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Abstract

One of the basic building blocks in any point-based registration scheme involves matching feature points that are
extracted from a sensed image to their counterparts in a reference image. This leads to the fundamental problem of point
matching: Given two sets of points, find the (affine) transformation that transforms one point set so that its distance from
the other point set is minimized. Because of measurement errors and the presence of outlying data points, it is important
that the distance measure between the two point sets be robust to these effects. We measure distances using the partial
Hausdorff distance. Point matching can be a computationally intensive task, and a number of theoretical and applied
approaches have been proposed for solving this problem. In this paper, we present two algorithmic approaches to the
point matching problem, in an attempt to reduce its computational complexity, while still providing a guarantee of the
quality of the final match. Our first method is an approximation algorithm, which is loosely based on a branch-and-
bound approach due to Huttenlocher and Rucklidge, (Technical Report 1321, Dept. of Computer Science, Cornell
University, Ithaca, 1992; Proc. IEEE Conf. on Computer vision and Pattern Recognition, New York, 1993, pp. 705—706).
We show that by varying the approximation error bounds, it is possible to achieve a tradeoff between the quality of the
match and the running time of the algorithm. Our second method involves a Monte Carlo method for accelerating the
search process used in the first algorithm. This algorithm operates within the framework of a branch-and-bound
procedure, but employs point-to-point alignments to accelerate the search. We show that this combination retains many
of the strengths of branch-and-bound search, but provides significantly faster search times by exploiting alignments. With
high probability, this method succeeds in finding an approximately optimal match. We demonstrate the algorithms’
performances on both synthetically generated data points and actual satellite images. ( 1999 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In pursuing an image registration task, we are given
two images of roughly the same scene, and are asked to
determine the transformation that most nearly maps one
image into the other. This problem is of particular inter-
est in remote-sensing and medical imaging. Our interest
in the problem stems from remote-sensing applications,
where it is known that two satellite or aerial images
correspond to roughly the same geographic region, but
the exact alignment between the images is not known.

There are two main approaches to image registration.
One approach makes direct use of the original data (or
edge gradient data) and the other is based on feature
matching. Features may be control points, corners, line
segments, etc. They are assumed to be available as a re-
sult of applying standard feature extraction algorithms.

The first approach, which is based on a correlation
measure between the two images, is computationally
expensive, and is also sensitive to noise unless substantial
preprocessing is employed. See Brown’s survey paper [3]
for more details. Feature-based methods, on the other
hand, tend to yield more accurate results, as features are
usually more reliable than intensity or radiometric
values. Note, though, that feature matching may run into
difficulties if the feature extraction process yields signifi-
cant numbers of missing or spurious features. Feature-
based methods must be robust to these effects if they are
to be useful. Feature-based methods can also be com-
putationally expensive, especially when large point sets
are involved and when the transformation space has
many degrees of freedom. (See the papers by Ton and
Jain [4] and Alt and Guibas [5] for further information.)

In an attempt to arrive at a sound registration scheme
that is both accurate and fast, we consider the problem of
point matching as part of a robust feature-based match-
ing module. We believe that such a generic module will
prove to be a useful component of a versatile image
registration toolbox (currently under development by
a team of researchers at NASA/GSFC [6,7], and will
enhance its overall functional capability. The goal of this
paper is to explore algorithmic methods for solving the
robust point matching problem. The two algorithms pre-
sented in this paper can be broadly classified with respect
to the following four factors, proposed by Brown [3] for
classifying any image registration method.

Feature space: The domain in which information for
matching is extracted. Specifically, we consider control
points that were extracted in the image domain. These
could come from any source, but in most of our tests we
used feature points obtained by wavelet decomposition
of the images.

Search space: The class of transformations that estab-
lish the correspondence between the sensed image and

the reference data. Specifically, we consider two-dimen-
sional affine transformations, allowing for translation,
rotation, scaling along each axis, and shearing. We also
consider subspaces of this class of transformations,
allowing translation and rotation only.

Search strategy: We present two search strategies for
finding the optimal transformation. The first is based on
a branch-and-bound search of transformation space, and
the second combines this with a method based on align-
ment judiciously chosen candidate feature points.

Similarity metric: The figure of merit assigned to
a match that is determined by a specific transformation is
based on the (directional) partial Hausdorff distance (de-
scribed below in detail). This is a robust measure, in the
sense that a fixed fraction of the data may be spurious or
missing without biasing the results.

Unlike the general algorithmic problem of point pat-
tern matching, an important element of image registra-
tion applications is that the search typically begins with
a priori information about bounds of the transformation.
This information is derived from bounds on the uncer-
tainty in the position or orientation of the imaging
system. Thus, unlike model-based pattern matching
applications, which involves searching large spaces for
a small number of likely matches, the goal of image
registration is to produce a single match with high relia-
bility and accuracy.

1.1. Problem formulation and the nature of errors

The point pattern matching problem can be defined
abstractly as follows: We are given two point sets A and
B lying (conceptually, at least) in two different spaces.
Also, we are given a spaceT of transformations mapping
one space into the other. Finally, we are provided with
some measure of the distance between any two point sets.
The problem is to find the transformation q3T that
minimizes the distance between q(A) and B.

Two important assumptions about the feature extrac-
tion process play critical roles in the rest of this paper.
The first is that the extracted feature points are subject to
perturbation errors, which result from a combination of
the image digitization process, expansion or shrinkage of
objects due to variations in lighting conditions, and the
vagaries of the feature extraction algorithm. Depending
on the feature extraction algorithms used, the magnitude
of this error is typically predictable (e.g. proportional to
the size of a pixel in the image).

The second source of error is the presence of outliers,
i.e., feature points from either image that are simply not
present in the other image. Outliers can result from many
sources: the fact that the two images cover different
regions, the presence of clutter or occluding objects in
either image, and the sensitivity of the feature extraction
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algorithm to variations in lighting, point of view, or other
aspects of the imaging process. Unlike perturbation
errors, the errors resulting from outliers can be unpre-
dictably large.

A common approach to handling outliers caused by
occlusion first detects the presence of occlusion, then
prunes the occluded pixels out of the images (by replacing
them with some special value), and finally applies a non-
robust distance measure between the pruned images [8].
In remote sensing, the most common source of obscura-
tion is clouds. However, the danger with such an ap-
proach is that errors in the pruning heuristics may result
in the elimination of desirable features. The approach
used here is that of using all of the available data, but
employing a distance measure that is robust to the pres-
ence of outliers.

Borrowing a term from the field of robust statistics, we
can define the robustness of a similarity measure in terms
of the concept of a breakdown point. We can think of the
pattern matching problem as the task of estimating the
parameters of the matching transformation. Define the
breakdown point of an estimator to be the fraction of
outlying data points (up to 50%) that may cause the
estimator to take on an arbitrarily large aberrant value.
See Refs. [9,10] for exact definitions. (We do not consider
breakdown points in excess of 50%, since if more than half
of the points are outliers, it becomes impossible to distin-
guish inliers from outliers in any reasonable way. In image
processing applications, however, it is often possible to
handle fractions of outliers larger than 50%, provided
that the outliers do not ‘‘conspire’’ between the images.)

1.2. Partial Hausdorff distance

In this paper we consider a well-known robust
measure of similarity called the partial Hausdorf distance
[1,2,11] Consider the set of distances resulting from tak-
ing each point in one set, and finding the nearest point to
it in the other set. Rather than taking the sum or the
maximum of these distances, which may be affected by
outliers, we consider the median or, in general, the kth
smallest distance. More formally, given two point sets
A and B, and a parameter k, 1)k)DAD, we define the
directed partial Hausdorff distance from A to B to be

H
k
(A, B)"Kth

a|A
min
b|B

dist(a, b),

where Kth returns the kth smallest element of the set, and
where dist(a, b) is the Euclidean distance from a to b.
(Readers familiar with the work of Huttenlocher et al.
should note that we reverse the roles of A and B here.)
The parameter k is typically based on a priori bounds on
the number of points of A that are expected to have close
matches in B under the optimum transformation. These
are the inliers.

