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1 Introduction

Given a set S of n data points in some metric space. Given a query point
q in this space, a nearest neighbor query asks for the nearest point of .S to
q. Throughout we will assume that the space is real d-dimensional space
¢, and the metric is Euclidean distance. The goal is to preprocess S into
a data structure so that such queries can be answered efficiently. Nearest
neighbor searching has applications in many areas, including data mining
[7], pattern classification [5], data compression [10].

Because many applications involve large data sets, we are interested
in data structures that use linear storage space. Naively, nearest neigh-
bor queries can be answered in O(dn) time through brute-force search.
Although nearest neighbor searching can be performed efficiently in low-
dimension spaces, for all known exact linear-space data structures, search
times grow exponentially as a function of dimension. Thus for reasonably
large dimensions, brute-force search is often the most efficient in practice.
One approach to reducing the search time is through approzimate near-
est neighbor search. A number of data structures for approximate nearest
neighbor searching have been proposed [1, 3, 11]. The phenomenon of con-
centration of distance would suggest that approximate nearest neighbor
searching is meaningless. Fortunately, the distributions that arise in ap-
plications tend to be clustered in lower dimensional subspaces [6]. Good
search algorithms take advantage of this low-dimensional clustering.

The fundamental problem that motivates this work is the lack of pre-
dictability in existing practical approaches to nearest neighbor searching.
In high dimensions, exact search is no better than brute-force, and ap-
proximate search algorithms are acceptably fast only when the allowed
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approximation factors are set to unreasonably high values [1]. The goal
of this work is to address this shortcoming by providing a practical data
structure for nearest neighbor searching that is both efficient and guar-
antees predictable performance.

We measure performance in an aggregate sense, rather than for in-
dividual queries. We assume that queries are drawn from some known
probability distribution. The user provides a desired failure probability,
ps, and the resulting search fails to return the true nearest neighbor with
probability at most py. The query distribution is presented by a set of
training queries as part of the preprocessing stage. The training data
permits us to tailor the data structure to the underlying structure of the
point distribution.

The idea of allowing failures in nearest neighbor searching was pro-
posed by Ciaccia and Patella [2], but no performance guarantees were
provided. We present a data structure called an overlapped split tree, or
os-tree for short. The tree, which we first introduced in [12], is a gener-
alization of the well known BSP-tree, in which each node of the tree is
associated with a convex region of space. However, unlike the BSP-tree in
which the child regions partition the parent’s region, here we allow these
regions to overlap one another. The degree of overlap is determined by
the failure probability and the query distribution as represented by the
training points.

Based on empirical experiments on both synthetic and real data sets,
we have shown that compared to the popular kd-tree data structure, it is
possible to achieve significantly better predictability of failure probabil-
ities while achieving running times that are competitive, and sometimes
superior to the kd-tree [12]. However that paper did not address the effi-
ciency of the data structure except for experiments on synthetic data sets.
In this paper we present a theoretical analysis of the os-tree’s efficiency
and performance and provide experimental evidence of its efficiency on
real application data sets.

2 Overlapped Split Tree

The os-tree was introduced by the authors in an earlier paper [12]. We
summarize the main elements of the data structure here. It is a general-
ization of the well-known binary space partition (BSP) tree (see, e.g., [4]).
Consider a set S of points in d-dimensional space. A BSP-tree for this
set of points is based on a hierarchical subdivision of space into convex
polyhedral cells. Each node in the BSP-tree is associated with such a cell



and the subset of points lying within this cell. The root node is associ-
ated with the entire space and the entire point set. A cell is split into
two disjoint cells by a separating hyperplane, and these two cells are then
associated with the children of the current node. Data points are then
distributed among the children according to which side of the separating
hyperplane they lie. The process is repeated until the number of points
associated with a node falls below a given threshold, which we assume to
be one throughout.

The os-tree generalizes the BSP-tree by associating each node with
an additional convex polyhedral region called a cover. (In [12] the term
approximate cover was used.) Consider a node § in the tree, associated
with the point subset Ss. The cover Cy is constructed to contain a sig-
nificant fraction of the points of ¢ whose nearest neighbor is in S, that
is, Cs covers a significant fraction of the union of the Voronoi cells [4] of
the points of S5. Computing these Voronoi cells would be too expensive
in high dimensional spaces, and so the covers are computed with the aid
of a large set of training points T', which is assumed to be sampled from
the same distribution at the data points, and where |T'| > |S|. For each
point in T" we compute its nearest neighbor in S. The cover Cy contains
all the points of T whose nearest neighbor is in Ss. See Fig. 1. As the size
of T increases, the probability that a point lies outside of C5 but has its
nearest neighbor in Ss decreases.

