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ABSTRACT

We consider an approximate version of a fundamental geo-
metric search problem, polytope membership queries. Given
a convex polytope P in R?, presented as the intersection of
halfspaces, the objective is to preprocess P so that, given a
query point g, it is possible to determine efficiently whether
q lies inside P subject to an error bound e.

Previous solutions to this problem were based on straight-
forward applications of classic polytope approximation tech-
niques by Dudley (1974) and Bentley et al. (1982). The
former yields minimum storage, and the latter yields con-
stant query time. A space-time tradeoff can be obtained
by interpolating between the two. We present the first sig-
nificant improvements to this tradeoff. For example, using
the same storage as Dudley, we reduce the query time from
O(1/4=1/2) to O(1/4=1/*). Our approach is based on a
very simple algorithm. Both lower bounds and upper bounds
on the performance of the algorithm are presented.

To establish the relevance of our results, we introduce a
reduction from approximate nearest neighbor searching to
approximate polytope membership queries. We show that
our tradeoff provides significant improvements to the best
known space-time tradeoffs for approximate nearest neigh-
bor searching. Furthermore, this is achieved with construc-
tions that are much simpler than existing methods.
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1. INTRODUCTION

The field of computational geometry has witnessed the
emergence of a number of results on geometric approxima-
tions. This has included efficient algorithms and data struc-
tures for approximate retrieval problems, such as approx-
imate nearest neighbor searching and approximate range
searching [3-5, 10, 14, 18,21, 29]. It has also included al-
gorithms for approximations of statistical properties of geo-
metric objects, as exemplified by work on coresets and clus-
tering [1,8,11,20,22,26]. Both areas of study have revealed
a number of deep relationships between the accuracy of ap-
proximation, the combinatorial complexity of the approxi-
mating structures, and (for retrieval problems) the tradeoffs
between the space and query times.

Convex polytopes are central to computational and com-
binatorial geometry. In this paper, we consider a fundamen-
tal search problem related to convex polytopes. Given a
convex polytope P in R?, presented as the intersection of a
set of halfspaces, the polytope membership problem involves
preprocessing P so that it is possible to determine efficiently
whether a given query point ¢ lies within P. This problem is
dually equivalent to answering halfspace emptiness queries
in R?, and, as we shall see, our approximation algorithm
for this problem will reveal new insights into approximate
nearest neighbor searching.

Polytope membership queries find applications in many
geometric areas, such as linear programming queries, ray
shooting, nearest neighbor searching, and the computation



of convex hulls [9,12,23,25,28]. In dimension d < 3, it is pos-
sible to build a data structure of linear size that can answer
such queries in logarithmic time [16]. In higher dimensions,
however, all exact data structures with roughly linear space
take O(n'~/L%/2)) query time [24], which, except in small
dimensions, is little better than brute-force search.

Throughout, we assume that P is a convex polytope lying
within the hypercube [—1,1]¢, which is represented as the
intersection of the set of halfspaces that define its facets.
Given € > 0, we say that P’ is an e-approrimation to P
if the Hausdorff distance between P and P’ is at most «.
(Typically, polytope approximation is defined relative to P’s
diameter, but by scaling P to lie within [—1, 1]¢, there is no
loss of generality in this absolute formulation.) Dudley [17]
showed that, for any convex body in R?, it is possible to
construct an e-approximating polytope with O(1/e(4=1/2)
facets. This bound is asymptotically tight in the worst case.
Dudley’s approximation has many applications in the con-
struction of coresets [1].

Given a polytope P, a positive real €, and a query point
q, an e-approzimate polytope membership query determines
whether ¢ lies inside or outside of P, but it may return either
answer if ¢’s distance from P’s boundary is at most €. Ap-
proximate polytope membership queries arise in a number of
applications, such as collision detection [19], training a sup-
port vector machine [7], and approximate nearest neighbor
searching [14].