Observe that this definition is asymmetric. When
matching, it is possible to consider the directed distances
both from A to B and from B to A. Although we have not
considered this, it would be a straightforward extension.
The ‘‘one-sided’’ nature of the distance function is conve-
nient when set A is expected to arise as a pattern in
a much larger subject set B, but is not as important for
image registration applications. It is often more natural
to express k in terms of a quantile. For 0(q)1, define
H

q
(A, B) to be H

k
(A, B), where k"vq DA Dw. If q"0.5,

then the partial Hausdorff distance is a 50% breakdown-
point estimator, since the quality of the final match
cannot be affected by any subset of outliers of size less
than DAD/2.

The final issue to be considered is the space of trans-
formations. The most common assumption is that this is
some subspace of the space of affine transformations. The
set of affine transformations consists of any transforma-
tion that can be expressed as a nonsingular linear trans-
formation followed by a translation. Common subspaces
include translations only, rigid motions (translation,
rotation, and possibly reflection) and homothetic trans-
formations (translation, rotation, and uniform scaling). Our
algorithmic methodology can be applied to any reason-
able space of transformations of bounded dimensionality.

1.3. Prior work

A large number of papers have been written on the
point pattern matching problem in the fields of computer
vision, pattern recognition, and computational geometry.
Most of the formulations of the point matching problem
in computational geometry are not suitable for noisy,
cluttered images either because they require exact match-
es [12], they require 1—1 matches [13,14] or they assume
that every point in one set has a close match in the other
set in terms of the (standard) Hausdorff distance [15—18].
Even under these relatively restrictive assumptions, the
computational complexity can be quite high. For
example, the best-known algorithm for determining the
translation and rotation that minimize the Hausdorff
distance between sets of sizes m and n runs in
O(m3n2 log2mn) time [15,16]. This complexity may be
unacceptably high for applications involving hundreds
or thousands of feature points.

Numerous point matching algorithms have been pro-
posed and used in the fields of computer vision and
pattern recognition. These range from relaxation-based
methods [19,4], to cluster detection in transformation
space (by computing point-to-point correspondences
[20—22], to hierarchical decomposition of transforma-
tion space coupled with the application of a robust sim-
ilarity measure [2,11,23,24]. Most of the techniques
presented in these papers are computationally intensive
(in a worst-case theoretical sense), or take long times to
run in practice.
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Two robust distance measures have been studied from
an algorithmic perspective. The first is the method of
partial Hausdorff distance matching, introduced by Hut-
tenlocher et al. [1,2,11]. The other is the absolute differ-
ence, recently introduced by Hagedoorn and Veltkamp
[24]. Both of these algorithms are based on a branch-
and-bound search of transformation space, which we will
discuss in greater detail below. Kedem and Yarmovski
[35] also gave an algorithm for stereo matching based on
partial Hausdorff distance.

In an attempt to circumvent the high complexity of
point pattern matching, some researchers have con-
sidered Monte Carlo algorithms, which combine the use
of sampling and of transformations obtained through
point-to-point alignments. The basic idea is that the
images of three noncollinear points determine a unique
affine transformation in the plane. Thus, by sampling
a number of triples of points (or even pairs or singletons,
depending on the number of degrees of freedom in the
transformation space), and enumerating all possible
matching triples in the other point set, one is likely to
encounter a good match. This is the basis of many match-
ing algorithms, including those of Goshtasby and others
[20—22] and Goodrich et al. [17]. and also of methods
based on geometric hashing [25,26].

1.4. Contributions

As seen in the previous section, finding exact and
even approximate solutions to point pattern matching
problems can be computationally quite intensive. Two
common methods of point pattern matching are relevant
to understanding our approaches: (1) geometric branch-
and-bound search of the transformation space and (2)
extracting transformations from point-to-point align-
ments. The first method has the advantage that it can
provide arbitrarily good guarantees on the accuracy of
the final match, and that it naturally uses a priori in-
formation to bound the search. The main problem with
this method is that the nature of the search leads to
rather high running times. The second method is very
easy to implement, but it cannot generate results with
better than a fixed constant error (depending on the
transformation space [17]), and does not lend itself easily
to exploiting a priori information in the search.

In this paper, we propose two ways of reducing the
computational burden of point pattern matching for image
registration. Our first innovation is to consider computing
an approximation to the optimum transformation. The
approximation factor can be specified by the user. We
also propose a new algorithm for robust point pattern
matching, called bounded alignment, which we feel com-
bines the stronger points of the branch-and-bound and
alignment methods. It is a Monte-Carlo algorithm, but
the user can make the probability of failure arbitrarily
small. The algorithm is based on the branch-and-bound

search framework, but it uses point alignments to speed
up the search. In particular, when the search reaches
a point where a significant number of point-to-point
correspondences can be inferred, it starts applying align-
ments to these pairs. Unlike the brute-force alignment
method described above, the correspondences are
known, so only a small number of alignments need be
checked. We provide empirical evidence that with high
probability, at least one of these alignments will allow the
search algorithm to ‘‘zoom-in’’ rapidly on the neighbor-
hood of the optimum transformation. This acceleration
can lead to significantly faster overall search times, espe-
cially when the final Hausdorff distance is small relative
to the distances between the feature points.

The rest of the paper is organized as follows. In Section
2 we describe the branch-and-bound approximation al-
gorithm. In Section 3 we present the bounded alignment
algorithm. Section 4 provides empirical results, and Sec-
tion 5 contains concluding remarks.

2. The branch-and-bound algorithm

Both of our registration algorithms are based on a geo-
metric branch-and-bound framework. This framework
was first developed by Huttenlocher and Rucklidge for
performing approximate point pattern matching using
the partial Hausdorff distance [2,27,28], and was also
used by Hagedoorn and Veltkamp [24] in their algo-
rithm for performing approximate matching using the
absolute difference similarity measure. Our algorithm
was developed independently of that by Hagedoorn and
Veltkamp, but its overall structure is quite similar. Be-
cause the bounded alignment algorithm is based on the
branch-and-bound algorithm, we will also describe the
branch-and-bound algorithm here.

Recall that we are given two points sets A and B
and a space of transformations T. We are also given
a distance quantile q, 0(q)1. The problem is to find
q3T that minimizes the partial Hausdorff distance
H

q
(q(A), B). Since A and B will be fixed for the remainder

of the discussion, let us define sim
q
(q) as the similarity

measure of q. (Note that the better the match, the smaller
the similarity measure.) Let q

opt
denote this optimum

transformation, and let sim
opt

be the optimum similarity.

2.1. Transformation space

There are a number of different ways to describe the
space T of transformations. In our implementation we
have assumed that T is a bounded set of affine trans-
formations. Assuming that the point sets A and B are
both in two-dimensional space, any affine transformation
q applied to a point a3A can be expressed as a linear
transformation M followed by a translation t, i.e.

q(a): Ma#t,
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where a and t are two-element column vectors, and M is
a 2]2 matrix. Since six parameters are needed to define
the transformation, this naturally leads to a six-dimen-
sional transformation space. The algorithm can be ap-
plied to any reasonable parameterization of this space.

There are somewhat more natural ways to describe
affine transformations in terms of translation, rotation,
scaling, and shearing. We have implemented two forms,
one which uses the six coefficients defining M and t, and
another which is used for rigid transformations (without
reflection), in which we model a transformation as a
point in 3-space by giving its rotation angle h and the
x- and y-components of the translation. The description
given here is based on the most general case of six-
dimensional space; the restriction to lower-dimensional
spaces is straightforward.