Cover
« Datapoints (S)

o Training points (T)

Fig. 1. The cover for a set of data points (filled circles) contains all the training points
(shown as white circles) whose nearest neighbor is in this subset.

As with the BSP tree, covers are not stored explicitly, but rather
are defined by a set of boundary hyperplanes stored at the nodes of each
of the ancestors. In typical BSP fashion, the parent cell is split by a
hyperplane, which partitions the point set and cell. We introduce two
halfspaces, supported by parallel hyperplanes. One covers the Voronoi
cells associated with the left side of the split and the other covers the



Voronoi cells associated with the right side. These hyperplanes are stored
with the parent cell. Thus, as we descend the tree, the intersection of the
associated halfspaces implicitly defines the cover.

The construction algorithm works recursively, starting with the root.
The initial point set consists of all the data points, and the initial cell
and cover are R¢. Consider a node § containing two or more data points.
First, we compute a separating hyperplane H for the current point set
(see Fig. 2). This hyperplane is chosen to be orthogonal to the largest
eigenvector of the covariance matrix of the points of Ss. This is the di-
rection of maximum variance for the points of S5 [9]. The position of the
hyperplane is selected so that it bisects the points of Ss. Let S; and S,
denote the resulting partition, and define 7; and 7, analogously. (This
partition is indicated using circles and squares in Fig. 2.)

Fig. 2. The construction of the boundary hyperplanes (H; and H,) and the resulting
partition of the data and training points.

To determine the orientation of the boundary hyperplanes, we invoke
support-vector machines (SVM) to the subsets S; and S,. SVM was de-
veloped in learning theory [13] to find the hyperplane that best separates
two classes of points in multidimensional space. SVM finds a splitting hy-
perplane with the highest margin, which is defined to be the sum of the
nearest distance from the hyperplane to the points in S; and the nearest
distance to the points in S,.. After SVM determines orientation of the
splitting hyperplane, the two boundary hyperplanes H; and H, are cho-
sen to be parallel to this hyperplane, such that H; bounds all the points
of T; and H, bounds all the points of T;.. The hyperplanes H; and H, are



stored in node §, and the process continues recursively on each of the two
subsets.

To answer the nearest neighbor query ¢, the search starts at the root.
For any leaf, the distance to the point in this node is returned. At any in-
ternal node d, we first determine which cover(s) the query lies. This is done
in O(d) time by comparing g against each of the boundary hyperplanes.
If ¢ lies in only one cover, then we recursively search the corresponding
subtree and return the result. Otherwise, the subtree closest to ¢ (say the
left) is searched first, and the distance d; to the nearest neighbor in this
subtree is returned. If the distance from ¢ to the other (right) boundary
hyperplane is less than d;, then this subtree is also searched resulting in
a distance d,. The minimum of d; and d, is returned.

It is easy to see that this search will fail only if for some node §,
the query point ¢ lies in the Voronoi cell of some point p € S5, but
lies outside the associated cover. It is not hard to show that if T" and S
are independent and identically distributed, then the probability of such a
failure is proportional to |S|/|T|. (The proof is omitted from this version.)
By making the training set sufficiently large, we can reduce the failure
probability below any desired threshold.

3 Theoretical Analysis

In this section we explore the expected search time of the os-tree. As the
search visits each nonleaf node of the os-tree, there are three possibilities:
visit the left child only, visit the right child only, or visit both children.
Suppose that the probability that we visit both children at any given
node is bounded above by b, 0 < b < 1. Let T'(n) denote the expected
running time of the search algorithm given a subtree with n data points.
Then because we do O(d) computations at each node and split the data
points evenly at each step, it follows that up to constant factors, T'(n) is
bounded by the following recurrence

T(n) < 20T(n/2)+ (1 —=b)T(n/2)+d = (14+b)T(n/2)+d.
Solving the recurrence yields
T(n) € O (dnlg(Hb)) .

Thus the analysis of the expected search reduces to bounding the value
of b.



In general b is a function of the dimension d and the point distribution.
It is not difficult to contrive distributions in which, on any given node, vir-
tually all query points visit both subtrees. In such cases the above analysis
suggests that the running time is no better than brute-force search. Our
analysis is based on some assumptions on the data distribution, which we
believe are reasonable models of typical real data sets.

An important aspect of real data sets in high dimensional spaces is
that many of the coordinates are correlated and some exhibit very small
variances. Hence, points tend to be clustered (at least locally) around low
dimensional spaces. A common way of modeling this is through principal
component analysis. Consider a fixed node d in the tree and the subset S
of data points associated with this node, and let ns be the cardinality of
this set. Let Cs denote the corresponding cover. Because § will be fixed for
the rest of the analysis, we will drop these subscripts to simplify the no-
tation. We assume that the data points are sampled from a d-dimensional
multivariate distribution. Let = {z;}&, denote a random vector from
this distribution. Let g € R? denote the mean of this distribution and let
X denote the d x d covariance matriz for the distribution [9],

2= B((@—p)@—p7).