1.1 Polytope Membership Queries

Dudley’s construction provides a naive solution to the ap-
proximate polytope membership problem. Construct an e-
approximation P’, and determine whether ¢ lies within all
its bounding halfspaces. This approach takes O(1/e(4=1/2)
query time and space. An alternative simple solution was
proposed by Bentley et al. [6]. Create a d-dimensional grid
with cells of diameter ¢ and, for every column along the
r4-axis, store the two extreme x4 values where the column
intersects P. This algorithm produces an approximation P’
with O(1/e%"1) facets. Given a query point g, it is easy to
determine if ¢ € P’ in constant time (assuming a model of
computation that supports the floor function), but the space
required by the approach is O(1/e%71).

These two extreme solutions raise the question of whether
a tradeoff is possible between space and query time. Before
presenting our results, it is illustrative to consider a very sim-
ple method for generating such a tradeoff. Given r € [, 1],
subdivide the bounding hypercube into a regular grid of cells
of diameter r and, for each cell that intersects the polytope’s
boundary, apply Dudley’s approximation to this portion of
the polytope. By a straightforward packing argument, the
number of occupied cells is O(1/r*~1). Since each cell is
of diameter O(r), each can be approximated to absolute er-
ror ¢ using O((r/e) 4~ 1/?) facets per cell. Subject to mi-
nor technical details, the result is a data structure of space
O(1/(er)=1/2) and query time O((r/e)*~1/?). This in-
terpolates nicely between the two extremes for ¢ < r < 1.

Given the optimality of Dudley’s approximation, it may
be tempting to think that the above tradeoff is optimal, but
we will demonstrate that it is possible to do better. (To
see why, observe that each piece of the polytope’s bound-
ary carries only a portion of the polytope’s total curvature.
Clarkson has shown that, when curvature is constrained,
Dudley’s bound is not tight [15].) Our main result is that it
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is possible to achieve significantly better space-time trade-
offs for approximate polytope membership. We show first
that it is possible to build a data structure with storage
O(1/e4=1/2) (the same as Dudley) that allows polytope
membership queries to be answered significantly faster, in
O(1/£4=1D/4) time. In order to provide a tradeoff, we show
that, by iterating a suitable generalization of this construc-
tion, it is possible to produce a succession of structures of
increasingly better search times. The tradeoff is expressed
(both in discrete and continuous forms) in the following the-
orem.

THEOREM 1.1. Given a polytope P in [—1,1]* and € > 0:

(1) Given an integer constant k> 1, it is possible to answer
g-approzimate polytope membership queries in timet =

l/s(d*l)/y€ > 1 from a data structure of space
0 (1/5“—1)(1—%)) .

(i) Given a real constant o > 2, it is possible to answer e-
approzimate polytope membership queries in time t =
1/6(d_1)/‘1 > 1 from a data structure of space

_ 1 logpaj-1
0 (1/8(d 1)<1 2ngl~2 ] - )) )

By way of contrast, observe that, if we express the trade-
off resulting from the above grid-based construction in this
form, the space bound is O(l/e(d_l)(l_l/Qk)) for the same
query time. These space-time tradeoffs are presented visu-
ally in Figure 1(a). (The lower bound shown in the figure
will be discussed later.)

The data structure and its construction are both extremely
simple. The data structure consists of a quadtree of height
O(log(1/€)), where each leaf cell stores a set of halfspaces
whose intersection approximates the polytope’s boundary
within this cell. A query is answered by performing a point
location in the quadtree followed by a brute force inspection
of the halfspaces in the node. The data structure is con-
structed by the following recursive algorithm, called SplitRe-
duce. It is given the polytope P, the approximation param-
eter €, and the desired query time t. The initial quadtree
box is Q = [-1,1]%.

SplitReduce(Q):
1. Let P’ be an e-approximation of Q N P.
2. If the number of facets |P’| < ¢, then Q stores the
hyperplanes bounding P'.
3. Otherwise, split Q into 2¢ quadtree boxes and invoke
SplitReduce on each such box.

