Available online at www.sciencedirect.com

5C|ENCE@DIRECT® Computational
Geometry

Theory and Applications

ELSEVIER Computational Geometry 28 (2004) 89-112

www.elsevier.com/locate/comgeo

A local search approximation algorithm fbrmeans clustering

Tapas Kanung® David M. Mount®*!, Nathan S. Netanyatid, Christine D. Piatké,
Ruth Silverman, Angela Y. WU

2|BM Almaden Research Center, San Jose, CA 95120, USA
b Department of Computer Science, University of Maryland, College Park, MD, USA
¢ Department of Mathematics and Computer Science, Bar-llan University, Ramat-Gan 52900, Israel
d Center for Automation Research, University of Maryland, College Park, MD, USA
€ The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
f Department of Computer Science, American University, Washington, DC, USA

Available online 9 April 2004
Communicated by C. Bajaj

Abstract

In k-means clustering we are given a setnoflata points ind-dimensional spacet¢ and an integek, and
the problem is to determine a setiopoints in%¢, calledcenters to minimize the mean squared distance from
each data point to its nearest center. No exact polynotined-algorithms are known for this problem. Although
asymptotically efficient approximation algorithms exist, these algorithms are not practical due to the very high
constant factors involved. There are many heuristics that are used in practice, but we know of no bounds on their
performance.

We consider the question of whether there exists a simple and practical approximation algorithmeans
clustering. We present a local improvement heuristic based on swapping centers in and out. We prove that this
yields a(9+ ¢)-approximation algorithm. We present an example showing that any approach based on performing
a fixed number of swaps achieves an approximation factor of at(®ast) in all sufficiently high dimensions.

Thus, our approximation factor is almost tight for algorithms based on performing a fixed number of swaps. To
establish the practical value of the heuristic, we present an empirical study that shows that, when combined with
Lloyd’s algorithm, this heuristic performs quite well in practice.

0 2004 Elsevier B.V. All rights reserved.

© A preliminary version of this paper appeared in the 18th Annual ACM Symposium on Computational Geometry (SoCG’02),
June 2002, Barcelona, Spain, 10-18.
* Corresponding author.
E-mail addressekanungo@almaden.ibm.com (T. Kanungo), mount@cs.umd.edu (D.M. Mount), nathan@macs.biu.ac.il
(N.S. Netanyahu), christine.piatko@jhuapl.edu (C.D. Piatko), ruth@cfar.umd.edu (R. Silverman), awu@american.edu
(A.Y. Wu).
1 This material is based upon work supported by the National Science Foundation under Grant No. 0098151.

0925-7721/$ — see front mattér 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comge0.2004.03.003



20 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

Keywords:Clustering;k-means; Approximation algorithms; Local search; Computational geometry

1. Introduction

Clustering problems arise in many different applications, including data mining and knowledge
discovery [15], data compression and vector quantization [19], and pattern recognition and pattern
classification [11]. There are many approaches, including splitting and merging methods such as
ISODATA [6,21], randomized approaches sashCLARA [25] and CLARANY34], and methods based
on neural nets [27]. Further information on clustering and clustering algorithms can be found in [8,20—
23,25]. One of the most popular and widely studied clustering methods for points in Euclidean space
is calledk-means clusteringGiven a setP of n data pointsin real 4-dimensional spac&, and an
integerk, the problem is to determine a set lofpoints in %9, called centers to minimize the mean
squared Euclidean distance from each data point to its nearest center. This measure is often called the
squared-error distortior[19,21]. Clustering based ahrmeans is closely related to a number of other
clustering and facility location problems. These include the Euclidearedian[3,28] and theWeber
problem[42], in which the objective is to minimize the sum of distances to the nearest center, and the
Euclideank-center problenj13,39], in which the objective is to minimize the maximum distance. There
are no efficient exact solutions known to any of these problems for genexatl some formulations are
NP-hard [18].

Given the apparent difficulty of solving tHemeans and other clustering and location problems ex-
actly, it is natural to consider approximation, either through polynomial-time approximation algorithms,
which provide guarantees on the quality of their results, or heuristics, which make no guarantees. One
of the most popular heuristics for tikemeans problem isloyd’s algorithm[17,30,31], which is often
called thek-means algorithmDefine theneighborhoodof a center point to be the set of data points for
which this center is the closest. It is easy to prove that any locally minimal solution mashbreidal
meaning that each center lies at the centroid of its neighborhood [10,14]. Lloyd’s algorithm starts with
any feasible solution, and it repeatedly computes the neighborhood of each center and then moves the
center to the centroid of its neighborhood, until some convergence criterion is satisfied. It can be shown
that Lloyd’s algorithm eventually converges to a locally optimal solution [38]. Computing nearest neigh-
bors is the most expensive step in Lloyd’s algorithm, but a number of practical implementations of this
algorithm have been discovered recently [2,24,35-37].

Unfortunately, it is easy to construct situations in which Lloyd's algorithm converges to a local
minimum that is arbitrarily bad compared to the optimal solution. Such an example is shown in Fig. 1 for
k =3 and wherex < y < z. The optimal distortion is?/4, but it is easy to verify that the solution shown
at the bottom is centroidal and has a distortiony®f4. By increasing the ratig /x the approximation
ratio for Lloyd’s algorithm can be made arbitrarily high. There are many other heuristiésrfwans

Data points

................. e HEUEISTHC cENTEES

Fig. 1. Lloyd’s algorithm can produce an arbitrarily high approximation ratio.



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 91

clustering, based on methods such as branch-and-bound searching, gradient descent, simulated annealin
and genetic algorithms [7,12,41]. No proven approximation bounds are known for these methods.

It is desirable to have some bounds on the quality of a heuristic. Given a constarit, a
c-approximation algorithm(for a minimization problem) produces a solution that is at most a factor
larger than the optimal solution. There is a classical tradeoff between approximation factors and running
times. Some clustering algorithms are able to produce solutions that are arbitrarily close to optimal. This
includes(1+ ¢)-approximation algorithms for the Euclide@rmedian problem by Arora, Raghavan and
Rao [3] and by Kolliopoulos and Rao [28]. The latter achieves a running time(b*ﬁ‘én logn logk),
assuming that the dimensiahis fixed. It is based on applying dynamic programming to an adaptive
hierarchical decomposition of space. Another example igthe ¢)-approximation algorithm for the
Euclideank-center problem given by Agarwal and Procopiuc, which runs (al@gk) + (k/a)o("l_l/d)
time [1].

MatouSek [32] achieved an important breakthrough by presenting an asymptotically efficienj-
approximation algorithm fok-means clustering, which runs in(ﬁ:(logn)kg‘z"zd) time for fixed k
andd. First, MatouSek shows how to compute a set ¢h€?log(1/s)) candidate centers, called an
g-approximate centroid sgirom which an approximately optimal solution may be drawn. He then shows
that a near-optimal solution may be assumed to consistvallaspreadk-tuple, which intuitively means
that no subset of the-tuple is strongly isolated relative to the other points. Finally, he proves that given
a set ofm points, there are @e~*4) such well-spread sets. The algorithm generates all these tuples
and returns thé-tuple with the minimum distortion. Unfortunately, the constant factors are well beyond
practical ranges unlegsandk are very small. In Section 4, we show that, under reasonable assumptions
about the way in which the candidate centers are chosen (which MatouSek’s algorithm satisfies), the
number of well-spread-tuples that the algorithm generates is at lg@gt)X. In typical applicationsk
may range from tens to hundreds, and so this is well beyond practical limits. The dynamic programming
approximation algorithm presented by Kolliopoulos and Rao forktimedian problem [28] is also a
candidate for modification, but also suffers from similarly large constant factors.