2.2. Approximation error

There are three natural ways to define the approxima-
tion error. The approximation may be suboptimal by
some relative error factor; it may be suboptimal because
of some absolute additive error; or it may be suboptimal
because too small a quantile was used in the Hausdorff
distance. Rather than define three separate approxima-
tion problems, we provide three nonnegative parameters
which allow the user to control these tradeoffs:

f e
r
, the relative error bound,

f e
a
, the absolute error bound, and

f e
q
, the quantile error bound.

Define q@"(1!e
q
) q to be the weak quantile. Note that

since q@)q, we have sim
q{
(q))sim

q
(q), for any q3T. We

say that a transformation q is approximately optimal
relative to these parameters if either

sim
q{
(q))(1#e

r
)sim

opt
or sim

q{
(q))sim

opt
#e

a

holds. We call these conditions approximate correctness
conditions. Thus, the approximate solution is slightly less
robust, in that it considers only the weak quantile rather
than the true quantile, and it may exceed the optimum
similarity by a relative error of e

r
or an absolute error of

e
a
. Later we show that as long as e

a
'0 or e

r
sim

opt
'0,

termination is guaranteed. The branch-and-bound
search of Refs. [2,24] implicitly provides e

a
but not the

other two parameters.

2.3. Exact algorithm

We begin by describing an exact version of the algo-
rithm, and later in Section 2.5 we describe the changes
needed to yield the approximation algorithm. As men-
tioned earlier, the algorithm is based on a geometric
branch-and-bound search of transformation space. We
construct a search tree, where each node of the tree is

identified with the set of transformations contained in
some axis-aligned hyperrectangle in the six-dimensional
transformation space. These hyperrectangles are called
cells. Each cell ¹ is represented by a pair of transforma-
tions, (q

lo
, q

hi
), whose coordinates are the upper and lower

bounds on the transformations of the cell. Any trans-
formation whose coordinates lie between the correspond-
ing coordinates of q

lo
and q

hi
lies in this cell.

The algorithm begins with an initial cell, which is
assumed to contain the optimum transformation. This is
supplied by the user, based on a priori knowledge of the
nature of the transformation (e.g. bounds on the possible
translation and rotation). A cell is either active, meaning
that it is a candidate to provide the optimum transforma-
tion, or killed, meaning that it cannot provide the opti-
mum solution. At any time the union of the active and
killed cells forms a partition of the initial cell into subcells
with disjoint interiors. The algorithm proceeds by select-
ing one of the active cells to be processed. After proces-
sing, a cell is either killed or is split into two disjoint
subcells. Each of the subcells is made active. We will
discuss termination conditions later.

Let us consider the algorithm in somewhat greater
detail. For each cell ¹ that we process, we are interested
in the transformation of this cell that has the smallest
similarity measure. We compute an upper bound sim

hi
(¹)

and a lower bound sim
lo
(¹) on this smallest similarity

(discussed below). For each upper bound, there will be
a transformation that serves as a witness to this upper
bound. The algorithm maintains the best similarity
sim

best
that it has encountered thus far in the search, and

the associated transformation q
best

. To process a cell, we
first compute its lower bound (see details below). If the
lower bound exceeds sim

best
, we kill this cell. Otherwise,

we compute the upper bound, and if it is less than sim
best

,
we update the current best.

To compute the upper bound, we may sample any
transformation from within the cell. In our implementa-
tion, this is done by simply taking the midpoint q of the
cell, and then computing sim

q
(q). In particular, this in-

volves computing the image of each point of A under q,
and then computing the nearest neighbor in B for each
image point. Since the cell’s optimum similarity is smaller
than (or equal to) any sampled point, this is an upper
bound on the minimum similarity of the cell. Nearest
neighbors are computed by storing the points of B in
a kd-tree data structure, and applying known efficient
search techniques [29—31].

To compute the lower bound, we use a technique
similar to that described in Refs. [2,24]. Given any cell
¹LT, and given any point a3A, consider the image of
a under every q3¹. It is easy to compute a bounding
rectangle for this set. For example, if the coordinates of
a are nonnegative, this is the rectangle defined by the
corner points q

lo
(a) and q

hi
(a). (The general formula in-

volves a case analysis on the signs of the coordinates of a.)
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Fig. 1. Uncertainty regions.

We call this bounding rectangle the uncertainty region of
a relative to ¹. This is essentially the same concept as the
traced volumes introduced by Hagedoorn and Veltkamp
[24]. In this way, each cell is associated with a collection
of uncertainty regions, one for each point of A. (See Fig. 1
for an illustration of uncertainty regions. The trans-
formed points of A are shown in white, each transformed
by the midpoint of the transformation cell; the points of
B are shown in black; and the uncertainty regions are
shown as rectangles.)

Define the distance between an uncertainty region and
a point b3B to be the minimum distance between b and
any part of the uncertainty region. If b lies inside the
uncertainty region, then the distance is zero. To derive
our lower bound for ¹, for each point a3A, we compute
the distance from the corresponding uncertainty region
to its nearest neighbor in B. Observe that this distance is
a lower bound on the distance from q(a) to its nearest
neighbor in B, for any q3¹. We then take the qth
smallest such distance. Call this sim

lo
(¹ ). Clearly, this is

a lower bound on sim
q
(q) for any q3¹, and hence is

indeed a lower bound for the cell. Nearest neighbors to
an uncertainty region can be computed by a straightfor-
ward generalization of the kd-tree-based nearest neigh-
bor method described above [32].

2.4. Cell processing

Next we consider how cells are processed. We split
each cell into two subcells (rather than 26"64 subcells
as in Ref. [2]). We choose the cell to be processed and the
splitting dimension so as to reduce the size of the uncer-
tainty region as much as possible. In particular, define
the size of an uncertainty region to be its longest side.

Define the size of a cell to be largest size among the
associated uncertainty regions for each point in A. (Note
that cell size is not defined in terms of the size of the
hyperrectangle in transformation space.) Our implemen-
tation computes a fast upper bound on this size, by first
computing the bounding box for the points of A, and
then computing the maximum size of the uncertainty
region generated by any point in this bounding box. The
active cells are stored in a priority queue, ordered by cell
size. The largest cell, that is, the cell generating the largest
uncertainty region, is chosen for processing at each stage.

If a cell survives processing, it is split along one of its
sides into two smaller cells. Consider a cell ¹ defined by
a lower and upper bound range (q

lo
, q

hi
). To determine

which side to split, we determine which of the six compo-
nents of the transformation range contributes most to the
size of the uncertainty region, and then we split the cell
through its midpoint along this dimension. To make this
precise, first consider the transformation *"q

hi
!q

lo
,

formed by taking the component-by-component differ-
ences of these transformations. In particular, * is de-
scribed by a 2]2 matrix whose entries are *

ij
for

i, j3M1, 2N and a translation vector (t
1
, t

2
). Given a point

a"(a
1
, a

2
) 3A, by the linearity of our representation,

the size of the uncertainty region of a point a is just the
longer side of the vector *(a). The x- and y-components
of this vector are

x"*
11

a
1
#*

12
a
2
#t

1
,

y"*
21

a
1
#*

22
a
2
#t

2
.

We define the component that contributes most to the
size of a’s uncertainty region to be the largest in absolute
value among the six terms consisting of the *

ij
a
j
’s and

the t
i
’s. This is for a single point a. To define the compon-

ent that contributes most to the size of an entire cell ¹,
we take maximum component over all points a3A. In
our implementation, we compute a fast bound by taking
the maximum over all points lying in the bounding box
of A. Because there are six dimensions that affect the size
of each uncertainty region, and given the linearity of the
transformation space, we have the following result:

Lemma 1. (i) After six consecutive splits, the size of a cell
(that is, the maximum side length of its largest uncertainty
region) decreases by at least half.

(ii) If there are currently m active cells, then after at most
64m instances of cell processing, the size of the largest cell
decreases by at least half.