Although the algorithm itself is deceptively simple, the
analysis of the storage as a function of the query time ¢ is
nontrivial. The algorithm is correct provided that, in the
first step, the polytope P’ is any e-approximation, but the
storage efficiency depends on the assumption that the num-
ber of facets of P’ is approximately minimal. (This will
be made precise in Section 2.) In addition to proving up-
per bounds on the space complexity of the above algorithm,
we will establish a lower bound by demonstrating that, for
a > 2 and for query time ¢t = l/s(dfl)/o‘, there exists a
polytope for which this algorithm produces a data structure
of space Q(l/e(d*”“”\ﬂ/—o‘”/a*l) (see Figure 1(a) and
Theorem 3.1).
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Figure 1: The multiplicative factor in the exponent of the 1/¢ term for (a) polytope membership queries and
(b) approximate nearest neighbor (ANN) queries. The O(1) term in the exponent corresponds to a constant

that does not depend on d.

1.2 Approximate Nearest Neighbor Queries

As further evidence of the value of this new perspective,
we present a useful consequence for approximate nearest
neighbor searching. 1In the approzimate nearest neighbor
(ANN) problem we are given a set S of n points in d-dimen-
sional space, and we are to preprocess S in order to an-
swer the following queries efficiently. Given a point ¢, find
a point p € S whose Euclidean distance does not exceed
1+ ¢ times the distance from ¢ to its nearest neighbor. Data
structures for ANN searching have been proposed by several
authors [10,14,18,21,29].

The best space-time tradeoffs [4] for approximate nearest
neighbor searching have query time roughly O(1/ eV *) with
storage roughly O(n/e~2/®)) for o > 2. To better un-
derstand the tradeoff, note that the product of the ¢ terms
in the storage and the square of the query time is O(1/e%).
These results are based on a data structure called an approx-
imate Voronoi diagram (AVD). Assuming an AVD-based ap-
proach, lower bounds were also proved in [4]. The upper and
lower bounds nearly match in both extremes: linear storage
and logarithmic query time. By violating the AVD model,
small improvements were obtained in [3]. Still, all previ-
ous data structures with query time O(1/e(@~9M)/®) haye
storage Q(n/e(@=CM0=2/2)) "where the O(1) term in the
exponent does not depend on d.

Given the maturity of this problem, one might expect that
a significant increase in the 2/« term in the exponent would
involve fairly complex methods. We show that this is not the
case by showing that better better tradeoffs can be achieved
for approximate nearest neighbor searching through a simple
reduction to the approximate polytope membership prob-
lem.

For example, the existing AVD-based tradeoff provides a
query time of roughly O(1/¢%/*) with space O(n/e%?). By
applying our polytope membership data structure, we can
reduce the space bound to roughly O(n/e%/*) for the same
query time. More generally, our reduction implies the fol-
lowing improved space-time tradeoffs for ANN queries (ex-
pressed both in discrete and continuous forms).
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THEOREM 1.2. Given a set of n points in R® and ¢ > 0:

(i) Let k > 1 be an integer constant. There is a data
structure for approximate nearest neighbor searching

with query time O(log n—!—(log(l/a))/adﬂk) and storage
(0] (n/ad( 7%)) .

(it) Let o > 2 be a constant. There is a data structure
for approximate nearest neighbor searching with query
time O(logn + (log(1/¢))/e¥®) and storage

a1 1 llosgal
O|n/e 2llos2 o « .

These space-time tradeoffs together with known upper
bounds and lower bounds [4] are illustrated in Figure 1(b).
Although the connection between the polytope membership
problem and ANN has been noted before by Clarkson [14],
we are the first to provide a reduction that holds for point
sets with unbounded aspect ratio.

The remainder of the paper is organized as follows. In
Section 2, we present our analysis for the SplitReduce algo-
rithm. The lower bound analysis is presented in Section 3.
The application to approximate nearest neighbor searching
is discussed in Section 4. Concluding remarks follow in Sec-
tion 5.

2. UPPER BOUND FOR POLYTOPE
MEMBERSHIP

In this section, we present upper bounds for the storage
of the data structure obtained by the SplitReduce algorithm
for a given query time ¢t. We start by discussing the first
step of the algorithm.

