A Simple Entropy-Based Algorithm for Planar
Point Location

SUNIL ARYA

The Hong Kong University of Science and Technology

THEOCHARIS MALAMATOS

Max Plank Institut fiir Informatik
AND
DAVID M. MOUNT

University of Maryland

Abstract. Given a planar polygonal subdivision S, point location involves preprocessing this subdi-
vision into a data structure so that given any query point ¢, the cell of the subdivision containing ¢
can be determined efficiently. Suppose that for each cell z in the subdivision, the probability p, that
a query point lies within this cell is also given. The goal is to design the data structure to minimize
the average search time. This problem has been considered before, but existing data structures are all
quite complicated. It has long been known that the entropy H of the probability distribution is the
dominant term in the lower bound on the average-case search time. In this article, we show that a very
simple modification of a well-known randomized incremental algorithm can be applied to produce a
data structure of expected linear size that can answer point-location queries in O (H) average time.
We also present empirical evidence for the practical efficiency of this approach.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Geometrical problems and computations

A preliminary version of this article appeared in the 2001 Proceedings of the 12th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 262-268. The first author was supported in part by the
Research Grants Council, Hong Kong, China under Grant HKUST6229/00E, and part of the research
of the second author was conducted while at the Hong Kong University of Science and Technology.
The work of the third author was supported by the National Science Foundation under Grants CCR-
0098151 and CCF-0635099.

Authors’ addresses: S. Arya, Department of Computer Science and Engineering, Hong Kong Uni-
versity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, e-mail: arya@cs.ust.hk;
T. Malamatos; Max Planck Institut fiir Informatik, Saarbriicken, Germany, e-mail: tmalamat@mpi-
sb.mpg.de; D. M. Mount, Department of Computer Science and Institute for Advanced Computer
Studies, University of Maryland, College Park, MD, e-mail: mount@cs.umd.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

© 2007 ACM 1549-6325/2007/05-ART17 $5.00 DOI 10.1145/1240233.1240240 http://doi.acm.org/
10.1145/1240233.1240240

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

2 S. ARYA ET AL.

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Point location, polygonal subdivision, expected-case complexity,
entropy, trapezoidal maps, randomized algorithms
ACM Reference Format:

Arya, S., Malamatos, T., and Mount, D. M. 2007. A simple entropy-based algorithm for planar point
location. ACM Trans. Algor. 3,2, Article 17 (May 2007), 17 pages. DOI = 10.1145/1240233.1240240
http://doi.acm.org/10.1145/1240233.1240240

1. Introduction

The planar point-location problem is one of the most fundamental query problems
in computational geometry. The problem is to preprocess a planar polygonal subdi-
vision § consisting of n edges into a data structure so that given any query point ¢,
the polygonal cell of the subdivision containing g can be reported quickly. The first
worst-case asymptotically optimal algorithm for this problem is due to Kirkpatrick
[1983], which achieved O(n) space and O(logn) query time. This was followed
by a number of related methods with better practical performance by Edelsbrunner
et al. [1986], Cole [1986], and Sarnak and Tarjan [1986]. In spite of their enhanced
practicality, these methods lacked the simplicity of Kirkpatrick’s method. A truly
simple randomized incremental method was discovered by Mulmuley [1990] and
Seidel [1991]. This method is based on randomly inserting the line segments of
the subdivision and maintaining a trapezoidal map of these segments. The point-
location data structure that results is simply a directed, acyclic graph that records
the history of the various changes to the structure. For a fixed query point, the
expected search involves at most 5Inn + O(1) comparisons. Here the expectation
is taken over all random permutations of the segments.

All of this work was done in terms of worst-case query times. In many appli-
cations, point-location queries tend to be clustered in regions of greater interest.
This raises the fundamental question of whether it is possible to answer queries
efficiently in the average case. We are given a planar subdivision S and a proba-
bility distribution on the set of queries. We model this by assuming that for each
cell z € S, we are given the probability p, that a query point lies in z. We call this
a weighted subdivision. Unless otherwise stated, we make no assumptions about
the probability distribution within each cell. In practice these probabilities can be
determined by observing a long sequence of queries. To avoid dealing with many
special cases, we assume that the probability that the query point lies on an edge or
vertex of the subdivision is zero, but this restriction can be overcome, for example,
by treating each edge as a trapezoid of infinitesimal height and each vertex as a
square of infinitesimal side length.