Another common approach in approximation algorithms is to develop much more practical, efficient
algorithms having weaker, but still constant, approximation factors. This includes the work of Thorup on
solving location problems in sparse graphs [40] and by Mettu and Plaxton [33] on the use of successive
swapping for the metric-means problem. The most closely related work to our own are the recent
approximation algorithms for the metriemedian problem by Korupolu, Plaxton and Rajaraman [29],
Charikar and Guha [9], and Arya et al. [5]. These algorithms are basddcah search that is, by
incrementally improving a feasible solution by swapping a small number of points in and out of the
solution set.

In this paper we present such an approximation algorithnkfisreans based on a simple swapping
process. In Section 2 we derive an approximation ratio ¢fe9for the heuristic. Our approach is based
on the heuristic fork-medians presented by Arya et al. [5]. However, due to the different nature of
the k-means problem, the analysis is different and relies on geometric properties that are particular to
the k-means problem. In Section 3 we show that this bound is essentially tight for the class of local
search algorithms that are based on performing a constant number of swaps. In particular, we present
an example showing that any approach based on performing a fixed number of swaps cannot achieve at
approximation factor of better tha® — ¢) in all sufficiently high dimensions.



92 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

Approximation factors as high as 9 are of little practical value. Nonetheless, we believe that a
combination of local search and existing approaches results in a practical approximation algorithm with
performance guarantees. In Section 5 we present a hybrid approximation algorithm based on combining
local search with Lloyd’s algorithm. We provide empirical evidence that this hybrid algorithm provides
results that are as good or better than Lloyd’s algorithm, both in terms of distortion and running time.

2. Thelocal search algorithm

Givenu, v € i, let A(u, v) denote the squared Euclidean distance between these points, that is

d
A, v) =disP(u, v) =Y (u; — )%= (u—v) - ( —v),
i=1
whereu - v denotes the dot product of vectarsandv. Given a finite set§ ¢ i?, define itsdistortion
relative to any poinv to be A(S,v) =), ¢ Au, v).
Consider a seP of n data pointsin %i¢ and an integek. Given any ses of k points, for anyg e R¢

defines, to be the closest point ¢fto ¢. Our goal is to compute theelement point sef that minimizes
the totaldistortion of S relative toP, defined as

Ap(S) =Y A(g,s,).
qeP
When P is understood, we will refer to this simply as(S).
The principal difficulty in extending existing approaches for the meétmnigedians problem té-means
is that squared distances do not define a metric, and in particular they do not satisfy the triangle inequality,
which states that for any points, v and w, dist(u, w) < dist(u, v) + dist(v, w). When considering
squared distances we have

A, w) < (dist(u, v) + dist(v, w))”
= dist(u, v) + 2dist(u, v) dist(v, w) + dist (v, w)
< A(u,v) + A(v, w) + 2dist(u, v) dist(v, w).

The final product term can be bounded by observing thata? + b?, for anya andb. Hence we have
the followingdoubled triangle inequality

Adu, w) < 2(A(u, v) + Av, w)).

One obvious idea for producing a local improvement heuristickfaneans would be to generalize
the methods of Arya et al. [5] for the metriemedian problem using this doubled triangle inequality.
Unfortunately, this does not seem to work because their analysis relies crucially on the triangle inequality.
In particular, a cancellation of terms that arises in their analysis fails to hold when the triangle inequality
is doubled.

Our approach is based on two ideas. The first is the introduction of an alternative to the triangle
inequality, which, unlike the doubled triangle inequality is sensitive to the ratio of the optimal and
heuristic solution (see Lemma 2.3 below). The second is based on the well-known fact that the optimal
solution is centroidal (see [10]). Le{s(s) denote the neighborhood ef that is, the set of data points



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 93

that are closer te than to any point inS. By treating points as vectors, the centroidal property implies
that

1
T N5l 2

UENg(s)

An important property of centroidal solutions is presented in the following lemma. It states that for
the purposes of computing distortions, a set of points may be treated like a point mass centered about its
centroid. It follows from a straightforward manipulation of the definition of distortion, but we include the
proof for completeness.

Lemma 2.1. Given a finite subse$ of points ini?, let ¢ be the centroid of. Then for anyc’ € %,
A(S, )= A(S, ) +S|A(c, ).

Proof. By expanding the definition oA (S, ¢’) we have
AS, )= A, )= w—c)-(uw—c)

ues ues
=Y (W= + =) (w=—e)+ (=)
ues

=) (=0 =) +2(u=0c)-(c=c) + (=) (c=¢))

uesS

=A(S,c)+ 2((0 —c)- Z(u — c)) + ISI((C —c)-(c— c’))

ues

= A(S, 0) +S]A(e, ).
The last step follows from the fact thatdfis S’s centroid therd _, _.(« — ¢) is the zero vector. O

2.1. The single-swap heuristic

To illustrate our method, we first present a simple local search that provi@&stas)-approximation
to thek-means problem. Our approach is similar to approaches used in other local search heuristics for
facility location andk-medians by Charikar and Guha [9] and Arya et al. [5].

In the statement of the-means problem, the centers may be placed anywhere in space. In order to
apply our local improvement search, we need to assume that we are given a discreteaselidrdte
centersC from whichk centers may be chosen. As mentioned above, MatouSek [32] showed rtiay
be taken to be an-approximate centroid set of size(®@~“log(1/¢)), which can be computed in time
O(nlogn +ne~4log(1/¢)). Henceforth, when we use the term “optimal”, we meanktiedement subset
of C having the lowest distortion.

This single-swap heuristioperates by selecting an initial set bfcentersS from the candidate
centersC, and then it repeatedly attempts to improve the solution by removing one ceat§rand
replacing it with another centef € C — S. Let 8’ = § — {s} U {s’} be the new set of centers. If the
modified solution has lower distortion, théhreplacesS, and otherwise is unchanged. In practice this
process is repeated until some long consecutive run of swaps have been performed with no significant
decrease in the distortion. By extension of standard results [5,9] it can be shown that by sacrificing a



94 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

small factore > 0 in the approximation ratio, we can guarantee that this procedure converges after a
polynomial number of swaps.

For simplicity, we will assume that the algorithm terminates when no single swap results in a decrease
in distortion. Such a set of centers is said to b&tdble Letting O denote an optimal set @fcenters, a
setS of k centers is 1-stable then we have

A(S—{s}U{o}) > A(S) forallsesS, o€ O. 1)

(In fact this is true no matter wha? is, but our analysis only relies on this weaker property.) Using this
along with the fact that the optimal solution is centroidal, we will establish the main result of this section,
which is stated below.

Theorem 2.1. Let S denote al-stable set ok centers, and leD denote the optimal set @f centers.
ThenA(S) < 25A(0).

Note that the actual approximation bound is larger by seme), due to the errors induced by using
a discrete set of candidate centérsand the approximate convergence criterion described above. Our
analysis is similar in structure to that given by Arya et al. [5], but there are two significant differences.
The first is that our notion of capturing a center is different from theirs, and is based on the distance to
the closest center, rather than on the numbers of data points assigned to a center. The second is that the
permutation functionr is not needed in our case, and instead we rely on the centroidal properties of the
optimal solution.

For each optimal centere O, lets, denote its closest heuristic centerSinWe say thab is captured
by s,. Note that each optimal center is captured by exactly one heuristic center, but each heuristic center
may capture any number of optimal centers. We say that a heuristic cembeelg if it captures no
optimal center. The analysis is based on constructing a sstab pairs considering the total change in
distortion that results, and then apply Eg. (1) above to bound the overall change in distortion.

We begin by defining a simultaneous partition of the heuristic centers and optimal centers into two sets
of groupsSy, S, ..., S, and 04, O,, ..., O, for somer, such thats;| = | O;| for all i. For each heuristic
centers that captures some number> 1 of optimal centers, we form a group ef optimal centers
consisting of these captured centers. The corresponding group of heuristic centers consEieibier
with anym — 1 lonely heuristic centers. (See Fig. 2.)