Step 1 consists of obtaining a polytope P’ that e-approxi-
mates Q N P. Some polytopes can be approximated with
far fewer than the ©(1/e(?~1/2) facets generated by Dud-
ley’s construction. For example, a simplex can be repre-
sented exactly with d + 1 facets. The problem of generating



a minimum-facet e-approximation to a polytope can be re-
duced to a set cover problem [27]. By applying the well
known greedy set-cover heuristic, it is possible to produce
such an approximation in which the number of facets ex-
ceeds the optimum by a factor of O(log(1/¢)). In particu-
lar, the set cover instance consists of one set for each facet
f of the polytope, and the corresponding set contains all
facets that are approximated by f’s supporting hyperplane.
Clarkson [13] presented a somewhat more complicated algo-
rithm that does better. He showed that if ¢ is the smallest
number of facets required to approximate P, then it is pos-
sible to obtain an approximation with O(clogc) facets in
O(nc* log nlog c) randomized time, where n is the number
of facets of P.

For simplicity, we assume that the algorithm used in Step 1
produces an approximation to @ N P with a minimum num-
ber of facets. In the full version it will be shown that an
application of Dudley’s algorithm to an appropriate subset
of P suffices for our purposes. An alternative is to apply
Chan’s coreset construction [11] to P and then run Clark-
son’s approximation algorithm on the result. This yields a
preprocessing time of O(n + 1/e%4~1/2) but increases the
query time by a negligible factor of O(log(1/¢)).

For completeness, let us now describe Dudley’s algorithm.
Given a bounded polytope P, let the size of P, denoted
op, be the side length of the smallest axis aligned box @Q
that contains P. Through an appropriate translation we
may assume that the center of @ is the origin. Dudley’s
algorithm obtains an approximation P’ as follows. Let B
be a ball of radius opv/d centered at the origin. (Note that
P C B.) Place a set W of ©((cp /)" 1/2) points on the
surface of B such that every point on the surface of B is
within distance O(y/€op) of some point in W. For each
point w € W, let w’ be its nearest point on the boundary
of P. We call these points samples. For each sample point
w’, take the supporting halfspace passing through w’ that is
orthogonal to the vector from w’ to w. P’ is the intersection
of these halfspaces.

A key element in the analysis of Dudley’s construction is
that, for each point p on the boundary of P, there is a sam-
ple point w’ in the above construction (subject to a suitable
adjustment of the constant factors) whose distance from p is
at most /o p, and the distance from p to the supporting hy-
perplane at w’ is at most €. In summary, we may view Dud-
ley’s approximation as producing a set of ©((op/e)4~1/?)
halfspaces, where each halfspace is responsible for approxi-
mating a region of P’s boundary of diameter at most \/zop.
We exploit the limited range of each Dudley halfspace in the
following lemma.

LEMMA 2.1. Given a polytope P and ¢ > 0, Dudley’s
method produces a collection of O((op /<) @~1/?) halfspaces
whose intersection e-approrimates P. Furthermore, given a
square grid of side length O(\/eop), we may associate each
halfspace with O(1) grid cells, such that this halfspace is used
for approximating the boundary of P within only these cells.

Recall that our algorithm takes four inputs: polytope P,
box @, query time ¢, and approximation error €. For sim-
plicity, we refer to the algorithm as SplitReduce(Q), since
the parameters P, t, ¢ remain unchanged throughout the
recursive calls. The output of our algorithm is a quadtree
whose leaf cells induce a subdivision of Q). Each leaf cell L
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stores a set of ¢t < ¢ halfspaces whose intersection approxi-
mates PN L, where ¢, is the minimum number of halfspaces
required to approximate PN L. The storage of this quadtree
is defined as the total number of stored halfspaces over all
the leaf cells. Before establishing the space-time tradeoff,
we show that the algorithm produces a data structure with
query time ¢ = ©(1/e~Y/4) and the same storage as Dud-
ley’s algorithm, O(1/(?=1/2),

LEMMA 2.2. The output of SplitReduce(Q) for

(d—1)/4
0> (22) s
3

is a quadtree with storage O((oq/e) @~ 1/2).