Proof. The first part follows from linearity and the fact
that at each step we bisect the side of the cell that
contributes the most to the size of the uncertainty region.
Since each cell has six sides, with each six consecutive
splits all six components must be decreased by at least
one-half; hence the longest side has decreased by at least

D.M. Mount et al. / Pattern Recognition 32 (1999) 17—3822



half. To prove the second part, observe that six levels of
splitting will generally result in at most 26"64 new
cells. In the worst case, none of these cells is killed. Thus,
if m cells are currently active, after 64m new cells have
been generated, we must be at least six levels deeper in
the search tree. From (i) it follows that the sizes of all
cells, and of the largest cell in particular, decrease by at
least half. h

2.5. Approximation algorithm

Having completed the description of the exact algo-
rithm, we now discuss how to modify it to obtain an
approximation algorithm. First, we compute the upper
bound sim

hi
(¹) on the similarity of a cell using the weak

quantile q@, rather than the true quantile q. Thus we have
sim

hi
(¹)*sim

q{
(q), for any q3¹. Second, the condition

for killing a cell is not that the cell’s lower bound be
greater than the current best, but that its lower bound
not be significantly lower than the current best. In par-
ticular, given a cell ¹ with lower bound sim

lo
(¹), it is

killed if either

sim
lo
(¹ )'

sim
best

1#e
r

or sim
lo
(¹ )'sim

best
!e

a

is met. The algorithm terminates when all cells have been
killed or when sim

best
(e

a
.

Here is an overview of the approximation algorithm.
The input consists of the point sets A and B, the Haus-
dorff quantile q, the approximation parameters e

r
, e

a
, and

e
q
, and the initial cell ¹

0
.

(1) Build a nearest neighbor data structure for the points
of B. Initialize the priority queue to contain ¹

0
. Set

sim
best

"R. Define the weak quantile q@ to be
q(1!e

q
). Repeat steps (2)— (5) until the priority queue

is empty or until sim
best

)e
a
.

(2) Remove the largest cell ¹ from the queue. Compute
its lower and upper bounds. This involves the follow-
ing steps:

(a) Compute the uncertainty regions for every point
a3A with respect to ¹.

(b) For each uncertainty region, compute its nearest
neighbor in B (where the distance from a point to
a region is defined to be the shortest distance
between the point and any part of the region).

(c) Using any fast selection algorithm, compute
the qth quantile among these distances. Call
this sim

lo
(¹ ). If sim

lo
(¹ )'sim

best
/(1#e

r
) or if

sim
lo
(¹ )'sim

best
!e

a
, kill this cell and return to

step (2).
(d) Otherwise, sample a transformation q from this

cell. Compute the image of each point of A under
q, and compute the nearest neighbors of these

points with respect to B. Find the q@th smallest
such distance. Call this sim

hi
(¹ ).

(3) If sim
hi
(¹ )(sim

best
, update sim

best
and let q

best
be the

associated transformation.
(4) Split ¹ into two smaller subcells ¹

1
and ¹

2
, by

splitting it along the dimension that contributes most
to its uncertainty region size. Compute size bounds
for ¹

1
and ¹

2
.

(5) Enqueue ¹
1

and ¹
2

in the queue of active cells.

The final transformation is q
best

and its similarity is
sim

best
. The correctness of the algorithm is established by

the following theorem.

Theorem 1. If e
a
'0 or e

r
sim

opt
'0, the approximation

algorithm eventually terminates, and upon termination
q
best

satisfies at least one of the following approximate
correctness conditions:

(i) sim
best

)(1#e
r
) sim

opt
,

(ii) sim
best

)sim
opt

#e
a
.

Before presenting the proof, observe that e
a
, e

r
, and

sim
opt

are all nonnegative quantities. Thus, the only way
to violate this condition is if the user sets e

a
"0, and

either e
r
or sim

opt
is equal to zero.

Proof. First we show that the algorithm eventually ter-
minates. Suppose to the contrary that the algorithm does
not terminate. Recall that the size of a cell is the longest
side of all of the associated uncertainty regions. Since the
initial cell is bounded, it follows from Lemma 1 that if the
algorithm does not terminate, then after a sufficiently
large number of cells have been processed, the maximum
cell size falls below any given positive threshold. Let

b"maxAea ,
e
r

1#e
r

sim
optB .

From the hypotheses of the theorem, we have b'0. We
will show that when every active cell has size less than
b/J2, every cell to be processed will be killed. Hence the
algorithm must terminate.

Consider any cell ¹ that is processed after this hap-
pens, and let q denote the transformation that was sam-
pled from the midpoint of ¹ in computing sim

hi
(¹). Let

d(a) denote the distance between a’s uncertainty region
and the nearest point in B. Let d@(a) denote the distance
between q(a) and its nearest neighbor in B. The diameter
of each uncertainty region is at most J2 times its size.
Because q(a) lies within a’s uncertainty region, and the
size of ¹ is at most b/J2, it follows that

d(a))d@(a))d (a)#b.

Let d be the qth quantile of d (a) taken over all a3A, and
let d@ be the q@th quantile of d@(a) for a3A. Since the above
inequality holds irrespective of a, and since q@)q, we
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have d@)d#b. By construction, sim
lo
(¹ )"d and

sim
hi
(¹ )"d@, from which we have

sim
hi
(¹ )!sim

lo
(¹ )(b.

Since q was considered as a candidate for the best sim-
ilarity, we have sim

best
)sim

hi
(¹ ). Combining this we

have the following relationship between sim
best

and
sim

lo
(¹ ).

sim
best

!sim
lo
(¹ ))sim

hi
(¹ )!sim

lo
(¹ )

(maxAea ,
e
r

1#e
r

sim
optB

)maxAea ,
e
r

1#e
r

sim
bestB .

There are two cases. If the maximum is achieved by e
a
, we

have

sim
lo
(¹ )'sim

best
!e

a
.

On the other hand, if the maximum is achieved by the
other term, we have

sim
lo
(¹ )'

sim
best

1#e
r

.

In either case, ¹ satisfies one of the two conditions
needed to kill it. Thus, no cell can survive beyond this
point, and the algorithm will terminate.

To establish the correctness of the algorithm upon
termination, first recall that sim

best
"sim

q{
(q

best
). We

show that at least one of the approximation conditions
stated in the theorem holds in either case. First, if the
algorithm was terminated because sim

best
)e

a
, then since

the optimum similarity is nonnegative, we have
sim

best
)sim

opt
#e

a
, implying that (ii) holds.

Suppose, on the other hand, the algorithm terminates
because all the cells have been killed, consider the
moment at which the cell ¹ containing the optimum
transformation, q

opt
, is killed. The lower bound

for this cell satisfies sim
lo
(¹ ))sim

q
(q

opt
). It was killed for

one of two reasons. First, if sim
lo
(¹)'sim

best
/ (1#e

r
) we

have

sim
best

((1#e
r
) sim

lo
(¹ ))(1#e

r
) sim

q
(q

opt
)

"(1#e
r
) sim

opt
,

implying (i). On the other hand, if sim
lo
(¹) 'sim

best
!e

a
,

then we have

sim
best

(sim
lo
(¹)#e

a
)sim

q
(q

opt
)#e

a
"sim

opt
#e

a
,

implying (ii). Hence when the algorithm terminates, all
the cells — including the optimal cell — have been killed,
implying that the reported transformation is approxim-
ately correct.

3. Bounded alignment

The branch-and-bound algorithm has many nice fea-
tures, but its main drawback is its relatively high running
time. This occurs especially when high accuracy is re-
quired and the optimum similarity is very good. The
reason for this is that the algorithm must decompose a
(typically 2—6 dimensional) search space into very small
cells in order for the uncertainty regions to be sufficiently
small so that the lower bounds become large enough to
kill unpromising cells.