This is a symmetric positive definite matrix, and hence has d positive
eigenvalues. We can express this as X = UAU?, where U is a d x d
orthogonal matrix whose columns {u;}%¢_; are the eigenvectors of X and
Ais a d x d diagonal matrix, whose entries {)\;}%_; are the eigenvalues
of . We may assume that the eigenvalues are sorted in decreasing or-
der, so that A\ is the largest eigenvalue. By applying the transformation
Yy = UT(:I: — ), we map the points to a reference system in which the
samples have mean 0, and a diagonal covariance matrix with the pre-
scribed eigenvalues. The coordinates are now uncorrelated. We may as-
sume henceforth that all point coordinates are given relative to this new
reference system, the ); is the distribution variance for the ith coordinate.
Henceforth, let o; = /.

Given a parameter v > 0 define the pseudo-dimension cf, to be mini-
mum integer such that 1 < d < d and

o2
Z —2 < 'Y
d<i<d o1
Under the assumption that the points are clustered in a low—dlmenswn
subspace, we would expect that d is small relative d. Let H be the d-
dimensional hyperplane spanned by the first d eigenvectors of X. Given



a query point q = (%’)?21 sampled from the same distribution as the data
points, let ¢ denote its orthogonal projection onto H , and let ¢(q) =
llg — q||, where || - || denotes Euclidean distance. It is well known [9] that
the expected value of €2(q) is

E@(@) = Y. o2 < (yor).

d<i<d

Our analysis is based on the following distribution assumptions. The
first is that the pseudo-dimension d is significantly smaller that the di-
mension d of the space. The second is a type of Lipschitz condition on the
distribution function, which states that point densities are bounded rel-
ative to the principal components. In particular, consider the restriction
of the point distribution to the first d coordinates. We assume that there
exist positive constants ¢; and ¢y such that given any point ¢ € C'N H
and for all sufficiently small positive r, (1) the probability of a point lying
within a ball of radius r centered at q is at least (c17/0q)?, and (2) for
all positive xz, the probability that |¢1| < z is at most caz/o1. Note that
these conditions are satisfied for a uniform distribution assuming that the
first d eigenvalues are bounded away from 0.

Recall that in the construction of the os-tree, we first partition the
points into equal sizes using a separating hyperplane that is orthogonal to
the largest eigenvector of the sample covariance matrix. We assume that
n is large enough that the differences in the sample covariance matrix
and the distribution covariance matrix are negligible. In the os-tree con-
struction, we use SVM to compute the best orientation for the boundary
hyperplanes. To simplify the analysis, let us assume that the boundary
hyperplanes are chosen to be orthogonal to the largest eigenvector. Due
to space limitations the proof has been omitted. It will be presented in
the full version of the paper.

Theorem 1. For any b, 0 < b < 1 and for pseudo-dimension d defined

by
b1.5

024\/5'

there is a value ny, (depending on b, c1, c2, and a?), such that for any node &
in the os-tree associated with at least ny points and satisfying distribution
assumptions stated earlier, the probability that either (1) a random query
point q visits both children in the os-tree search or (2) the search returns
an incorrect result from this node is at most b.

S



4 Experimental Results

We used both synthetic and real data sets. Because the os-trees require a
relatively large number of training points, one advantage of synthetic data
sets is that we can generate training sets of arbitrary size. To emulate
real data sets, we choose a distribution that is clustered in subspaces
having low intrinsic dimensionality, which we call clustered rotated flats. In
this distribution, points are distributed among clusters, whose centers are
sampled uniformly from a hypercube [—1, 1]%. Each cluster contains a low
dimensional flat. We denote fat dimension for each dimension on the flat,
and thin dimension for others. The fat dimensions are randomly chosen
among the coordinates of the full space. Points are distributed evenly to
each cluster. In fat dimensions, point are drawn from uniform distribution
in the range of [—1, 1]. In thin dimensions, we use a Gaussian distribution
with a standard deviation of o, Each flat is then rotated independently.
This is done by repeatedly applying the rotation matrix A to all points
in the cluster. A is an identity matrix with four elements A; = Aj; =
cos(8), A;j = —Aj; = sin(f), where i and j are randomly chosen axes and
6 is randomly chosen from —7/2 to 7/2. In the experiments, the number
of clusters is fixed at 5, the number of fat dimensions is [3d/10].