PrOOF. Let T denote the quadtree produced by the al-
gorithm. For each leaf cell L of T, let ¢tz be the number
of halfspaces stored in L. We will show that ZL trp, <
(0 /€)@ 1/2 which establishes the desired storage bound.

Towards this end, we first prove a lower bound on the size
of any leaf cell L. We assert that there exists a constant
c1 such that every leaf cell L has size o, > \/eog/c1. The
assertion follows from Lemma 2.1. In particular, the stan-
dard Dudley technique applied to a cell of size \/cog/c1
produces at most ¢p (o /cie) " 1/* halfspaces, where cp is
the constant arising from Dudley’s method. By choosing c1
to be a sufficiently large constant, the number of halfspaces
is at most ¢, and the termination condition of our algorithm
implies that such a cell is not further subdivided.

Let Pp be the polytope obtained by applying Dudley’s al-
gorithm to PN Q. Combining our assertion with Lemma 2.1
(where PNQ plays the role of P in the lemma), each bound-
ing halfspace of Pp is used in approximating O(1) leaf cells.
We assign each halfspace of Pp to these leaf cells. The
correctness of Dudley’s algorithm implies that the halfs-
paces assigned to any cell L provides an approximation of
P N L. Thus, t; is no more than the number of Dud-
ley halfspaces assigned to L. Since the number of halfs-
paces of Pp is O((cg/e)*"1/?), it follows that 3, t; =
O((0g /)~ Y/2), which completes the proof. [J

We now use the previous lemma as a base case in order
to extend the space-time tradeoff to other query times.

THEOREM 2.3. Let o« > 2 be a constant. The output of
SplitReduce(Q) fort = (0g /) 4™Y/* > 1 is a quadtree with

storage
_ _ 1 _llogp ] —1
O((U:)(d 1)(1 Sllogz o] a )) .

PRrROOF. Let k = |log, a]. Our proof proceeds by induc-
tion on a constant number of steps k. The base case case
k = 1 corresponds to Lemma 2.2. Next, assume that the
theorem holds for 1,...,k — 1, that is, for @ < 2*. We need
to prove that the theorem holds for 2F < o < 2FF1.

Let T" denote the quadtree produced by the algorithm with
2% < o < 281, Let T’ denote the subtree induced by cells
of size at least /2og/2. Arguing exactly as in the proof
of Lemma 2.2, the sum ZL tr, over all leaf cells of T is
O((0g/e) V'), The leaf cells of T’ that have t; < t are
not refined by the algorithm and their total storage clearly
satisfies the bounds of the theorem.



We now consider the subset £ of leaf cells of 7" such that
for L € £ we have t; > t. By Markov’s inequality, |£]| =

1

O((00/e) = V/2) /t = O((0q /)@ (272)). Also, the size
of the cells in £ is between ,/25q/2 and ,/EGq), since larger
cells would have been subdivided.

Recall that the induction hypothesis states that the the-
orem holds for a < 2*. Since the size of the cells L in £ is
o1 < \/E6q, we have t = (o1 /)41 where o/ < /2 for
sufficiently small ¢ < 0¢/4 (if € > 0¢/4, then the theorem
holds trivially). Therefore, we can use the induction hypoth-
esis to obtain the following storage for each cell L € L:

o <(‘76_L)(d‘”(1—2k1—1—%)>

We then multiply by |£]| = O((O’Q/é‘)(dil)(%ié)) complet-
ing the induction with total storage

o))

Note that the height of the quadtree obtained by SplitRe-
duce is O(log(1/€)), since cells of size € are not subdivided.
Therefore, it is straightforward to locate the quadtree cell
containing the query point in O(log(1/¢)) time. Theorem 1.1
follows as a straightforward consequence.

O

3. LOWER BOUND FOR POLYTOPE
MEMBERSHIP

In this section, we present lower bounds on the space-time
tradeoffs obtained by our algorithm for polytope member-
ship. Our main result is the following.