For this reason, we introduce an additional process
called bounded alignment to help accelerate the search.
Throughout this section, we assume that the transforma-
tion space is the six-dimensional space of affine trans-
formations. Generalizations to other transformation
spaces are straightforward.

3.1. Intuition

Before discussing what bounded alignment is, let us
consider why the branch-and-bound approximation al-
gorithm may run slowly, and how it might be speeded up.
It is argued in the proof of Theorem 1 that the algorithm
terminates when the cell sizes decrease to around
max(e

a
, e

r
sim

opt
). If this quantity is small compared to the

initial uncertainty bounds, then the algorithm may re-
quire a great deal of splitting before achieving this size.
Of course, not all cells need to be split to this small size,
but at the very least, observe that if the uncertainty
region of a cell contains even a single point of B, then this
region contributes a distance of zero to the set of distan-
ces used in computing the lower bound for this cell. Thus,
to have a nonzero lower bound, a significant fraction
(at least q) of uncertainty regions must contain no points
of B. As cell sizes shrink, before we arrive at a stage
in which many cells have nonempty uncertainty regions,
we will first reach a stage where many cells have uncer-
tainty regions that contain at most a single point. When
this happens, we can determine that there is a unique
corresponding matching point for each of these uncer-
tainty regions. It is at this point that alignment can be
applied.

To illustrate the idea, consider the example shown in
Fig. 2. (Transformed points of A are indicated in white
and points of B in black.) To simplify the discussion,
consider the case of translation alone. Let k"4 (q"0.5),
and suppose that there is a match with H

4
"0. There are

8 points in A, and there is a translation for which at least
4 of them (or actually 5) match exactly.

On the left we show an example where the cell contains
the optimum transformation. Suppose that the search
has progressed to a stage where most of the uncertainty
regions associated with the points of A contain at most
one point of B. Consider the points of A that have exactly
one point of B in their uncertainty regions. We sample
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Fig. 2. Alignment applied to three cells in transformation space.

one such point at random and compute the unique trans-
formation that maps this point to the corresponding
point of B (indicated by an arrow in the figure). There is
a good probability (at least 1/2) that the point of A that
we picked is an inlier, implying that the point of B in its
uncertainty region is its matching point. The resulting
transformation is the desired optimum (or in the case of
errors, should be close to the optimum).

On the other hand, if a cell does not contain the
optimum (or any transformation close to the optimum),
then consider the following two cases. In the middle
figure we illustrate a case in which most of the uncertain-
ty regions contain no matching point of B. In this easy
case, even the branch-and-bound algorithm will report
that no match exists and the cell will be killed. However,
consider the case shown on the right. Here a majority of
the uncertainty regions contain a point of B. As a result,
the lower bound associated with this cell becomes zero,
and it is not possible at this stage for the branch-and-
bound algorithm to distinguish this cell from the one
containing the optimum. However, if we apply the same
sampling that we did to the cell on the left (one such
sampling is indicated by an arrow in the figure), then we
should expect to find that every sample returns a rather
poor similarity measure. After taking a number of sam-
ples and witnessing repeatedly poor similarities, we may
regard this as evidence that the cell in question does not
contain the optimum and therefore we kill it. This is the
intuitive basis for bounded alignment, i.e. of using the
bounds provided by the branch-and-bound framework
to guide the alignment process (rather than simply enu-
merating all possible alignments as in Ref. [17]), and in
turn using the results of these alignments to guide the
branch-and-bound search.

3.2. Alignment

Let us think of the points of A as being partitioned into
two classes: inliers, i.e. points that are mapped by the

optimum transformation to lie within distance sim
opt

of
their nearest neighbors in B, and outliers, i.e. all the
remaining points of A. By definition of sim

opt
as a q-

quantile Hausdorff distance, at least fraction q of the
points of A are inliers. (Normally, the concept of an inlier
is based on the underlying point distribution, but this
functional definition is sufficient for our purposes.) To
simplify the explanation, suppose for a moment that the
inliers are completely free of error, that is, the q-quantile
Hausdorff distance is zero for the optimum transforma-
tion, q

opt
. If we were able to find three inliers of A and

match them against the corresponding elements of B, and
further, if these three points of A were affinely independent
(i.e., not collinear), then these three-point correspond-
ences would uniquely determine the affine transforma-
tion that achieves a Hausdorff distance of zero. The
process whereby triples from A are matched against
prospective corresponding triples from B in order to
determine a candidate transformation is called alignment.

Of course, in a noisy environment it is unreasonable to
assume that points can be matched exactly. Furthermore,
the numerical extraction of the affine transformation may
introduce errors. To generalize this to noisy environ-
ments, suppose that for each inlier a3A there is a point
of B that lies within some small distance g from its
optimum image point, q

opt
(a). We assume that an upper

bound on g, called the noise bound, is provided to the
search algorithm. For image registration applications,
such an estimate could be based on knowledge of the
accuracy of the feature extraction process. In general, this
parameter could be determined through binary search.
The final Hausdorff distance will be no larger than g. If
g is small relative to the size of the image, and if the three
points are geometrically well distributed, we can expect
that the match that results from alignment should be
fairly close to the optimum. Intuitively, a geometrically
well-distributed triple should define a large, ‘‘fat’’ triangle
among the points of A. To make this more formal, we
present the following definition.
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Fig. 3. Alignable uncertainty regions.

Definition. Given a set of points A in the plane and
a*1, a triple Ma

1
, a

2
, a

3
N-A is well-distributed relative

to a if every point a3A can be expressed as an affine
combination a"a

1
a
1
#a

2
a
2
#a

3
a
3

such that Da
i
D)a.

Given this definition, we have the following result: (See
Ref. [17] for similar bounds for other subspaces of affine
transformations.)

Lemma 2. Given a planar point set A, a well-distributed
triple Ma

1
, a

2
, a

3
N relative to some a'1, and an affine

transformation q that maps each of the points a
i
to a point

that lies within distance g of a
i
, then for any point a3A, the

distance between q (a) and a is at most 3ag.

Proof. Consider any point a3A. By the definition of
well-distributed, we can write a as +

i
a
i
a
i
, where Da

i
D)a.

By linearity we have q(a)!a"+
i
a
i
(q(a

i
)! a

i
). By the

triangle inequality we have

Dq(a)!aD)
3
+
i/1

a
i
Dq(a

i
)!a

i
D)g

3
+
i/1

a
i
)3ag. h

This lemma implies that if alignment is applied to
a well-distributed triple of points and if the images of the
aligned points are perturbed by a small amount g, then
the perturbation induced by the resulting transformation
will be proportional to g.

In general, the number of subsets that have to be tested
may be quite large. However, the branch-and-bound
search provides a particularly simple way of identifying
the most promising correspondences to try. In particular,
as the search proceeds and cells are split, the search
eventually arrives at a stage in which a significant frac-
tion of the uncertainty regions will contain at most a
single point of B. An uncertainty region is said to be
alignable if there is at most one point of B in the region,
or if the region is empty and there is at least one point
of B within distance g of the region. If the current cell has
a significant fraction of alignable uncertainty regions, we
say that this cell is eligible for alignment. (See Fig. 3. The
transformed points of A are shown in white, and points
of B are shown in black. Alignable uncertainty regions
are shown with solid lines, and unalignable uncertainty
regions are shaded. For each alignable uncertainty
region, a line segment joins the associated (i.e. trans-
formed) point of A to its nearest neighbor in B).

Consider the cell containing the optimum transforma-
tion. If it is eligible for alignment, then for each of its
alignable uncertainty regions, there is a single obvious
candidate to which the corresponding point of A should
be mapped. That is, if the uncertainty region is non-
empty, a point of B lies within the uncertainty region;
otherwise, it is the nearest neighbor of the uncertainty
region. Furthermore, if a3A is an inlier, the nearest
neighbor in B should lie within distance g of a, and hence
within g of the uncertainty region.