We generate the swap pairs as follows. For every partition that involves one captured center we
generate a swap pair consisting of the heuristic center and its captured center. For every partition
containing two or more captured centers we generate swap pairs between the lonely heuristic centers

S, S, Sy S, Ss S, S, Sy S, Ss
m 1 Aj + I Heuristic centers I l l l 1
Optimal centers
o Q0 O 0, Q O 0O O
Partition Swap pairs

Fig. 2. Partitioning of the heuristic and optimal centers for analysis and the swap pairs. On the left, edges represent the capturing
relation, and on the right they represent swap pairs.



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 95

and the optimal centers, so that each optimal center is involved in exactly one swap pair and each lonely
center is involved in at most two swap pairs. It is easy to verify that:

(1) each optimal center is swapped in exactly once,
(2) each heuristic center is swapped out at most twice, and
(3) if s ando are swapped, thendoes not capture any optimal center other than

We establish an upper bound on the change in distortion resulting from any such swéap q@aloy
prescribing a feasible (but not necessarily optimal) assignment of data points to the Sent{eisJ {o}.
First, the data points itV (0) are assigned to, implying a change in distortion of

Z (A(q, 0) — A(q, sq)). (2

g€No(0)

Each poinly € Ns(s) \ No(0) has losts as a center and must beassignedo a new center. Let, denote
the closest optimal center to Sinceg is not in Ny (o) we know thato, # o, and hence by property (3)
aboves does not capture, . Therefores, , the nearest heuristic centerdp, exists after the swap. We
assigng to s,,. Thus the change in distortion due to this reassignment is at most

Yo (4@ s,) A, s). (3)

g€Ns(s)\No(0)

By combining over all swap pairs the change in distortion due to optimal assignment and reassignment
together with Eg. (1) we obtain the following.

Lemma2.2. Let S be al-stable set ok centers, and leD be an optimal set of centers, then
0 < A(O) —3A(S) + 2R,
whereR = qup A(q, 50,)-

Proof. Consider just the swap pals, o). By Egs. (2) and (3) and the fact th&iis 1-stable we have
Y (A0 = Algs))+ Y, (A@.s.,) — Alg,s)) >0.

geNo(0) geNs(s)\No(0)
To bound the sum over all swap pairs, we recall that each optimal center is swapped in exactly once, and
hence each poing contributes once to the first sum. Note that the quantity in the second sum is always
nonnegative (becausg, € S ands is the closest center ifi to ¢). Hence by extending the sum to all
g € Ns(s) we can only increase its value. Recalling that each heuristic center is swapped in at most twice
we have

0< D (Aq.09) — Ag. 59)) +2) (A(q. 50,) — Aq. ).

qeP qgeP
0< Y A(g.0y) —3> Alq.5) +2)_ Ag. 5,,),
qeP qeP qeP

0< A(O) — 3A(S) + 2R,
from which the desired conclusion follows o



96 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

The termR above is called théotal reassignment cosBy applying Lemma 2.1 to each optimal
neighborhood, we have

R=Y" Y Alg.s)=Y A(No(),s,)

0€0 geNp(0) 0e0
=Y (A(No(0).0) + [N,(0)|A(0.50)) =D Y~ (Alg.0) + Ao, 5,)).
0€0 0€0 qeNo(0)

Becausey, is the closest heuristic center ¢ for eachg € Ny (0), we haveA(o, s,) < A(o, s,). This
yields

Rgz Z (A(q,0)+A(0,sq))=Z(A(q,0q)+A(0q,sq)).
0€0 geNg(0) qgepP
By applying the triangle inequality and expanding we obtain

R<Y Alg.op) + Y (disto,. q) + dist(q. 5,))°

qeP qeP

= Z A(gq,04) + Z(distz(oq, q) + 2disto,, q) dist(q, s,) + distz(q, sq))

qeP qgeP

=2) Ag.0))+ Y Alg.sy) +2) _distlq, 0,) dist(g, 5,)

qgeP qgeP qeP
=2A(0) + A(S) +2)_dist(q, o) dist(q. s,).
qeP

To bound the last term we will apply the following technical lemma.

Lemma2.3. Let(o;) and (s;) be two sequences of reals, such that= (3", s2)/(>", 0?), for somex > 0.
Then

n n

1 2
E 0;8; < — Si
o
i=1 i=1

Proof. By Schwarz’s inequality [16] we have

; ; 12, , 1/2 L 12 , vz
e () (34) -(33%9) (24) -ine
1 i=1 i j

i=1 i=1 =1

=

as desired. O

To complete the analysis, let the sequence consist of digt o,) over allg € P, and let thes;
sequence consist of digt s,). Leta denote the square root of the approximation ratio, so that

2 A _ gepdistia.sy) Y87
S A0) Y, pdistgo,) Y40




T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 97

By applying Lemma 2.3 we have

R <2A(0) + A(S) + 2 > " dist(g. 5,) = 2A(0) + A(S) + EA(S) —2A(0) + (1+ E)A(S).
o (07 o

qeP
Now we combine this with Lemma 2.2, yielding

0< A(0) —3A(S) + 2(2A(0) + (1—1— S)A(S)>

4
<5A(0) — (1—5)A(S). 4)

Through simple rearrangements we can express this in termalohe:
5 > A(S) _ o2
1-4/a = A(O)

(+-3)
5>e°(1-——-,

(0%
0>a?—4a0—5=(a—5)(a+1).

This implies thatr < 5, and hence the approximation ratio of the simple heuristic is bounded 4y25.
This completes the proof of Theorem 2.1.

2.2. The multiple-swap heuristic

We generalize the single-swap approach to provide a factoe @pproximation ratio. Rather than
swapping a single pair of points at any time, for some intggeve consider simultaneous swaps between
any subset of of size p’ < p with any p’-element subset of candidate centers. Otherwise the algorithm
is the same. We say that a set of centerp-istableif no simultaneous swap gé elements decreases
the distortion. Our main result is given below. As before, there is an additioteaim in the final error
because of the use of the discrete candidate centers and the approximate convergence conditions.

Theorem 2.2. Let S denote ap-stable set ok centers, and leD denote the optimal set @f centers.
ThenA(S) < (3+ 2)2A(0).

Again our approach is similar to that of Arya et al. [5], but using our different notion of capturing. We
define our swaps as follows. Recall the simultaneous partitions of heuristic and optimal centers used in
the simple heuristic. If for somg |S;| = |0;| < p, then we create a simultaneous swap involving the sets
S; and O;. Otherwise, if|S;| = |0;| = m > p, then for each of the: — 1 lonely centers of; we generate
individual 1-for-1 swaps with allz optimal centers oD;. For the purposes of the analysis, the change
in distortion due to each of these 1-for-1 swaps is weighted by a multiplicative factg(ef-11). (For
example, Fig. 3 shows the swaps that would result from Fig. 2 fer3. The swaps appearing in shaded
boxes are performed simultaneously. The 1-for-1 swaps performed beSyaad O, are each weighted
by 1/4.)

It is easy to verify that: (1) each optimal center is swapped in with total weight 1, (2) each heuristic
center is swapped out with weight at most 1/ p, and (3) if setsS” and O’ are swapped, thes$i captures
no optimal centers outside @f’.



98 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

3 FET B G

G G O G

Fig. 3. Swaps fop = 3. Shaded regions indicate swaps that are performed simultaneously.

weighted
by 1/4

The analysis proceeds in the same manner as the simple case. Because of the replacement of the fact
2 with (1+ 1/p), the inequalities in the proof of Lemma 2.2 now become

1
0< Z(A(q’ 0‘1) — Ay, Sq)) + <1+ _> Z(A(q’ Soq) — A, Sq)),

gepP qeP
0<gAO) — <2+ 1)A(S) + <1+ 1)R.
p p

The analysis and the definition efproceed as before, and Eq. (4) becomes

0<AMD—(2+%>AG)+<l+%>(&M0)+<l+§>AGO
< (3+ E)A(m _ (1_ 3(1+ 1))A(s>.
P o P

Again, by rearranging and expressing in terms afe have

3+@/p) _ AG) _ o
1—(2/a)(1+1/p) = A(O) ’

020{2—20((14-1) — (34—3) > (a— (3+E))(0{+1).
p p p

This implies thatx < 3 + 2/p, and hence the approximation ratio of the general heuristi€,isvhich
approaches 9 gs increases.