THEOREM 3.1. Let a« > 2 be a constant. There exists a
polytope P such that the output of SplitReduce([—1,1]%) for
t= 1/6(‘#1)/0‘ > 1 is a quadtree with storage

o (1 mVE ),

Our approach is similar to the lower bound proof of [4]. It
is based on constructing a hypercylinder that takes dimen-
sion k, 1 < k < d — 2 as a parameter, and bounding the
storage requirements of our data structure for it. We carry
out this analysis in Lemma 3.3. Later, we will determine the
value of k that yields the best lower bound on the storage as
a function of t,e, and d. The following preliminary lemma
will be useful in Lemma 3.3.

LEMMA 3.2. In any dimension d > 2, there exists a poly-
tope Py of diameter at most A such that any polytope P}

d—1

that approximates Py requires ((A / E)T) facets.

PrOOF. Consider a d-dimensional ball B of radius A/2.
We first show that any polytope Pp that approximates B to
within error 2¢ must have at least Q((A/e)@1/2) facets.
To see this, consider a hyperplane H passing through any
facet of Pg. Translate H so it passes through a point z
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on the boundary of B. Clearly,  must be within distance
2¢ of H. Applying Pythagoras’ theorem, it follows that all
points within distance 2 of H are contained in a spherical
cap that is centered at = and has angular radius O(y/e/A).
By a simple packing argument, it follows that Pg must have
Q((A/e)!4=D/2) facets.

Next, consider any polytope Py that approximates B to
within error €. It follows from the triangle inequality prop-
erty of Hausdorff distances that any polytope that approxi-
mates Py to within error £ approximates B to within error
2¢, and hence requires Q((A/e)@Y/2) facets. [

LEMMA 3.3. Let k and t be integers, where 1 <k < d—2,
1 <t< 1/6((171)/2, and let 0 < € < 1. There exists a
polytope P such that the output of SplitReduce([—1,1]%) for

k
. . 1
P is a quadtree with storage () (t (m) )

ProOF. By Lemma 3.2, there exists a d-dimensional poly-
tope of unit diameter that requires at least (1/e(?~1/2) =
Q(t) facets. It follows that Q(¢) is a lower bound on the
space of the quadtree generated by our algorithm for this
polytope.

We next tackle the more interesting case when the lower
bound given by the lemma is better than Q(¢). Consider
an infinite polyhedral hypercylinder C' whose “axis” is a k-
dimensional linear subspace K defined by k of the coordinate
axes, and whose “cross-section” (i.e., intersection with any
(d—k)-dimensional hyperplane orthogonal to K) is the poly-
tope Py given in Lemma 3.2 for dimension d — k. It follows
from Lemma 3.2 that we can choose A = O(et?/(=k=1)
such that any polytope P} that approximates P requires at
least (2¢ + 1)t facets. Define polytope P to be the trun-
cated cylinder obtained by intersecting C' with the hyper-
cube [—1,1]%.

We may assume that A < 1 since otherwise the bound
given by the lemma is no better than Q(t). We will show
that the output of our algorithm for input P is a quadtree
with storage as given in the lemma.

Consider a set X of points that are at least A apart placed
on the intersection of [—1, 1]* with the k-dimensional axis of
the hypercylinder C. By a simple packing argument, we can
ensure that the number of points in X is at least Q(1/AF).
Let P§* denote the set of cross-sections of C' passing through
the points of X. Consider the set of leaf cells of the quadtree
that overlap any cross-section Py € Pi. Recall from our
construction that these cells must together contain at least
(24 4 1)t facets. We say that a leaf cell is large if its size is
at least A and small if its size is less than A. By a simple
packing argument, the number of large leaf cells intersecting
Py is at most 2¢. Since each leaf cell contains at most ¢
facets, the large leaf cells can together contain at most 2%
facets. It follows that at least t facets are contained in the
small leaf cells intersecting Py. Noting that small leaf cells
cannot intersect two cross-sections of Py, since they are at
least A apart, it follows that the total space used by all the
small leaf cells together is at least Q(¢/X|) = Q(t/A%)
Q(t(1/(et¥@=k=D))k) " which proves the lemma. [