An important concept is that of the entropy of S, denoted H throughout, defined
as

entropy(§) = H = sz log(1/p:)

zes§

(throughout, we use log to denote the base-2 logarithm and In to denote the natural
logarithm). For the one-dimensional restriction of this problem, a classical result due
to Shannon implies that the average number of comparisons needed to answer such
queries is at least as large as the entropy of the probability distribution (see Knuth
[1998] or Shannon [1948]). Mehlhorn [1977] showed that it is possible to construct
a nearly optimal binary search tree whose average search time is at most H + 2.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

A Simple Entropy-Based Algorithm for Planar Point Location 3

Aryaetal. [2000a] showed that if the subdivision consists of convex polygons and
the x and y coordinates of the query points are chosen independently from some
probability distribution, the entropy bound can be achieved to within a constant
multiplicative factor (2 using quadratic space, and about 4 using linear space). These
results were strengthened by Arya et al. [2001, 2000b] for the case of subdivisions
of cells of constant complexity. They first presented a data structure that answers
queries in H + O (H?/? 4 1) average time and O (n log* n) space. Later, Arya et al.
[2007] improved this to H 4+ O(H'/?> 4 1) average query time and O(n) space.
Unfortunately, all of these methods rely on relatively complex constructions. In
contrast, the nearly optimal binary search tree of Mehlhorn [1977] for the one-
dimensional problem is quite simple. This raises the question of whether there
exists a data structure that achieves the simplicity of a randomized incremental
point-location data structure, while achieving both good expected-case performance
and low space requirements.

In this article we give a positive answer by presenting a simple weighted variant of
the randomized incremental algorithm. Our main results are given in Theorems 1.1
and 1.2 to follow. We assume that cells of the subdivision have constant complexity,
that is, they are each bounded by a constant number of sides. To minimize confusion
we use the term expected when referring to variations that are caused by the random
choices made by the algorithm and average when referring to variations due to the
random distribution of query points. Our query times are presented in terms of the
number of binary tests, called primitive comparisons. One test determines whether
the query point lies to the left or right of a vertical line passing through the endpoint
of some edge of the subdivision, and the other determines whether the query point
lies above or below an edge of the subdivision. This is the same as the model
introduced by Seidel and Adamy [2000] in their lower bound, and is used in almost
all common point-location algorithms.

THEOREM 1.1. Consider a polygonal subdivision S, of size n, consisting of cells
of constant complexity and a query distribution presented as a weight assignment
to the cells of S. In time O(nlogn) it is possible to construct a structure of space
O (n) that can answer point-location queries in average time O(H + 1). If S is
presented as a trapezoidal map (defined later) then the average search time is
(5In2)H 4 O(1). All bounds hold in expectation over random choices made by the
construction algorithm.

Note that the constructions are randomized, and the query time and space bounds
hold in expectation over the algorithm’s random choices. By repeating the construc-
tion and relaxing the constant factors, we can achieve the following result, which
provides guarantees on the space and average query time bounds while increasing
the construction time by only a constant factor.

THEOREM 1.2. Given the same conditions of Theorem 1.1, in O(nlogn) ex-
pected time it is possible to construct a structure of space O(n) that can answer
point-location queries in average time O(H + 1).

We actually prove the stronger result that for any cell z of a trapezoidal map
S, the expected number of comparisons to locate a query point lying within z is
at most 5In(1/p.) + O(1). Theorem 1.1 follows directly from this fact. It is also
interesting to note that our search structure is efficient even in the worst case. For
any query point ¢, the expected query time is O (log n). (This holds irrespective of

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

4 S. ARYA ET AL.

the cell containing ¢, but holds in expectation over the random choices made by
the algorithm.)

The assumption that cells have a constant number of sides seems to be critical
if no other assumptions are made about the query distribution. This assumption
is not required for worst-case optimal planar point-location, since it is possible to
refine any polygonal subdivision into one of constant combinatorial complexity
while increasing the subdivision’s size by just a constant factor. However, the case
of average-case query time is much different. Arya et al. [2007] show that even
for the restricted case in which the subdivision consists of a single n-sided convex
polygon, there exists a query distribution such that no point-location algorithm
based on point-line comparisons can achieve an average query time that is solely a
function of entropy.