3. A tight example

It is natural to ask whether the factor 9 is the correct approximation factor for swap-based heuristics,
or whether it arises from some slackness in our analysis. In this section we provide evidence that this is
probably close to the correct factor assuming an algorithm based on performing a fixed number of swaps.
We show that for any, there is a configuration of points in a sufficiently high dimensional space such
that thep-swap heuristic achieves a distortion that3s— ¢) times optimal. This example has the nice
property that it is centroidal. This implies that it is also a local minimum for Lloyd’s algorithm. Hence
neither the swap heuristic (assuming swaps with optimal centers) nor Lloyd’s algorithm would be able
to make further progress. We make the assumption that centers may only be placed at a given discrete
set of candidate locations. This candidate set is reasonable in that it contak@gpproximately optimal



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 99

solution. Overcoming this assumption would imply that the entire analysis method would somehow need
to be generalized to handle swaps with points other than the optimal centers.

Arya et al. [5] presented a tight example for their heuristic in a metric space. However, their example
cannot be embedded in Euclidean space of any dimension and does not even allow centers to be place
at data points. Our approach is quite different.

Theorem 3.1. Givenp ande > 0, there exists an integdr, a dimensiont, a finite set of point® e R7,
a finite set of candidate cente¢s and a setS C C of k centers, such that the following hold

(i) C contains are-approximately optimal solution.
(iiy Sis p-stable.
(i) A(S) = (9—¢e)A(0), whereO is the optimalk-means solution.

In the rest of this section we provide a proof of this theorem. d€timension) andV be even
integer parameters to be specified later. Our framework consists of adatgeensional integer grid,
G=1{0,1,..., N — 1}¢. To avoid messy boundary issues, we may assume that the grid is a topological
d-dimensional torus, by taking indices modulo For N sufficiently large, this torus may be embedded
in (d + 1)-space, so that distances from each embedded grid point to the embedded image of its grid
neighbors are arbitrarily close to 1. Thus the local neighborhoods of all the grid points are identical.

The grid points are/-dimensional integer vectors, where each coordinate {8,ih, ..., N — 1}. The
points of G are labeled even or odd, depending on the parity of the sum of coordinates. Consider a
parameter, 0 < x < 1/2, to be fixed later. Lef' (x) be the following set of 2 points displaced at a
distance+x and—x from the origin along each of the coordinate axes:

(£x,0,0,...,0),(0,4x,0,...,0),...,(0,0,0,..., +x).

The data seP consists of the union of translatesDfx) each centered about an even grid point. (See
Fig. 4.) Thus,n = dN?. We setk =n/(2d). It is easy to see that the optimal solutiéGhconsists ofk
centers placed at the even grid points. The neighborhood of each cedteranfsists of 2 points, each
at distancex. Consider a solutiors consisting ofk points placed at each of the odd grid points. The
neighborhood of each point ¢f consists of 2 points at distance % x.

® Data point O Optimal center * Heuristic center

Fig. 4. Example of the lower bound in the plane. Black circles are the data points, hollow circles denote the optimal centers,
and crosses denote the heuristic centers.



100 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

Each optimal center has a neighborhood a@fints at distance, and each heuristic center has a
neighborhood of 2 points at distancél — x). Thus we have

AS)  (1—x)?

A0)  x2
We argue below that by choosing= 1/(4 — p/d), no p-swap involving points of andC can improve
the distortion. By making! sufficiently large relative tg, this implies that the approximation ratio is
arbitrarily close ta(3/4)?/(1/4)?> =9, as desired.

To show that nop-way swap improves the distortion, consider any simultaneous swap between
two p-element subsets’ and O’ of heuristic and optimal centers, respectively. Because the optimal
neighborhoods are disjoint and each contaidaints, the change in distortion due to assigning these
points to their new optimal center is

2dp(x* — (1—x)?) = 2dp(2x — 1).

No other points are assigned to a closer center.
Now consider the 2p neighbors of heuristic centers that have now been removed. These data points
must be reassigned to the nearest existing center. After performing the swap, there are;#t padast
(s,0), wheres € S ando € O, such thatr ando are adjacent to each other in the grid. For these points
no additional reassignment is needed because the point has been moved to its optimal center. For the
remaining neighbors of the heuristic centers, of which there are at léast 22, we need to reassign
each to a new center. The closest such center is at distdheex2. Hence the change in distortion due
to reassignment is at least

(2dp = p*)((1+x%) = (1-x)%) = ZdP(l— %)%

Combining these two, the total change in distortion is at least

o5+ (o 2o 253

This is nonnegative if we sat=1/(4 — p/d), and hence th@-swap heuristic cannot make progress on
this example. This establishes Theorem 3.1.

4. Analysisof well-spread k-tuples

In the introduction we pointed out that MatouSek presented an asymptotically effi@gproximation
to thek-means problem, under the assumption that ande are fixed constants [32]. Although this is
a very important theoretical result, the constant factors arising in this algorithm are too large to be of
practical value, unlessis very small. This raises the question of whether these large constant factors are
merely an artifact of the analysis, or whether they are, in some sense, an inescapable consequence of th
approach. In this section, we will argue that the latter is the case.

Let us begin with an overview of the essential elements of MatouSek’s algorithm. First, recall that a
set of candidate centers is calledsapproximate centroid sef, by restricting the selection of centers
to this set, the average distortion is larger by a factor of at st ¢). MatouSek shows that given



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 101

points in%¢, such a set of size: = O(ne~?log(1/¢)) can be computed efficiently. Given such a set the
algorithm proceeds by selecting a judicious subset-tfples from these candidate points, and argues
that one of these subsets provides the desired approximate solutiorktonens problem. Given a real
numberr and two point set§” C X, the setY is r-isolatedin X if every pointinX \ Y is at distance at
leastr - diam(Y) from Y. A setX is e-well-spreadif there is no proper subset a&f of two or more points
that is (1/¢)-isolated inX. Matou3ek shows that, given a setmfpoints in%?, an s-well-spread set
of k-tuples of size (Dng"‘zd) can be computed efficiently, and that restricting attention to &ticiples
produces am-approximation. Applying this procedure to the set of candidate points produces the desired
approximation.

Of course, the constant factors suggested above are well beyond the bounds of practicality, but might a
smaller set suffice? We will prove a lower bound on the number of well-sgréagles that would need
to be generated in order to guarantee a relative errer Olur analysis is based or@cality assumption
that the choice of candidate centers is based only on the local distribution of the points, and has no
knowledge of which cluster each point belongs to in an optimal clustering. This assumption is satisfied
by any reasonable selection algorithm, including MatouSek’s algorithm.

Theorem 4.1. There exists a configuration of points in the plane, such thakifl/(3v/k), the number
of well-spreadk-tuples that need to be tested by Matouek’s algorithm is at [@dsy*.

Our approach is to present a configuration of points in the plane and argue that, in order to achieve a
relative error that is less than the points of the candidate centroid set must be sampled with a certain
minimum density. This in turn provides a lower bound on the size of the candidate centroid set, and on
the number of well-spreakttuples.

Our analysis assumes thiais a perfect square and that the points lie in a 2-dimensional square domain
of sizev/k x +/k, which is subdivided into a grid df pairwise disjoint unit squares. (See Fig. 5(a).) Points
are distributed identically within each of these squares. Consider any unit squafebéatclosed square
of side length 17 centered at the midpoint of the unit square. (The fact@rid rather arbitrary, and only
affects the constant factor in the analysis. We assume this value is independgntiud points of this
unit square are placed uniformly along the boundary of a sgtiafeside length 37 that is centered at
an arbitrary point ot within 7. (See Fig. 5(b).) It is easy to see that for largahe optimalk-means
solution involves placing one center in each unit square at the centerzpoint

sqrt(k)

sqri(k)

(a) (b) (c)

Fig. 5. Analysis of the number of well-spreaetuples.