To apply alignment, we need to make the assumption
that the uncertainty regions of outliers are not more
likely to be alignable than those of inliers. (If this assump-
tion is violated, we should at least have a bound on the
difference between these probabilities.) Under the stated
assumption, if we randomly sample three alignable un-
certainty regions of A (without replacement), then with
probability roughly q3, all three points will be inliers.
Thus, the three respective nearest neighbors of B will be
within distance g from each of these points. Moreover, it
follows from Lemma 2 that if the three sampled A are
well-distributed, the alignment transformation (that re-
sults from considering the correspondence between the
sampled triple from A and its counterpart from B) will be
a reasonable approximation to the optimum, in the sense
that the Hausdorff distance should not exceed the opti-
mum Hausdorff distance by an amount greater than
a constant c times g (as determined by Lemma 2).

Thus, under the above assumptions, and depending on
q, if we take a sufficiently large number N of random
samples, the probability of generating an alignment
transformation whose distance from the optimum is
more than cg is at most (1!q3)N. (To see this, observe
that (1!q3) is the probability that all three sampled
points of A are outliers, and for failure this event must be
repeated N times.) To reduce the chances of failing to find
at least one good triple to some small failure probability
p
f
, the number of well-distributed samples should satisfy

N(q, p
f
)*

ln p
f

ln(1!q3)
.

For example, to reduce the probability of failure below
0.01, and for q"0.5, roughly 35 sampled triples are
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sufficient. Note that this constant, while large, is indepen-
dent of the numbers of feature points in the images.

If, on the other hand, we find that N (q, p
f
) well-distrib-

uted sampled triples all yield similarities that exceed the
current best (by at least cg), we conclude that the cell in
question does not contain the optimum transformation,
and discard it from further consideration. This is the
basis of alignment. Observe that it is a Monte Carlo
process, in the sense that with probability p

f
we may

erroneously kill the cell containing the optimum trans-
formation.

3.3. Processing alignments

Let us now describe the alignment process in greater
detail. First, we need to make the following assumption
upon which alignment relies.

Alignment assumption. For a cell containing the opti-
mum transformation, the probability that an uncertainty
region associated with this cell is alignable, and the
probability that an alignable triple is well-distributed are
not greater for outliers than for inliers.

As mentioned above, this assumption is not necessarily
realistic. But if it is possible to estimate the difference in
the conditional probabilities (that an uncertainty region
is alignable) for inliers and outliers, and if these probabil-
ities are not significantly different, then the number of
samples derived above can be modified accordingly. If
this assumption is not expected to hold (e.g. when inlying
feature points are highly clustered), then bounded align-
ment may not perform well.

We can incorporate alignment into the existing
branch-and-bound approach as follows. The additional
processing is added just after the upper and lower bounds
have been computed for a cell. We supply the algorithm
with three additional pieces of information: an expected
perturbation g between inliers and their corresponding
points in the final match, a sampling quantile q

s
, and

a minimum sample size N
s
(the latter two are explained

below in more detail). First, we augment the procedure
that computes the distance from each uncertainty region
to its nearest neighbor to compute the number of points
of B that lie within the uncertainty region. This can be
done by modifying the kd-tree nearest-neighbor algo-
rithms [32]. If this number is at most one, and the
nearest-neighbor is within distance g of the uncertainty
region, then we flag this region as being alignable.

After processing all the uncertainty regions, if the frac-
tion of alignable uncertainty regions exceeds q

s
, we de-

clare that the cell itself is eligible for alignment. If so, let
A@ denote the subset of A such that for each a3A@, there
exists at least one point b3B that either lies inside or
within distance g of a’s uncertainty region. If this cell
contains the optimum, then these are the only candidates

to be inliers. Sample (without replacement) N
s
triples of

points from A@, such that each triple is well-distributed
(relative to some given constant). This is done by repeat-
edly sampling triples, until one that is well-distributed is
found. For each sampled triple we compute an alignment
transformation as follows. For each point a of the triple,
sample a random point b3B lying inside or within dis-
tance g of a’s uncertainty region. Generate the trans-
formation that aligns the triple from A@ with these
corresponding points of B, and compute its similarity. If
the similarity of this transformation is better than the
current best similarity sim

best
, make it the new best. If the

similarity obtained for all of the N
s
transformations ex-

ceeds the current best by an additive amount cg, kill this
cell. Otherwise, the cell remains active, and the normal
processing described in the previous section resumes.

Testing and updating the similarity for each sampled
triple as described above can be further exploited as
follows. As already stated, if we find that any sampled
transformation is better than the current best (and the
transformation satisfies the additional allowability con-
ditions), we take this transformation to be the current
best. Thus alignment not only helps in improving lower
bounds, but serves to generate better upper bounds.

Here is a summary of the steps used for the bounded
alignment algorithm. (These steps are added after step
(2d) in the previous description.) The algorithm is given
an expected inlier perturbation g, a sampling quantile q

s
,

and a minimum sample size N
s
.

(e) For each a3A, count the number of points of B that
lie within a’s uncertainty region. If this at most one,
and the nearest neighbor is within distance g of the
uncertainty region, flag this region as alignable.

(f ) If the fraction of alignable uncertainty regions is less
than q

s
, return to step (2). Otherwise, let A@ denote the

subset of A such that for each a3A@, there exists at
least one point b3B that either lies inside or within
distance g of a’s uncertainty region. Repeat the fol-
lowing N

s
times:

(i) Sample (without replacement) triples of points of
A@, until a triple that is geometrically well-distrib-
uted is found.

(ii) Compute the transformation that aligns each
point in the triple with a random point of B in its
associated uncertainty region. Compute the sim-
ilarity of this transformation.

(iii) If the similarity of this transformation is better
than the current best similarity sim

best
, make it the

new best.

If the similarity obtained for all of the N
s
transforma-

tions exceeds the current best by an additive amount of g,
kill this cell.

Our implementation differs slightly from this descrip-
tion. We do not check that the points are well-distributed.
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Instead, we apply a somewhat more precise test. We
generate the alignment transformation and then test
whether this transformation lies within or is sufficiently
close to the current cell. The definition of ‘‘sufficiently
close’’ is that the translational component should be
within some fixed constant factor of g, and the entries of
the matrix M should be within a constant factor of the
ratio of g to the diameter of the point set A. Our reason-
ing is that points do not need to be well-distributed, as
long as they generate a transformation that is reasonably
close to the cell. Because of its Monte Carlo nature, the
danger in alignment is that the cell containing the opti-
mum may be killed accidentally. If the current cell con-
tains the optimum transformation, we expect that the
transformation generated by a triple of inliers should
either lie inside or close to the cell. If not, we conclude
that the triple is unacceptable. Because it is easy to test
this condition once the transformation has been gener-
ated, we generate triples until this condition is satisfied. If
we fail after a repeated number of tries (10 in the current
implementation), we treat this sample as a failure.

3.4. Analysis

Under what circumstances does alignment offer an
advantage over pure branch-and-bound? At this point
we do not have a theoretical analysis or even a complete
empirical analysis explaining when this happens. How-
ever, based on our empirical experiences with the algo-
rithm on uniformly distributed point sets, in many
instances alignment can offer significant improvements in
running time over pure branch-and-bound search (see
Section 4). In particular, we have observed that align-
ment seems to offer the greatest advantage when the
deviation g in the location of feature points is relatively
small with respect to the expected distance d from a ran-
dom point and its nearest neighbor in B.