We next determine the value of k that yields the best
lower bound in the above lemma, as a function of ¢,e, and
d. To put the lower bound in a more convenient form, set
t=1/e", where 0 < 7 < (d—1)/2. Up to constant factors,



we obtain a lower bound on the storage of

O

To derive the best lower bound for fixed 7, we select k to
maximize the exponent. Setting the derivative to zero, we
obtain k = (d—1)—+/27(d — 1). (Although this value of k is
not necessarily an integer, the resulting error is captured by
the “—1” term in the exponent of Theorem 3.1.) Substituting
this value of k, the exponent in the lower bound is

(d—1)—2\/2r(d—1) + 3.

Finally, setting 7 = (d — 1)/«, where a > 2 is a constant,
this simplifies to (d — 1)(1 — 24/2/a + 3/a), which proves
Theorem 3.1.

dsed)

4. APPROXIMATE NEAREST NEIGHBOR
SEARCHING

In this section, we present a novel reduction from ap-
proximate nearest neighbor searching to approximate poly-
tope membership. Using our solution for the approximate
polytope membership problem, we obtain significant im-
provements to the efficiency of approximate nearest neighbor
searching. In order to determine the actual approximate
nearest neighbor, instead of simply approximating its dis-
tance, we make the following assumption. When the query
point is reported as outside the polytope, the approximate
polytope membership data structure also returns a halfspace
that defines a facet of the polytope and does not contain the
query point. It is easy to modify our data structure to obtain
such a witness.

The reduction is based on the approximate Voronoi dia-
gram (AVD) construction from [4]. The AVD construction
uses a BBD tree where each leaf cell of the BBD tree stores a
set of representative points. In the AVD, a query is answered
by locating the leaf cell that contains the query point and
then determining the nearest representative from the cor-
responding cell, exactly or approximately. The cells of a
BBD tree correspond to the set theoretic difference of two
quadtree boxes.

The following lemma is central to our reduction and fol-
lows easily from the proofs of Lemmas 6.1 and 8.1 in [4].
Given a cell @ in a BBD tree, let ¢ denote the side length
of Q and let Bg be the ball of radius 2v/dog whose center
coincides with the center of Q’s outer box. The lemma is
illustrated in Figure 2.

LEMMA 4.1. Let 0 < € < 1/2 be a real parameter and S
be a set of n points in R%. It is possible to construct a BBD
tree T' with O(nlog(1/e)) nodes, where each leaf cell Q stores
a subset Rg C S satisfying the following properties:

(i) Rq is an e-representative set for Q (that is, for any
point q in Q, one of the points in Rqg is an approzimate
nearest neighbor of q).

At most one point of Rq is contained in the ball Bg,
and the remaining points of Rqg are contained in the
annulus cBg \ Bq for some constant c.

The total number of representatives over all the leaf
cells is O(nlog(1/¢)).
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Figure 2: Illustration of Lemma 4.1.

Moreover, it is possible to compute the tree 1" and the
sets Rq for all the leaf cells in total time O(nlognlog(1/c))
and the cell that contains a query point can be located in
O(log n +loglog1/e) time.

The following lemma explains how to connect Lemma 4.1
with approximate polytope membership queries.

LEMMA 4.2. Let 0 < € < 1/2 be a real parameter and
consider a quadtree boxr QQ and a set of points Rg as in
Lemma 4.1. Given a data structure for approximate polytope
membership in (d + 1)-dimensional space with query time
tit1 and storage sqi1, it is possible to preprocess Rg into
an ANN data structure for Q with O(tq+1log(1/e)) query
time and O(sq41) storage.

PRrROOF. Since at most one point of Rq is contained in
Bg, the corresponding point may be inspected separately
without increasing the complexity bounds. Therefore, we
can safely assume for simplicity that all points in Rg are
contained in the annulus ¢Bg \ Bg for some constant ¢ > 1.