102 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

For the purposes of producing a lower bound, it suffices to limit consideration to candidate points lying
within T'. By our locality assumption, the candidate selection algorithm cannot know the location of the
optimum center, and, since the distribution of points surroundingoks about the same to every point
of T, the candidate selection process can do no better than select points uniformly throfighetiis
assume that the candidate poigtsare taken to be the vertices of a square grid of side lengthhere
the value ofx will be derived below. See Fig. 5(c). (The exact pattern of candidates is not important for
our proof, only the assumption of uniformity.) By adjusting the locatiop within T, we can place so
that the closest candidate centéto z is at a squared distance ofx22)? = x?/2 from z. By applying
Lemma 2.1 (where plays the role ot, andz’ plays the role ot’), it follows that the absolute increase in
the average squared distortion is equal to the squared distance betamdi, which isx?/2. To derive
the relative error, we first need to compute the expected optimal average distortion. Since the points are
uniformly distributed along’s boundary, and assuming thais large, we can estimate this by integrating
the squared distance from each point on the bounda$yt@the center of. Straightforward calculations
show this to b&4/3)(5/14)? < 1/4. Therefore, in order to achieve a relative approximation errey ok
require thatc?/2 < £ /4, that is,x < +/e/2. From this it follows that the number of candidate pointg’in
must be at least/k? = 2/e. (This lower bound is much smaller than Matou3ek’s upper bound because
our assumption that points are uniformly distributed allows us to ign@kogether.)

Now, consider anyk-tuple formed by selecting any one candidate from each of the candidate sets of
the unit squares. We claim that each such setigell-spread, for all sufficiently small. The closest
that two candidate points can be i876 and the farthest they can be is at mogfk2 Thus any subset
of two or more points has a diameter of at least ,6and the next closest point is at most a distance of
2k away. It follows that if(2v/k ) < 6/(7¢), any suchk-tuple ise-well-spread. This is satisfied given
our hypothesis that < 1/(3vk). Thus, the number of sudhtuples that the algorithm needs to test, in
order to guarantee anrelative error in the average distortion for this 2-dimensional example is at least
(2/¢)*. This completes the proof.

5. Experimental results

Given the relatively high approximation factors involved and the tight example, an important question
is whether the swap-based heuristics perform well enough to be of practical value. In this section we
argue that indeed these heuristics can be of significant value, especially if applied in conjunction with a
locally optimal heuristic such as Lloyd’s algorithm.

It is quite easy to see why such a merger is profitable. As mentioned earlier, Lloyd’s can get stuck
in local minima. One common approach for dealing with this is to run this algorithm repeatedly with
different random starting sets. In contrast, the swap heuristic is capable of moving out of a local
minimum, but it may take very long to move near to a local minimum. By alternating between the two
methods, we have a simple heuristic that takes advantage of both methods’ strengths. This is similar in
spirit to methods based on simulated annealing [26], but without the complexities of defining temperature
schedules and with the advantage of provable performance guarantees.

Our implementation of the swap heuristic differs from the description in this paper in a couple
of respects. First, we sampled pairs for swapping randomly, rather than applying some systematic
enumeration. This allows the heuristic to be terminated at any point. Also, rather than perfgrming
swaps simultaneously, our heuristic performs swaps one by one. After each individual swap, we compute



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 103

the change in distortion. If the distortion decreases after any one swap, we stop immediately, without
completing the full sequence pfswaps. This was done so that any improvement that arises from a swap
is not undone by a subsequent swap.

One other difference involves the selection of candidate centers. We did not explicitly construct
an s-approximate centroid set as in Matou3ek’s algorithm [32]. Since the size of such a set is
O(¢~?nlog(1/¢)), storing such a set in higher dimensions is not practical. Instead, we implemented a
procedure that is designed to simulate MatouSek’s scheme but samples candidate centers on demand. Tt
original points are stored in a kd-tree, in which each leaf node contains one data point. Each node of the
tree is associated with an axis-aligned hyper-rectangle, calleglitsvhich contains all the descendent
data points. We generate a node of the tree at random. If this is a leaf node, we sample the associatec
point that is stored in this node. If this is an internal node, we consider the factor-3 expansion of its cell,
and sample a point uniformly at random from this expanded cell. In this way, about half the candidate
points are sampled randomly from the data set (when a leaf node is sampled), and otherwise they are jus
points in9.

For purposes of comparison, we also implemented a common variant of Lloyd’s algorithm, called
iterated Lloyd’s In this heuristic, centers are chosen randomly, and some number of stages of Lloyd’s
algorithm are performed. Recall that each stage consists of computing the neighborhood of each centet
point, and then moving each center point to the centroid of its neighborhood. Stages are repeated until
the following convergence condition is satisfied: over three consecutive stages, the average distortion
decreases by less than 10%. We call such a sequence of stage®éer each run, a new random set
of centers is generated and the process is repeated until the total number of stages exceeds a prespecifi
bound. The centers producing the best distortion are saved.

Finally, we implemented aybrid heuristi¢ which is combination of the swap heuristic with iterated
Lloyd’s algorithm. This heuristic augments the swap step by first applying one step of the swap heuristic
and then follows this with one run of Lloyd’s algorithm, as described in the previous paragraph.

The programs were written in C++, compiled with g++, and run on a Sun Ultra 5 workstation. We
considered the following two synthetic distributions.

ClusGauss:The data consist of = 10,000 points in%?3, which were generated from a distribution
consisting of clusters of roughly equal sizes, with centers uniformly distributed in a cube of side
length 2. The points of each cluster are drawn from a multivariate Gaussian distribution centered
at the cluster center, where each coordinate has a given standard dewialidas considered
k € {25,50, 100}, ando = 0.05.

MultiClus: The data consist of = 10,000 points in%2, which were generated from a distribution
consisting ofk multivariate Gaussian clusters of various sizes and standard deviations. Again
cluster centers were sampled uniformly from a cube of side length 2. The cluster sizes are
powers of 2. The probability of generating a cluster of sizés2/2'. The coordinate standard
deviation for a cluster of size: is 0.05/./m, implying that each cluster has roughly the same
total distortion. We consideregde {50, 100 500}.

The MultiClus distribution was designed to be a adversary for clustering methods based on simple
random sampling. Because most of the points belong to a constant number of the clusters, random
sampling will tend to pick most of the centers from these relatively few clusters.



104 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

We also ran experiments on the following data sets taken from standard applicatibmseains in
vector quantization and pattern classification.

Lena22 and Lena44These were taken from an application in image compression through vector
guantization. The data were generated by partitioning a>6B12 gray-scale Lena image
into 65,536 2x 2 tiles. Each tile is treated as a point in a 4-dimensional space. Lena44
was generated using »4 4 tiles, thus generating 16,384 points in 16-dimensional space. We
considered < {8, 64, 256}.

Kiss: This is from a color quantization application. 10,000 RGB pixel values were sampled at random
from a color image of a painting “The Kiss” by Gustav Klimt. This resulted in 10,000 points in
3-space. We consideréds {8, 64, 256}.

Forest: This data set came from the UCI Knowledge Discovery in Databases Archive. The data set
relates forest cover type for 3030 meter cells, obtained from the US Forest Service. The first
10 dimensions contain integer quantities, and the remaining 44 are binary values (mostly 0's).
We sampled 10,000 points at random from the entire data set of 581,012 points in dimension 54.
We considered < {10, 50, 100}.

For all heuristics the initial centers were taken to be a random sample of the point set. For the sake
of consistency, for each run the various heuristics were started with the same set of initial centers. Each
time the set of centers is changed, the distortion is recomputed. The combination of modifying the set
of centers and recomputing distortions is callestage We measured convergence rates by tracking the
lowest distortion encountered as a function of the number of stages executed. We also computed the
average CPU time per stage. We use the filtering algorithm from [24] for computing distortions for all
the heuristics. The results in each case were averaged over five trials having different random data points
(for the synthetic examples) and different random initial centers. We ran the swap heurigtie far 2}
swaps. Because they lack a consistent termination condition, all heuristics were run for 500 stages.