As is common with randomized algorithms, our proofs of the space and query
time both make use of backwards analysis. Such an analysis is based on the notion
that since objects are inserted randomly, at any given stage, every object is equally
likely to have been the last inserted. In our case this assumption does not hold.
We overcome this problem by a trick of associating some number of “pebbles”
with each of the edges of the subdivision. The number is a function of the query
probabilities for incident subdivision cells. The pebbles are drawn in random order,
and a segment is inserted the first time that one of its pebbles is drawn. Subsequent
pebble drawings for this segment are ignored.

Recently and independently, Iacono [2001, 2004] has developed an algorithm
similar in flavor to ours. He has shown how to adapt Kirkpatrick’s [1983] point-
location algorithm in order to achieve query times that are proportional to entropy.
As with Kirkpatrick’s algorithm, his construction is deterministic, but somewhat
less practical due to the larger constant factors involved.

The remainder of the article is organized as follows. In the next section we present
the randomized incremental construction algorithm. In Sections 3.1 and 3.2, we
show that the space and average time bounds hold in expectation (over random
choices made in the construction). In Section 3.3 we show that these bounds can
be guaranteed, although the construction time holds only in expectation. Finally,
in Section 4 we present experimental evidence that when the query distribution is
highly nonuniform, our algorithm achieves significant speedups on average over
the standard worst-case efficient algorithm.

2. Weighted Randomized Incremental Algorithm

Let S denote a polygonal subdivision whose cells are of constant combinatorial
complexity. Our approach to answering point-location queries in S is to reduce the
problem to an appropriately weighted trapezoidal map (defined later) of the edges
of S. We will show that (subject to variations due to randomized construction)
point-location queries in a trapezoidal map of entropy H’ can be answered in
average time (5 In2)H’ + O(1). Since the trapezoidal map is a refinement of S, the
location of a query point in the trapezoidal map uniquely determines the location
of the query point in S. Arya et al. [2007] prove that if S is a weighted polygonal
subdivision of entropy H whose cells have bounded combinatorial complexity,
then such a reduction increases the aforementioned average query time only by an
additive factor of O(H + 1). The reweighting is computed as follows. Recall that
p: denotes the probability that a query point lies in cell z of S, and let f, denote

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

A Simple Entropy-Based Algorithm for Planar Point Location 5

(@) (b) (c)

FiG. 1. Trapezoidal maps and node types.

the number of disjoint cells into which z is decomposed by the trapezoidal map.
Then the weight p, is evenly redistributed among its fragments by assigning to
each fragment a weight of p./f.. Henceforth, we may assume that S is presented
as a weighted trapezoidal map, and we let H denote its entropy.

We now present a quick review of trapezoidal maps. We refer the reader to the text
by de Berg et al. [2000] for more detailed information. We assume that the input is
any set of nonvertical line segments in the plane with disjoint interiors. We assume
that the segments and all queries are enclosed within a large bounding rectangle.
The trapezoidal map is defined by the following subdivision process. From each
segment endpoint, imagine shooting two vertical bullets, one up and one down. Each
bullet continues until first hitting a segment, or the bounding rectangle if it hits no
segment. The union of segments together with bullet paths defines a subdivision
of the bounding rectangle (see Figure 1(a)). It is easy to see that the cells of the
resulting subdivision have disjoint interiors and cover the bounding rectangle. Each
cell is a (possibly degenerate) trapezoid, bounded by at most two vertical sides and
a top and bottom segment. Note that subdivision is not a cell complex, since the
interior of a single side of one trapezoid may be incident to many other trapezoids.

The point-location structure for a trapezoidal map is a rooted directed acyclic
graph in which each node either has two outgoing edges (i.e., an internal node)
or has no outgoing edges (i.e., a leaf node). The structure can also be viewed as
a binary tree in which each subtree may be shared by multiple parents. Each leaf
node is uniquely associated with a trapezoid of the final map. There are two types
of internal nodes. A left-right internal node is associated with an endpoint of some
segment (see Figure 1(b)). It tests whether the query point’s x-coordinate lies to
the left or right of the x-coordinate of the associated endpoint and subsequently
branches to the left or right child, respectively. An above-below internal node is
associated with a segment. It tests whether the query point lies above or below
the line containing the associated segment and branches to the left or right child,
respectively (see Figure 1(c)).

