4% 7.4% 4.6%

hybrid 1.1% 0.7% 0.0% 1.2%

Lena44 Lloyd’s 1158.8 1156.2 1150.4 1.19340
n = 16,384 64 1-swap 40.9% 34.8% 21.1% −1.4%
d = 16 hybrid −0.9% −1.7% −3.5% −5.7%

Lloyd’s 744.7 742.7 734.2 −3.14580
256 1-swap 60.2% 57.5% 39.3% 7.7%

hybrid −3.5% −5.2% −7.7% 20.3%

(continued on next page)

swap hybrid are given as percentage of increase relative to Lloyd’s. (In particular, lettingL andH denote
the performance quantities for Lloyd’s algorithm and another algorithm respectively, the listed perc
is 100(H − L)/L.) The 2-swap heuristic performed very similarly to single-swap and is not shown
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Table 1 (Continued from previous page)

DataSet k Method Best distortion Time/Stage

Size/Dim Stage 50 Stage 100 Stage 500 (CPU sec)
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Lloyd’s 705.88 703.50 693.56 0.01062
8 1-swap 34.9% 20.5% 9.2% −2.4%

hybrid 5.6% 0.8% −0.4% −2.5%

Kiss Lloyd’s 156.40 153.32 147.44 0.03528
n = 10,000 64 1-swap 86.6% 62.8% 20.7% 1.0%
d = 3 hybrid 1.9% −1.4% −7.0% −6.2%

Lloyd’s 60.71 60.34 59.13 0.07621
256 1-swap 85.2% 76.4% 34.3% 1.8%

hybrid −0.2% −2.3% −11.0% −7.3%

Lloyd’s 595040 588860 587340 0.13722
10 1-swap 28.9% 26.3% 19.5% −1.4%

hybrid 0.7% 0.8% −0.7% −14.6%

Forest Lloyd’s 202980 199360 198140 0.38842
n = 10,000 50 1-swap 56.6% 46.4% 26.0% 7.2%
d = 54 hybrid −0.3% −0.4% −3.7% −14.1%

Lloyd’s 138600 137800 136280 0.62256
100 1-swap 62.6% 50.7% 28.0% 11.7%

hybrid −0.9% −2.1% −4.5% −10.5%

Again, with respect to average distortions, the hybrid algorithm never performed significantly wors
the other heuristics, and sometimes performed significantly better. It is also interesting to obse
the hybrid method’s running time is generally as good, if not better, than the other heuristics. Exe
time will be discussed further in Section 5.2.

The fundamental question, which we cannot answer, is how good are these heuristics relativ
optimum. Because we do not know the optimal distortion, we can only compare one algorithm
another. In the case of the ClusGauss, however, it is possible to estimate the optimal distor
dimension 3, withk = 50 andσ = 0.05, the expected squared distance from each generated data
is 3σ 2 = 0.0075. After 500 iterations, the hybrid method achieved an average distortion of 0.00813,
which is about 8.4% above the expected optimal value (see Fig. 6(a)). The relatively good perfo
of the hybrid algorithm relative to the other heuristics suggests that, at least for the relatively se
we tested, the hybrid heuristic’s performance is much closer to optimal than our proven approxi
bounds would suggest.

5.2. Parametric analysis of performance

In order to better understand the performance of the various heuristics as a function of the par
involved, we ran a number of experiments in which we varied the sizes of the various quantiti
experiments involved the ClusGauss distribution, where the number of clusters was adjusted t
the numberk of centers computed. The parameters we varied included the numbern of data points, the
numberk of centers, the dimensiond, and the coordinate standard deviationσ for the Gaussian cluster
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Fig. 7. CPU time and average distortion versus number of points. (n = 10,000,k = 50,σ = 0.1, d = 3.)

Fig. 8. CPU time and average distortion versus number of centers. (n = 10,000,σ ≈ k−1/3/2, d = 3.)

In each case we ran the heuristic for 500 iterations and recorded the running time in CPU seco
the average distortion.

When varying the numberk of centers or the dimensiond, we also adjusted the value ofσ , so that
the clusters were similarly well separated. Recall that the cluster centers are uniformly distribut
hypercube of side length 2. Intuitively, if we subdivide this hypercube into a grid of subcubes e
side length(2/k)1/d , the expected number of clusters centers per subcube is exactly 1. Assuming a
situation in which each cluster center is located at the center of each subcube, this would imply
separation distance of(2/k)1/d between neighboring subcubes. To model this, we generated cluster
a coordinate standard deviation ofc(2/k)1/d , for some constantc < 1. Of course, some clusters will b
more well separated than others due to random variations in the placement of cluster centers, bu
that this adjustment would help better distinguish variations due solely tok andd from variations due to
cluster separation.