5.1. Comparison of convergence rates

In order to compare the quality of the clustering produced by the various heuristics, we ran each
heuristic for 500 stages and plotted the best average distortion after each stage. These plots are shown i
Fig. 6 for the ClusGauss, MultiClus and Lena44 data sets.

A number of observations can be made from these plots. After a small number of stages both iterated
Lloyd’s and the hybrid algorithms converged rapidly. However, after this initial start the iterated Lloyd’s
algorithm rarely makes significant gains in distortion. The problem is that this algorithm begins each run
with an entirely new set of random centers, without accounting for which centers were well placed and
which were not. In contrast, the swap heuristics tend to converge very slowly, and even after 500 stages
they do not surpass the progress that the iterated Lloyd’s algorithm makes in its first 10-50 stages. Since
these heuristics do not use Lloyd’s algorithm for descending to a local minimum, their gains occur only
through the relatively slow process of making good random choices. As expected, the hybrid method does
best of all. It has the same rapid initial convergence as with the iterated Lloyd’s algorithm, but through
repeated swaps, it can transition out of local minima. For most of the real data sets, the hybrid method and
Lloyd’'s method produce very similar distortions. (This is not surprising, given the popularity of Lloyd’s
algorithm over many years.) Nonetheless, we observed instances where the hybrid method performs



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 105

Cluster Gaussians (k=50)

0.7, T T v T

T v
vy 1-Swap
=-m 2-Swap
& Lloyd’s
0.05 A Hybrid

Average Distortion

1 1 1 1
0‘0050 100 200 300 400 500

Number of stages
@
MultiClus (k=100)
0.1 T T T T T u T
N wy 1-Swap
B-m 2-Swap
44 Lloyd's
5 0.05 A Hybrid i
b=
2
2
(=]
)]
&
]
z b
I

0.01 L L L
~o 100 200 300 400 500

Number of stages
(b)
Lenad4 (k=256)
1500 T T T T T u T
vy 1-Swap
-l 2-Swap
4—¢ Lioyd's
s 12003 A Hybrid 7
£
% 1000
A 4
(]
&
z
600 1 1 1 1
(1] 100 200 300 400 500
Number of stages
(c)

Fig. 6. Comparison of the average distortions versus number of stages of execution for ClugGab8} MultiClus ¢ = 100),
and Lenad4kK = 256). Note that the-axis is plotted on a log scale and does not start from O.

significantly better than the iterated Lloyd’s algorithm, and we never found it to perform significantly
worse. The hybrid algorithm tends to outperform the iterated Lloyd’s algorithm in instances involving
large numbers of well separated clusters.

Our results comparing the performance on all the data sets is given in Table 1. It shows the best
distortions at stages 50, 100 and 500, and CPU times. To facilitate comparison, single-swap and single-



106

Table 1

T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

Summary of experiments. Absolute values are indicated for Lloyd’s algorithm, and the other values are given as a percentage
of increase (positive) or decrease (negative) relative Lloyd’s algorithm

DataSet k Method Best distortion Time/Stage
Size/Dim Stage 50 Stage 100 Stage 500 (CPU sec)
Lloyd's 0.048834 0045096 0041236 000989
25 1-swap 8% 612% 413% 100%
hybrid 23% —0.2% —7.6% —24.8%
ClusGauss Lloyd’s 014546 0013956 0011758 001852
n = 10,000 50 1-swap 136% 923% 150% —8.0%
d=3 hybrid 157% —6.4% —30.9% —187%
Lloyd's 0.005953 0005914 0005868 003318
100 1-swap 147% 1042% 224% —2.0%
hybrid 61% —0.6% —2.9% 12%
Lloyd's 0.036752 003633 003428 002437
50 1-swap 83% 499% 111% —15.1%
hybrid 15% —7.7% —16.6% —27.7%
MultiClus Lloyd's 0.020258 001981 001839 003658
n = 10,000 100 1-swap 108% 685% 153% —6.9%
d=3 hybrid 127% 6.8% —20.0% —185%
Lloyd's 0.004123 000393 000372 011064
500 1-swap 190% 1867% 1027% 42%
hybrid 42% 23% —13.3% —6.3%
Lloyd's 34928 34248 33962 007312
8 1-swap 26% 217% 106% 17%
hybrid 04% 02% —0.3% 15%
Lena22 Lloyd’s 10782 10700 10632 029192
n = 65,536 64 1-swap 38% 322% 165% —1.0%
d=4 hybrid —0.2% —-1.9% —4.3% —7.6%
Lloyd's 56.35 5635 5554 057020
256 1-swap 631% 559% 338% 49%
hybrid —-3.3% —5.8% —7.8% —8.5%
Lloyd's 27392 27200 27132 0.20412
8 1-swap 2@% 114% 7.4% 46%
hybrid 11% 07% 00% 12%
Lenad4 Lloyd’s 1158 11562 11504 119340
n =16,384 64 1-swap 40% 348% 211% —-1.4%
d=16 hybrid —0.9% —-1.7% —3.5% —5.7%
Lloyd's 7447 7427 7342 —3.14580
256 1-swap 62% 575% 393% 77%
hybrid —3.5% —5.2% —7.7% 203%

(continued on next paye

swap hybrid are given as percentage of increase relative to Lloyd’s. (In particular, etingH denote
the performance quantities for LIoyd’s algorithm and another algorithm respectively, the listed percentage
is 100H — L)/L.) The 2-swap heuristic performed very similarly to single-swap and is not shown here.



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 107

Table 1 Continued from previous paye

DataSet k Method Best distortion Time/Stage
Size/Dim Stage 50 Stage 100 Stage 500 (CPU sec)
Lloyd's 705.88 70350 69356 001062
8 1-swap 3H0% 205% 92% —2.4%
hybrid 56% 08% —0.4% —2.5%
Kiss Lloyd’s 15640 15332 14744 003528
n = 10,000 64 1-swap 86% 628% 207% 10%
d=3 hybrid 19% —-1.4% —7.0% —6.2%
Lloyd’s 60.71 6034 5913 007621
256 1-swap 82% 764% 343% 18%
hybrid —0.2% —2.3% —11.0% —7.3%
Lloyd’s 595040 588860 587340 AB722
10 1-swap 28% 263% 195% —-1.4%
hybrid 07% 08% —0.7% —14.6%
Forest Lloyd's 202980 199360 198140 .38842
n = 10,000 50 1-swap 56% 464% 260% 7.2%
d=54 hybrid —0.3% —0.4% -3.7% —-14.1%
Lloyd’s 138600 137800 136280 62256
100 1-swap 65% 507% 280% 117%
hybrid —0.9% —2.1% —4.5% —10.5%

Again, with respect to average distortions, the hybrid algorithm never performed significantly worse than
the other heuristics, and sometimes performed significantly better. It is also interesting to observe that
the hybrid method’s running time is generally as good, if not better, than the other heuristics. Execution
time will be discussed further in Section 5.2.

The fundamental question, which we cannot answer, is how good are these heuristics relative to the
optimum. Because we do not know the optimal distortion, we can only compare one algorithm against
another. In the case of the ClusGauss, however, it is possible to estimate the optimal distortion. In
dimension 3, withk = 50 ando = 0.05, the expected squared distance from each generated data point
is 302 = 0.0075. After 500 iterations, the hybrid method achieved an average distortio9@813,
which is about 8.4% above the expected optimal value (see Fig. 6(a)). The relatively good performance
of the hybrid algorithm relative to the other heuristics suggests that, at least for the relatively sets that
we tested, the hybrid heuristic’s performance is much closer to optimal than our proven approximation
bounds would suggest.