We make use of the following well known reduction from
exact nearest neighbor searching to vertical ray shooting [2].
First, translate and scale the space in a way that the center
of @ coincides with the origin and the side length of @ is
1. Let U denote the (d + 1)-dimensional paraboloid z44+1 =
z?4...+22 and py denote the vertical projection of a given
d-dimensional point p onto U. In order to answer nearest
neighbor queries among the point set Rg, we map each point
p € Rg into a hyperplane tangent to the paraboloid U at
pu. The nearest neighbor ¢’ of a query point g corresponds
to the first hyperplane hit by the vertical ray emanating
downwards from the point gi7. Call this intersection point
qiy. Also, the squared distance ||g¢’||? (in the scaled space)
is equal to the length of this vertical ray segment, ||quqy |-

Since Rg C ¢Bg \ Bg, we know that the distance between
¢ and its nearest neighbor ¢’ is at least v/d > 1. Conse-
quently, a point ¢. € Rg with ||gq’|| < |lg¢’|| + € is an ap-
proximate nearest neighbor of ¢ and any hyperplane within
vertical distance ¢ of q}; corresponds to a valid approximate
answer. In order to locate such a hyperplane, we perform
a binary search involving O(log(1/¢)) polytope membership
queries, using the fact that ||g¢’|| = ©(1). Each search is
answered by invoking the approximate polytope member-
ship data structure, where the polytope is obtained using
the hyperplanes tangent to the paraboloid and additional
hyperplanes to bound the polytope into a box of constant
size containing all relevant queries. [



Combining the previous two lemmas, we obtain the fol-
lowing theorem.

THEOREM 4.3. Let 0 < & < 1/2 be a real parameter and S
be a set of n points in RY. Given a data structure for approz-
imate polytope membership in (d+1)-dimensional space with
query time tq41 and storage Sq+1, it is possible to preprocess
S into an ANN data structure with O(logn + tq411og(1/€))
query time and O(nlog(1/e) + nsay1/tas1) storage.

Proor. Construct a BBD-tree and the sets Rg as in
Lemma 4.1. For the nodes with |Rq| < t441log(1/e), sim-
ply store the set Rg and answer the corresponding queries
by brute force. For the nodes with |Rg| > tat1log(1/e), use
the construction from Lemma 4.2. The cell containing the
query point can be located in O(logn + loglog1/e) time.
The bound for the total storage follows from the fact that
the total number of representatives > |[Ro| = O(nlog(1/¢))
and the number of nodes with more than ¢4y log(1/e) rep-
resentatives is O(n/tqy1). O

By combining this with Theorem 1.1, we establish Theo-
rem 1.2. While the previous data structure is not formally
in the AVD model, we note that it is possible to convert it
to the AVD model with an overhead of O(log(1/¢)) in the
storage and query time.

S. CONCLUDING REMARKS

In this paper, we have investigated a fundamental geo-
metric retrieval problem, approximate polytope membership
queries. We have presented the first nontrivial space-time
tradeoffs for this problem. Our approach results in a very
simple search structure, namely a quadtree whose leaves
store a finite set of halfspaces. The construction algorithm,
called SplitReduce, is also very simple and arguably of fun-
damental interest. It involves first computing an approxi-
mation of the intersection of a polytope and a quadtree box,
and then splitting the box if this approximation involves an
excessive number of halfspaces.

In spite of the simplicity of this algorithm, its analysis
is nontrivial. Although we have demonstrated significant
improvements over a naive tradeoff, our best lower bound
suggests that there is hope in believing that the algorithm’s
performance may be significantly better.

We have also presented a reduction of approximate near-
est neighbor searching to approximate polytope member-
ship queries. Surprisingly, this results in a remarkably sim-
ple construction for approximate nearest neighbor searching
that provides significantly better space-time tradeoffs than
any known structures. Further improvements in the space-
time tradeoffs for approximate polytope membership queries
will result in commensurate improvements in the efficiency
of approximate nearest neighbor searching. Given the im-
portance of convex polytopes in many other aspects of com-
puter science, the study of approximate retrieval problems
related to these objects is likely to be of broad interest.
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