One advantage of having moderately well separated clusters is that we can use the cluster vari
rough estimate for the optimal distortion. As clusters tend to overlap, the optimum distortion will te
be lower, since outlying points generated from one Gaussian cluster may be assigned to a close
In our plots in Figs. 7–10 of average distortion, we have shown this variance-based distortion esti
a broken line, to give a better sense of the optimum distortion.
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Fig. 9. CPU time and average distortion versus cluster standard deviation. (n = 10,000,k = 50,d = 3.)

Fig. 10. CPU time and average distortion versus dimension. (n = 10,000,k = 50,σ ≈ k−1/d/2.)

As mentioned above, all the heuristics use the same filtering algorithm [24] for computing n
centers and distortions. Since this is the dominant component of the running time, we observed
the heuristics had very similar running times. The filtering algorithm uses a kd-tree to store th
points and uses a pruning technique to compute nearest centers and distortions. As a result, its
time is expected to be sublinear inn andk, assuming that the dimensiond is fixed. See [24] for furthe
analysis of this algorithm. (In contrast, a brute-force implementation of the nearest center comp
would require O(dkn) time.)

Varying data size:In this experiment, the numbern of data points was varied from 1000 to 100,00
fixing k = 50,d = 3 andσ = 0.1. The results are shown in Fig. 7. As expected, the running t
grow sublinearly withn. The hybrid heuristic and iterated Lloyd’s achieved the best ave
distortions.

Varying the number of centers:Here the numberk of centers was varied from 5 to 100, while fixin
n = 10,000 andd = 3. We generatedk Gaussian clusters in each case. As explained abov
order to guarantee similar cluster separation, we set the standard deviationσ = (1/k)1/3/3 for
each coordinate. The results are shown in Fig. 8. As expected, running times grow subl
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with k, and, as the number of centers grew, the average distortion decreased. All the heuristics
produced similar average distortions.

Varying cluster standard deviation:Here we varied the standard deviation of the generated clusters
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from 0.01 (highly separated clusters) to 1 (overlapping clusters). We fixedn = 10,000,k = 50
andd = 3. The results are shown in Fig. 9. Running times were seen to increase as the c
are less well separated. This effect is anticipated in the analysis of the filtering algorithm
in [24]. When the clusters are well separated, the hybrid heuristic tends to produce the s
average distortions. In the absence of well defined clusters, all the heuristics produced
distortions.

Varying dimension:The dimension was varied, while fixingn = 10,000 andk = 50. To maintain similar
cluster separation, we setσ to (1/k)1/d/3. The results are shown in Fig. 10. As with ma
algorithms based on hierarchical spatial subdivision, the running time of the filtering algo
grows superlinearly with dimension. The curse of dimensionality would suggest that the g
rate should be exponential in dimension, but these experiments indicate a more modest
This is likely due to boundary effects. This phenomenon was described in [4] in the co
of nearest neighbor searching. The hybrid heuristic and iterated Lloyd’s performed comp
with respect to average distortion, while the swap heuristics performed considerably wors
suggests that the importance of moving to a local minimum grows in significance as dim
increases.

6. Conclusions

We have presented an approximation algorithm fork-means clustering based on local search.
algorithm achieves a factor 9+ ε approximation ratio. We presented an example showing that
approach based on performing a fixed number of swaps achieves an approximation factor of
(9− ε) in all sufficiently high dimensions. Thus, our approximation factor is almost tight for this cla
local search algorithms. We have also presented empirical evidence that by combining this algorith
Lloyd’s algorithm (a simple descent algorithm, which produces a locally minimal solution) the res
hybrid approach has very good practical performance.

This work provides further insights intok-means and other geometric clustering problems f
both a practical and theoretical perspective. This work shows that it is possible to provide theo
performance guarantees (albeit weak ones) on the performance of simple heuristics. It also sh
practical value of combining discrete approximation algorithms with continuous approaches that p
locally optimal solutions.

There are a number of open problems. Our analysis shows that if only single swaps are perform
best approximation bound is 25+ ε. However, we know of no centroidal configuration in any dimens
for which the algorithm is at a stable configuration and the performance ratio is worse than− ε.
Furthermore, in our tight example, we assume that the dimension may be chosen as a functio
number of swaps. This raises the question of whether a tighter analysis might show that an approx
factor better than 25 can be achieved even for single swaps and/or in fixed dimensions. Our
makes use of the fact that the optimal solution is centroidal. By alternating steps of the swap alg
with Lloyd’s algorithm, it is possible to assume that the heuristic solution is centroidal as well.
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such an assumption be used to tighten our analysis? A final important question needed for empirical
analysis of the approximation bounds is how to generate good lower bounds on the optimal distortion.
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