5.2. Parametric analysis of performance

In order to better understand the performance of the various heuristics as a function of the parameters
involved, we ran a number of experiments in which we varied the sizes of the various quantities. All
experiments involved the ClusGauss distribution, where the number of clusters was adjusted to match
the numberk of centers computed. The parameters we varied included the nundjetata points, the
numberk of centers, the dimensiaf, and the coordinate standard deviatiofor the Gaussian clusters.



108 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

CPU Time vs. Data Size Average Distortion vs. Data Size
150 T T T T 0.05 T T T T
F vy 1-Swap [ ]
5 W 2-Swap ]
§ + -4 Lloyd's B FY
£ L A-A Hybrid =004 = =
— o v v —yy
@ 100 £ r ]
=4 S
g 8
w a
o
7} 0.03
a S
e T ®
E so0- ]
'5 <02 o}
o [
Qo
o L 1 1 1 ! 0.01 L 1
(1] 20000 40000 60000 80000 1e+05 1e+05

Data Size

Fig. 7. CPU time and average distortion versus number of poimts.{0,000,k =50,0 =0.1,d =3.)

CPU Time vs. Number of Centers Average Distortion vs. Number of Centers

0—r——F———+—F—+————+7T """ 02 ——
vy 1-Swap
o - 2-Swap
2 ¢ Lloyd's
E T A—h Hybrid g 018
= k=l
g s
] k]
» 30 D o4k
@ Q
o o
@ g
£ ]
F <
5 2 0.051
T j
o L ]
L r
10 0 1 1 ! 1 ]
20 40 60 80 100 20 40 60 80 100
Number of Centers Number of Centers

Fig. 8. CPU time and average distortion versus number of centees10,000,0 ~ k_1/3/2, d=3)

In each case we ran the heuristic for 500 iterations and recorded the running time in CPU seconds and
the average distortion.

When varying the number of centers or the dimensiaf, we also adjusted the value of so that
the clusters were similarly well separated. Recall that the cluster centers are uniformly distributed in a
hypercube of side length 2. Intuitively, if we subdivide this hypercube into a grid of subcubes each of
side length(2/ k), the expected number of clusters centers per subcube is exactly 1. Assuming an ideal
situation in which each cluster center is located at the center of each subcube, this would imply an ideal
separation distance 02/ k) between neighboring subcubes. To model this, we generated clusters with
a coordinate standard deviation«®/ k)¢, for some constant < 1. Of course, some clusters will be
more well separated than others due to random variations in the placement of cluster centers, but we felt
that this adjustment would help better distinguish variations due soléhatald from variations due to
cluster separation.

One advantage of having moderately well separated clusters is that we can use the cluster variance as
rough estimate for the optimal distortion. As clusters tend to overlap, the optimum distortion will tend to
be lower, since outlying points generated from one Gaussian cluster may be assigned to a closer center
In our plots in Figs. 7-10 of average distortion, we have shown this variance-based distortion estimate as
a broken line, to give a better sense of the optimum distortion.



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 109

CPU Time vs. Cluster Standard Deviation Average Distortion vs. Cluster Std Deviation
1.0

50 T

T
vy 1-Swap

oy Bl 2-Swap
§ 40 44 Lioyd's
g [ A—A Hybrid 5 0.1
= k=l
2 sof : s
@ B
i r [a]
@ [ @ 0.01 'w-y 1-Swap -
o 20 3 & - 2-Swap E
E [ o ¢ Lloyd's
F b < 4 A Hybrid
T 10 - 1eak P =+ Variance i
[ST. E A
Eo
-
4
0 1 1 1 2e-4 1 1 1 1
0.01 0.02 0.05 0.1 0.2 0.5 0.01 0.02 0.05 0.1 0.2 05
Cluster Standard Deviation Clust Standard Deviation

Fig. 9. CPU time and average distortion versus cluster standard deviatierl@ 000,k = 50,d = 3.)

CPU Time vs. Dimension Average Distortion vs. Dimension
2000 T T T T T T T T
[ vy 1-Swap
oy -l 2-Swap
§ - Lioyd's
g 1500 r A-A Hybrid s
g H
n k7]
» 10001 ] =]
g - 8
g | ] g
[ 1 D
= [ ] >
; 5001 _ <
o 4
o
1 1 1 1
12 14 16 18 20
Dimension Dimension

Fig. 10. CPU time and average distortion versus dimensioa. 10,000,k = 50,0 ~ k_l/d/z.)

As mentioned above, all the heuristics use the same filtering algorithm [24] for computing nearest
centers and distortions. Since this is the dominant component of the running time, we observed that all
the heuristics had very similar running times. The filtering algorithm uses a kd-tree to store the data
points and uses a pruning technique to compute nearest centers and distortions. As a result, its running
time is expected to be sublinearirandk, assuming that the dimensiahis fixed. See [24] for further
analysis of this algorithm. (In contrast, a brute-force implementation of the nearest center computation
would require Qdkn) time.)

Varying data size:In this experiment, the number of data points was varied from 1000 to 100,000,
fixing k = 50,d = 3 ando = 0.1. The results are shown in Fig. 7. As expected, the running times
grow sublinearly withn. The hybrid heuristic and iterated Lloyd’s achieved the best average
distortions.

Varying the number of centerddere the numbek of centers was varied from 5 to 100, while fixing
n = 10,000 andd = 3. We generated Gaussian clusters in each case. As explained above, in
order to guarantee similar cluster separation, we set the standard dewviatiqt/ k)/3/3 for
each coordinate. The results are shown in Fig. 8. As expected, running times grow sublinearly



110 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

with k, and, as the number of centers grew, the average distortion decreased. All the heuristics
produced similar average distortions.

Varying cluster standard deviationHere we varied the standard deviation of the generated clusters
from 0.01 (highly separated clusters) to 1 (overlapping clusters). We fixed 0,000, k = 50
andd = 3. The results are shown in Fig. 9. Running times were seen to increase as the clusters
are less well separated. This effect is anticipated in the analysis of the filtering algorithm given
in [24]. When the clusters are well separated, the hybrid heuristic tends to produce the smallest
average distortions. In the absence of well defined clusters, all the heuristics produced similar
distortions.

Varying dimension:The dimension was varied, while fixing= 10,000 andk = 50. To maintain similar
cluster separation, we set to (1/k)¥/¢/3. The results are shown in Fig. 10. As with many
algorithms based on hierarchical spatial subdivision, the running time of the filtering algorithm
grows superlinearly with dimension. The curse of dimensionality would suggest that the growth
rate should be exponential in dimension, but these experiments indicate a more modest growth.
This is likely due to boundary effects. This phenomenon was described in [4] in the context
of nearest neighbor searching. The hybrid heuristic and iterated Lloyd’s performed comparably
with respect to average distortion, while the swap heuristics performed considerably worse. This
suggests that the importance of moving to a local minimum grows in significance as dimension
increases.

6. Conclusions

We have presented an approximation algorithm ifeneans clustering based on local search. The
algorithm achieves a factor 9 ¢ approximation ratio. We presented an example showing that any
approach based on performing a fixed number of swaps achieves an approximation factor of at least
(9— ¢) in all sufficiently high dimensions. Thus, our approximation factor is almost tight for this class of
local search algorithms. We have also presented empirical evidence that by combining this algorithm with
Lloyd’s algorithm (a simple descent algorithm, which produces a locally minimal solution) the resulting
hybrid approach has very good practical performance.

This work provides further insights intb-means and other geometric clustering problems from
both a practical and theoretical perspective. This work shows that it is possible to provide theoretical
performance guarantees (albeit weak ones) on the performance of simple heuristics. It also shows the
practical value of combining discrete approximation algorithms with continuous approaches that produce
locally optimal solutions.