Two real data sets are used in the experiments. The first set is NASA
MODIS satellite images. MODIS is a sensor aboard a satellite to acquire
spatial data in 36 spectral bands of which 26 were usable. The data from
the sensor are archived into files according to region of the earth and
particular time. Both data and query sets contained around 13K points.
The second set is NOAA World Ocean Atlas This data set contains infor-
mation about some basic attributes of the oceans of the world. Examples
of attributes are temperature, salinity, and so on. We use 8 attributes in
the data set. The data type of all attributes is floating point. Both data
and query set contained around 11K points.

4.1 Eigenvalues of Point Sets

In our analysis, we assumed that if we sort the eigenvalues of the data
set associated with each node in decreasing order, these values decrease
rapidly. This assumption is generally valid for most of the synthetic data
sets. It is also true in both real data sets we use. We recorded all eigen-
values of the point set in each node in os-trees during tree construction.
These eigenvalues are sorted and normalized. We computed these relative
eigenvalues averaged over the nodes at each level of the os-tree.



In Fig. 3 we show the first, second, third, fifth eigenvalues and every
five eigenvalues after that. Note that the plot is log-scale along the y-
axis. Level 0 represents the root node, level 1 represents the children of
the root node and so on. Only the first five eigenvalues are consistently
greater than 0.1 in several levels in the tree. The rest decrease rapidly.
Some of the lower eigenvalues are left unplotted at near leaf levels because
they are zero. This is because there are not enough points in such nodes
to span all the dimensions. The results of the NOAA ocean data set are
quite similar, relatively few (three) eigenvalues out of 8 eigenvalues are
greater than 0.1.

Average eigenvalues of point sets in each level
(NASA satellite data set)
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Fig. 3. Eigenvalues of point sets in each level in the tree. NASA satellite data set.

The results of a synthetic data set are shown in Fig. 4. We generated a
data set with 32K points in 30 dimensional space and set opi, = 0.05. The
number of rotations is 30. The clusters in this data set are 9-dimensional
flats. The results show that there is a significant gap between 9th and 10th
eigenvalues. The first nine eigenvalues capture the major characteristics
of the data set. Observe that in the first few levels of the tree each node
spans multiple clusters, and hence the rapid reduction in eigenvalues is
not as evident as it is in latter levels, where clusters are better isolated.

4.2 Number of Points in the Overlap Region

In the second set of experiments, we investigated the fraction of data
points of each node that fall in the overlap region between the bound-
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Fig. 4. Eigenvalues of point sets in each level in the tree. Synthetic data set

ary hyperplanes. These are points for which the search may visit both
children, and hence is related to the value of b described in Section 3.

Fig. 5 shows the fraction of points that are in the overlap region
from our real data sets. Again, they show the average value for nodes at
the same level, where level 0 is the root. The size of the overlap region
depends on the value of desired failure probability. To achieve a small
failure probability, a large training set is needed. Additional points in
the training set may widen the overlap region. Consequently, the overlap
region may contain more data points. The fraction usually falls between
0.3 and 0.7 in various levels in the tree. Note that near the leaf level this
fraction drops significantly. This is because there are very few points in
the node relative to the dimension of the space. Therefore the Voronoi
diagram can be approximated much better by a single hyperplane. Similar
behaviors are also observed for NASA satellite data and the synthetic data
set that we tested.

4.3 Comparison with kd-tree Search

We considered the search performance of the os-tree against an approx-
imate version of the the well-known kd-tree data structure [8] The dif-
ficulty in comparing these data structures is that the search models are
different: probably-correct search in the os-tree and approximate nearest
neighbor search in the kd-tree. To produce a realistic comparison, we ad-
justed the approximation factor (€) of the kd-tree so that the resulting
failure probability of the kd-tree matches that of the os-tree.
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Fig. 5. Fraction of points in overlap region. NOAA ocean data sets.

We show the results for the synthetic data sets only. The comparative
results of the real data sets as well as other synthetic data sets were pre-
sented in [12]. We used different parameters from the other experiments.
The number of points is varied from 2K to 32K, the number of rotations
is equal to the dimension, o, = 0.01.

Fig. 6 compares the performance of both trees as we vary the number
of dimensions, and the number of points. The average query time is used
as the metric. From the figure, we see that the os-tree is competitive with
the kd-tree except for high dimensional instances. If the number of leaf
nodes visited is used as the measure the search performance, the os-tree
search visits fewer nodes than the kd-tree in almost all cases. The reason
for the differences in CPU times is largely due to the additional overhead
suffered by the os-tree. Through the use of incremental distance calcula-
tion [1], the processing time at each node of the kd-tree is independent
of dimension, while it is O(d) for the os-tree.
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