Here is some informal justification for this empirical
observation. Assume that the points of B are uniformly
distributed, and for simplicity suppose that the center of
each uncertainty region is sufficiently random that the
expected distance to the nearest point of B is d. When the
sizes of the uncertainty regions decrease to roughly d,
alignment becomes possible, because many uncertainty
regions of the cell containing the optimum transforma-
tion should contain at most one point of B. Also note
that at this point, the current best similarity is expected
to be proportional to d. This is because we cannot expect
to locate the optimum much more precisely than the cell
size (unless we happen to be very lucky in sampling
a transformation). However, by the reasoning earlier in
this section, once we reach this stage, and alignment can
be applied to the optimum cell, we expect to discover a
transformation whose similarity is not greater than
sim

opt
#cg. Recall that sim

opt
)g, and so sim

best
is now

proportional to the optimum. Thus, if the ratio d/g is

large, the alignment algorithm has a big advantage, as
the tighter upper bound makes it possible to kill more
unpromising cells.

Also consider the conditions needed to kill a nonopti-
mal cell. Assuming, as before, that sim

best
is proportional

to d at this stage of the search, then (considering just the
relative error) a cell ¹ cannot be killed until

sim
lo
(¹ )'

sim
best

1#e
r

*

d
1#e

r

.

The distance from an uncertainty region to its nearest
neighbor in B is expected to be at most d minus the radius
of the uncertainty region. It follows from simple algebra
that if the cell size is larger than 2e

r
d, this condition is not

likely to be satisfied by most of the cell’s uncertainty
regions. But alignment already applies when the cell size
is roughly d. Thus, the pure branch-and-bound approach
must continue to split the cell until its size is reduced by
an amount proportional to 2e

r
before it can be killed. By

Lemma 1, this may require 6 log
2
(1/2e

r
) additional splits,

and could result in the generation of (1/2e
r
)6 additional

cells. For even moderately small values of e
r
, this value

may be significantly larger than the N
s
samples generated

by alignment; hence alignment may offer a significant
improvement over pure branch-and-bound.

4. Empirical study

We have implemented search algorithms in C##both
for standard branch-and-bound search and for as
branch-and-bound with bounded alignment search. We
have also implemented a driver program to run a series of
tests, and to gather statistics about the performance of
the two algorithms. Nearest-neighbor and range queries
were performed using kd-trees as generated by the ANN
approximate nearest neighbor library [33]. The driver
program can either read input sets from a file or generate
inputs randomly from a number of distributions.

We ran experiments on both synthetically generated
data sets and real satellite images to test the general
behavior of our algorithms, and specifically to study the
performance of branch-and-bound with and without
bounded alignment.

4.1. Synthetic experiments

For the synthetic experiments, the point sets were
generated as follows. First the user specifies the number
of points in the sets A and B, bounding rectangles for
A and B, the desired fraction of inliers of A, and the
standard deviation p of a random perturbation to be
applied to each image point. An affine transformation q is
generated at random from a collection of bounds on the
x and y translation, rotation, x and y scale, and shearing.
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Fig. 4. Execution time and number of cells processed for pure branch-and-bound and bounded alignment as a function of the
perturbation standard deviation p.

The desired point sets are generated as follows. To gener-
ate the inliers, a point a is generated uniformly at random
from A’s bounding rectangle. For each such point, q (a) is
computed, and a Gaussian error with mean 0 and stan-
dard deviation p is added. The point is accepted if it lies
within the bounding rectangle of B, and rejected
otherwise. This is repeated until the desired number of
accepted inliers is generated. The remaining points of the
sets A and B are distributed uniformly in each of the
bounding rectangles. The given transformation q is called
the target transformation. In general, it may not be the
optimum transformation (unless p"0), but it should be
close enough to the optimum that we may use it for
validating the results of the experiments.

The user supplies the desired quantile q for the Haus-
dorff distance, the error factors e

r
, e

a
, and e

q
, and the

bounds on the initial cell. If bounded alignment is being
applied, the user also supplies q

s
, the fraction of alignable

uncertainty regions needed to invoke alignment for a cell;
N

s
, the number of well-distributed triples to sample from

the alignable regions; and g, the noise bound. The pro-
gram can be run using either the standard branch-and-
bound algorithm or the bounded alignment variant. It is
also possible to select from two different parameteriz-
ations of transformation space. The first is a full six-
dimensional space (although lower-dimensional searches
are possible by allowing some of the parameter ranges
to degenerate to 0). The other allows searches of three-
dimensional space of rigid transformations by specifying
a range of angles and ranges of x- and y-translations.

The program measures a number of statistics on its
own performance, including CPU seconds, number of
cells expanded, and number of times the Hausdorff-based
similarity was computed. Statistics are also gathered on
a level-by-level basis for the search tree.

We conjecture that bounded alignment should per-
form best when the Hausdorff distance is small relative to
the nearest-neighbor distance, since in this case the best

alignments are generated. To test this, we generated
points with varying degrees of perturbation error, keep-
ing the number of points and the number of outliers fixed.
The perturbation error p ranged from 0.1 to 5. The sets
A consisted of 300 points, 180 of which were inliers, in
a square [!400, 400]2. We applied to these points a ran-
dom rotation in the interval [40°, 45°], and a random
translation in [!10, 10]2. The points for B were gener-
ated in a square [!500, 500]2. (Different bounding
squares were used to minimize boundary effects.) We
fixed e

q
"e

r
"0.2, and computed the median Hausdorff

distance. The absolute error e
a

and the noise bound
g were both set equal to p, since this is a lower bound on
the expected Hausdorff error.

The search was performed over rigid transformations.
The initial search cell allowed 10° of variation in rotation
and 40 units of translation in each of x and y. The initial
cell contained the target transformation, but was
randomly perturbed so that the exact location of the
target transformation within the cell was unknown to the
algorithm. Both branch-and-bound search and bounded
alignment were invoked at least 20 times for each value of
p. Experiments were compiled using g## -O3, and run
on a Sun SPARC 5, running SunOS 5.5.

The average results are shown in Fig. 4. Observe that
bounded alignment offered a significant advantage over
standard branch-and-bound both in terms of CPU time
and the number of cells processed when the perturbation
error was small, i.e., when the final Hausdorff distance

was small (typically J2p). When the Hausdorff distance
was large (implying that there was no obvious strong
match), both algorithms performed quite efficiently. In
other words, bounded alignment performed well in near
exact match situations where standard alignment would
do well, and also in poor match situations where branch-
and-bound would do well.

We also compared the similarities of the resulting
transformation with the target transformation. Out of
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Fig. 5. Best similarity and number of cells processed per level of the search tree for p"0.2.

Table 1. Results obtained using to branch-and-bound and
bounded alignment on real data sets

Alg Cells Sec Angle t
x

t
y

Sim

Pac NW B&B 399 32 18.9 0.34 !0.49 0.42
Pac NW B. A. 7 3 18.8 0.10 !0.54 0.47
DC B&B 385 13 !0.08 32.1 32.0 0.30
DC B. A. 35 4.8 0.14 32.5 !31.7 0.60
Haifa B&B 1103 55 !0.06 13.6 !1.02 0.59
Haifa B. A. 25 7.4 !0.23 14.1 !1.13 0.73
SA B&B 2037 81 !0.005 4.1 !5.8 0.18
SA B. A. 29 3.9 0.0 5.0 !6.0 0.00
Baja B&B 1164 17 !0.16 9.9 !10.0 0.17
Baja B. A. 11 0.6 0.0 10.0 !10.0 0.00

Fig. 6. Matching two Landsat/TM images of the Pacific northwest.

over 400 experiments, in over half of the cases the relative
error was less than 2% (while 20% relative error was
tolerated), and in almost 80% of the cases the relative
error was less than 10%.