There are a number of open problems. Our analysis shows that if only single swaps are performed, the
best approximation bound is 25¢. However, we know of no centroidal configuration in any dimension
for which the algorithm is at a stable configuration and the performance ratio is worse than 9
Furthermore, in our tight example, we assume that the dimension may be chosen as a function of the
number of swaps. This raises the question of whether a tighter analysis might show that an approximation
factor better than 25 can be achieved even for single swaps and/or in fixed dimensions. Our analysis
makes use of the fact that the optimal solution is centroidal. By alternating steps of the swap algorithm
with Lloyd’s algorithm, it is possible to assume that the heuristic solution is centroidal as well. Could



T. Kanungo et al. / Computational Geometry 28 (2004) 89-112 111

such an assumption be used to tighten our analysis? A final important question needed for empirical
analysis of the approximation bounds is how to generate good lower bounds on the optimal distortion.

Acknowledgements

We would like to thank Hiroshi Imai and Mary Inaba for motivating our initial interesk-imeans
clustering. We would also like to thank David Kirkpatrick and Sergei Bespamyatnikh for interesting
discussions on convergence properties of Lloyd’s algorithm. We would also like to thank the referees for
a number of suggestions, which improved the quality of the final paper.

References

[1] P.K. Agarwal, C.M. Procopiuc, Exact and approximation algorithms for clustering, in: Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, 1998, pp. 658-667.
[2] K. Alsabti, S. Ranka, V. Singh, An efficiedtmeans clustering algorithm, in: Proceedings of the First Workshop on High
Performance Data Mining, Orlando, FL, 1998.
[3] S. Arora, P. Raghavan, S. Rao, Approximation schemes for Euclideaadian and related problems, in: Proceedings of
the Thirtieth Annual ACM Symposium on Theory of Computing, Dallas, TX, 1998, pp. 106-113.
[4] S. Arya, D.M. Mount, O. Narayan, Accounting for boundary effects in nearest-neighbor searching, Discrete Comput.
Geom. 16 (1996) 155-176.
[5] V. Arya, N. Garg, R. Khandekar, V. Pandit, A. Meyerson, K. Munagala, Local search heuristiesyfedian and facility
location problems, in: Proceedings of the 33rd Annual Symposium on Theory of Computing, Crete, Greece, 2001, pp. 21—
29.
[6] G.H. Ball, D.J. Hall, Some fundamental concepts and s\githprocedures for pattermegognition preprocessors, in:
International Conference on Microwaves, Circuit Theory, and Information Theory, Tokyo, Japan, 1964.
[7] S. Bandyopadhyay, U. Maulik, M.K. Pakhira, Clusteringngsisimulated annealing with gbabilistic redistribution,
Internat. J. Patt. Recog. Artif. Intell. 15 (2001) 269-285.
[8] V. Capoyleas, G. Rote, G. Woeginger, Geometric clusterings, J. Algorithms 12 (1991) 341-356.
[9] M. Charikar, S. Guha, Improved combinatorial algorithms for the facility locationkaneédians problem, in: Proceedings
of the 4th Annual IEEE Symposium on Foundations of Computer Science, 1999, pp. 378-388.
[10] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tesselations: Applications and algorithms, SIAM Rev. 41 (1999)
637-676.
[11] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.
[12] A.E. EIGamal, L.A. Hemanchandra, I. Shperling, V.K. Wei, Using simulated annealing to design good codes, IEEE Trans.
Inform. Theory 33 (1987) 116-123.
[13] D. Eppstein, Faster construction of planar two-centers, in: Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, 1997.
[14] V. Faber, Clustering and the continudusneans algorithm, Los Alamos Sci. 22 (1994) 138-144.
[15] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, Advances in Knowledge Discovery and Data Mining,
AAAI/MIT Press, 1996.
[16] W. Feller, An Introduction to Prolidlity Theory and its Apfications, third editbn, Wiley, New York, 1968.
[17] E. Forgey, Cluster analysis of multivate data: Efficiency vs. terpretability of classificdon, Biometrcs 21 (1965) 768.
[18] M.R. Garey, D.S. Johnson, Compwgeaand Intractability: A Guid to the Theory of NP-Completeness, Freeman, New
York, 1979.
[19] A. Gersho, R.M. Gray, Vector Quantization and Signal Compression, Kluwer Academic, Boston, MA, 1992.
[20] M. Inaba, N. Katoh, H. Imai, Applications of weighted Voronoi diagrams and randomization to variance#ased
clustering, in: Proceedings of the Tenth Annual ACM Symposium on Computational Geometry, Stony Brook, NY, 1994,
pp. 332-339.



112 T. Kanungo et al. / Computational Geometry 28 (2004) 89-112

[21] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ, 1988.

[22] A.K. Jain, P.W. Duin, J. Mao, Statistical pattern recognition: A review, IEEE Trans. Patt. Anal. Mach. Intell. 22 (1) (2000)
4-37.

[23] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: A review, ACM Comput. Surv. 31 (3) (1999) 264-323.

[24] T. Kanungo, D.M. Mount, N.S. Netanyahu, C. Piatko, R. Silverman, A.Y. Wu, An effiéieneans clustering algorithm:
Analysis and implementation, IEEE Trans. Patt. Anal. Mach. Intell. 24 (2002).

[25] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York, 1990.

[26] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671-680.

[27] T. Kohonen, Self-Organizatiomd Associative Memory, third edin, Springer-Verlag, New York, 1989.

[28] S. Kolliopoulos, S. Rao, A nearly linear-time approximation scheme for the Euclideasdian problem, in: J. Nesetril
(Ed.), Proceedings of the Seventh Annual European Symposium on Algorithms, Lecture Notes Comput. Sci., vol. 1643,
Springer-Verlag, Berlin, 1999, pp. 362-371.

[29] M. Korupolu, C. Plaxton, R. RajaramaAnalysis of a local search heuristia flacility location probéms, in: Proceedings
of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, 1998, pp. 1-10.

[30] S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Inform. Theory 28 (1982) 129-137.

[31] J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistamd Probalty, vol. 1, Berkdey, CA, 1967, pp. 281-296.

[32] J. MatouSek, On approximate geometriclustering, Discrete Comput. Geom. 24 (2000) 61-84.

[33] R.R. Mettu, C.G. Plaxton, Optimal time bounds for approximate clustering, in: Proc. 18th Conf. on Uncertainty in Artif.
Intell., Edmonton, Canada, 2002, pp. 339—-348.

[34] R.T. Ng, J. Han, Efficient and effective clustering methods for spatial data mining, in: Proceedings of the Twentieth
International Conference on Very Large Databases, Santiago, Chile, 1994, pp. 144-155.

[35] D. Pelleg, A. Moore, Accelerating exattmeans algorithms with geometric reasoning, in: Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, 1999, pp. 277-281.

[36] D. Pelleg, A. Moorex-means: Extending-means with efficient estimation of the number of clusters, in: Proceedings of
the Seventeenth International Conference on Machine Learning, Palo Alto, CA, 2000.

[37] S.J. Phillips, Acceleration of-means and related clustering problems, in: D.M. Mount, C. Stein (Eds.), Algorithm
Engineering and Experiments (Proc. ALENEX '02), Lecture Notes Comput. Sci., vol. 2409, Springer-Verlag, Berlin, 2002.

[38] S.Z. Selim, M.A. Ismail,K -means-type algorithms: A generalized convergetheorem and characterization of local
optimality, IEEE Trans. Patt. Anal. Mach. Intell. 6 (1984) 81-87.

[39] M. Sharir, A near-linear algorithm for the planar 2-center problem, Discrete Comput. Geom. 18 (1997) 125-134.

[40] M. Thorup, Quickk-median,k-center, and facility location for sparse graphs, in: Proc. 28th Intl. Collog. on Automata,
Languages and Programming (ICALP), Lecture Notes Comput. Sci., vol. 2076, Springer-Verlag, Berlin, 2001, pp. 249—
260.

[41] J. Vaisey, A. Gersho, Simulated annealing and codebook design, in: Proc. IEEE Internat. Conf. on Acoustics, Speech, and
Signal Processing (ICASSF)988, pp. 1176-1179.

[42] G. Wesolowsky, The Weber problem: History and perspective, Location Sci. 1 (1993) 5-23.