To get a closer insight into the behavior of both algo-
rithms, we computed the number of cells processed and
the average best similarity for each level of the search tree
for the case p"0.2, averaged over 40 instances. The
results are shown in Fig. 5. From the plot on the left,
observe that bounded alignment tends to converge to-
wards the optimum similarity much faster than branch-
and-bound search. The fact that it has a better bound on
the optimum similarity allows it to do a better job of
pruning unpromising cells from the search. On the right
we show the number of cells processed at each level of the
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Fig. 6. (Continued).

search. In both cases there is an initial phase where cells
are not being killed, and their numbers increase exponen-
tially. At some point, the algorithm reaches a stage where
the uncertainty is small enough that it is possible to kill
cells. When this happens, there is a sudden decrease in the
number of cells per level. As predicted in the analysis of
the previous section, bounded alignment reaches this
stage earlier than branch-and-bound. After this, bounded
alignment seems to keep the number of active cells very
low. In the branch-and-bound search, however, the num-
ber of cells per level starts increasing. Although we have
no theoretical explanation for this phenomenon, we be-

lieve that it would be an interesting topic for further
study.

4.2. Experiments on satellite imagery

For our second experiment we chose a number of
remotely sensed data sets. Specifically, we experimented
with three Landsat/TM scenes (over the Pacific north-
west (Pac NW), Washington, DC (DC), and Haifa,
Israel), an AVHRR scene (over South Africa (SA)), and
a GOES scene (over Baja California). In each case, either
two images (taken at different times) were provided, or
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Fig. 7. Matching two Landsat/TM images of Washington, DC.

a single image was given and a counterpart image gener-
ated by applying some transformation to the original
one. Feature maps were generated by selecting the top
5 (or 10)% of the extracted features, e.g. edge magnitude
using standard edge detection, wavelet coefficients using
a wavelet decomposition [34], etc.

For each data set, we ran both branch-and-bound
(B&B) and bounded alignment (B. A.) on five different
seeds. (All runs were done on an ULTRA-SPARC.)
The median values (for each parameter of interest)

are given in Table 1 as representative results of
the experiments. Most of the parameters of the algo-
rithms, other than those specified by the user based on
a priori knowledge, e.g. the initial cell, the Hausdorff
distance quantile, etc. were kept essentially constant.
Specifically, we ran the algorithms with the follow-
ing parameter setting: e

r
"0.1, e

a
"0.2—0.4, e

q
"0.2, and

g"0.4—0.6. (Assuming feature extraction accuracy
on the order of a pixel and a similar expected Hausdorff
distance, the choice for g seems reasonable.) Also, we
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Fig. 7. (Continued).

Fig. 8. Matching two Landsat/TM images of Haifa, Israel.

picked N
s
"10—20, and q

s
such that q

s
DAD was on the

order of 100 points.
Figs. 6—10 display the data and the results for the five

experiments. In each case, (a) and (b) show, respectively,
the first image associated with set A and the associated
feature points; (c) and (d) show, respectively, the image
associated with set B and its feature map; and (e) displays
a final overlaying of feature points using a typical trans-
formation computed by the bounded alignment algo-
rithm.

The first TM data set consisted of a 128]128 gray-
scale image over the Pacific northwest. Its counterpart
was artificially generated by applying a !18° rotation.
The features were extracted through wavelet decomposi-
tion and their map sizes were DAD"1756 and DBD"1845.
The algorithms were run with an initial search cell having
an angular range of 2° and a translational range of
5 pixels (in both the x and y directions). The results
clearly indicate that bounded alignment outperformed
branch-and-bound by a significant factor, while produ-
cing roughly the same similarity. The target similarity at
exactly 18° is 0.81, worse than either of the similarities
derived from the algorithm.

The data set of DC consisted of a 128]128 TM
subimage, whose counterpart was generated by applying
a translation of (32.5, 32.5). (The translation procedure
performed some averaging, resulting in slight blurring of
the image.) The features were extracted by taking the top
5% of the edge pixels to yield feature maps of size
DAD"763 and DBD"766. The initial search cell allowed
10° of rotation and 5 pixels of translation. The target
similarity was 0.71, again worse than either reported
similarity. Note, however, that although bounded align-
ment outperformed branch-and-bound as far as number
of cells visited/ running times are concerned, it often
produced matches that were in excess of the allowable
error bounds (in this case e

r
"0.1 and e

a
"0.2). This can

most likely be attributed to a failure in the Monte Carlo
algorithm. Recall from Section 3 that the bounded align-
ment algorithm assumes that there is equal probability
that inliers and outliers are eligible for alignment.
In the DC data set the inliers were more tightly clustered
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Fig. 8. (Continued).

than the outliers, and this proximity reduced the likeli-
hood of the inliers being eligible for alignment. This
violation of the alignment assumption could be over-
come by increasing the parameters q

s
and/or N

s
, at the

expense of increasing running time. We feel that such
problematic data sets imply that further work can be
done on improving the generality of bounded alignment,
and overcoming the restrictions of the alignment as-
sumption.

The Haifa data set consisted of a pair of TM images
taken on two different occasions. Feature extraction
based on hierarchical wavelet decomposition was used to
yield feature maps of size DAD"1120 and DBD"1020. The
initial cell was set to an angular range of 5° and a transla-

tional range of 5 pixels in both directions, with a target
similarity of 0.5. Our representative results indicate that
bounded alignment ran about 8 times faster than branch-
and-bound while reporting comparable similarities.
However, this may not adequately reflect the situation.
Examining individual runs more carefully shows that
bounded alignment may take longer to run. As it turns
out, the features extracted for the Haifa data set do not
contain many ‘‘strong’’ inliers, i.e. inliers strongly match-
ing their counterpart features. Put differently, g is rela-
tively large in this case, which implies, according to the
previous subsection, that bounded alignment may not
necessarily outperform branch-and-bound. Furthermore,
even the strong inliers seem to be highly clustered. As in
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Fig. 9. Matching two AVHRR images of South Africa.

Fig. 10. Matching two GOES images of Baja California.
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Fig. 10. (Continued).

the DC example, this suggests that for bounded align-
ment to overcome the violation of the alignment assump-
tion so as to return more accurate results (Hausdorff
distance-wise), the parameters q

s
and/or N

s
may need to

be increased.
The South Africa data set consisted of a pair of

AVHRR subimages taken at two different times.
These subimages were cropped from the original data, so
as to avoid undesired boundary effects. Using hierarchi-
cal wavelet decomposition and picking (less than) the
top 5% of the features, we obtained feature maps of size
DAD"872 and DBD"927. The algorithms were run
with a target similarity of 1.0 and an initial cell of angular
range 10° and translational range 5 pixels. Likewise,

we generated feature maps for the GOES subimages of
Baja with DAD"326 and DBD"503, and ran the algo-
rithms with a similar initial cell. The target transforma-
tion in this case, (0.0, 10.0, !10.0), corresponds to
a target similarity of 0.0. (This may be because of the
preliminary geo-registration that these images had
undergone.) In both cases, bounded alignment outper-
formed branch-and-bound significantly, converging on
a perfect match with a similarity of 0.0. (Note that
branch-and-bound terminates the search once it reports
a similarity smaller than than the allowed absolute error
metric.)

In summary, it can be seen that in all instances where
the alignment assumption holds, bounded alignment
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produces results comparable to or better than those of
branch-and-bound, and the running times in terms of both
of CPU seconds and number of cells visited, are smaller.

5. Conclusions

We have presented two algorithms for registering
images in a robust manner through the use of feature
point pattern matching. Both algorithms allow the user
to improve running times by specifying approximate
bounds on the relative, absolute, or quantile errors. The
first algorithm is based on branch-and-bound search. It is
simple and safe, but is relatively slow, especially when
high accuracy is desired. The second algorithm, called
bounded alignment, is based on combining branch-and-
bound with computing point alignments to accelerate the
search. It seems to be much faster than the branch-and-
bound algorithm in many cases, but it is a Monte Carlo
algorithm, and hence may fail with some small probabil-
ity. We provide empirical evidence that by allowing ap-
proximation in the branch-and-bound, and through the
use of bounded alignment, it is possible to achieve regis-
trations of high accuracy with reasonably small running
times, even with a relatively large number of feature
points.
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