The randomized incremental algorithm operates by inserting the segments one-
by-one in random order and updating the subdivision after each insertion. The
insertion of each segment results in the creation of four new bullet paths, two for
each of its endpoints, and some of the existing bullet paths may now be blocked by
the new segment (see Figure 2). This in turn causes some of the existing trapezoidal
cells to be replaced with new trapezoids. For each trapezoid that has been replaced,
the incremental algorithm replaces the corresponding leaf node in the history graph
with the appropriate set of internal nodes to ascertain in which new trapezoid the

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

6 S. ARYA ET AL.

FIG. 2. Incremental algorithm for a trapezoidal map and the associated history graph.

=— 1/(2n)
=— 1/(4n)
o(n) Pl L L L e 1/(8n)

O(n)

FIG. 3. A bad instance for simple weighting.

query point now lies (newly added nodes in the history graph are shaded in the right
side of Figure 2). See de Berg et al. [2000] for details.

Before presenting our algorithm, we begin by showing why an obvious approach
to the problem does not work. Recall that the randomized incremental approach adds
the segments of the subdivision one-by-one in random order. Intuitively, we want
the segments that bound cells of high probability to be added early in the process,
since then any query that falls within this cell will have its location resolved near the
root of the history graph. This suggests a simple weighting scheme in which each
segment of the subdivision is assigned a weight that is derived from the probability
that the query point lies in either of its incident trapezoids, say, the sum of these
probabilities. Then we apply the incremental algorithm, but insert the segments in
decreasing order of weight (rather than using a random permutation).

The problem is that an adversary can adjust the probabilities so as to cause the
algorithm to insert the segments in an order such that the space of the resulting
structure would be ®(n?). Consider the example shown in Figure 3. At the bottom
there are ®(n) triangles, each having a probability of 1/n. Above there are ®(n)
triangles with probabilities of the form 1/(2/n) with i increasing top-to-bottom. The
insertion order provided by the simple weighting scheme results in the insertion

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

A Simple Entropy-Based Algorithm for Planar Point Location 7

(D
=TT ()

(iii) %
5 E
)

*\

*

(i
FIG. 4. Defining segments.

of segments bounding the ®(n) lower triangles, thus creating ®(n) vertical slabs.
After this, the segments bounding upper triangles will be inserted in order from
top-to-bottom. Since each segment intersects all ®(n) vertical slabs, each insertion
results in ®(n) updates to the trapezoidal map, which leads to ®(n?) total space.
Note that the problem is not due merely to the absence of randomization, since even
arandomized algorithm that samples segments according to the given weights will
result in an expected total space of O(n?).

At first it might seem that any weighted randomized incremental construction
could suffer from this space problem. The source of the problem is not the weights
themselves, but arises from the huge variation that is possible among the weights.
The standard randomized incremental algorithm can be thought of as a method
in which all segments have equal weight of 1/n. Our solution is to modify the
simple weighting scheme so that the ratio of any two segment weights is O (n).
Remarkably, this simple fix is all that is needed to eliminate the aforementioned
space problem, and yet the representation of the probability distribution is close
enough to achieve the desired entropy bounds on average search times.

Recall that S is a trapezoidal map, which is assumed to be defined by n segments,
denoted by X. Each trapezoid of S can be associated by a subset of at most four
defining segments of X, which have the property that once all of these segments have
been inserted by the incremental algorithm, this trapezoid will come into existence.
These defining segments are:

(i) the segment defining the trapezoid’s upper side;

(ii) the segment defining its lower side;
(iii) any segment whose endpoint lies on its left vertical side; and
(iv) any segment whose endpoint lies on its right vertical side.

(These are shown with bold lines in Figure 4.) Note that there may be fewer than
four defining segments because a single segment may define up to three sides of a
given trapezoid. If a trapezoid is bounded by a side of the bounding rectangle, we
ignore this side, since the sides of the bounding rectangle are present even before
the algorithm begins.

Our algorithm works as follows. First, we redistribute the probabilities associated
with the cells of S to the segments of S as follows. Recall that for each trapezoid z
of S, p. denotes the probability of the query point lying in z. Assign a probability
of p,/4 to each of the (up to) four defining segments of z. For a segment x € X, let
px denote the sum of the probabilities that it derives from its incident trapezoids.
Thus > . pr < 1. Let K > 0 be a constant. (We shall see that the choice of K
provides a tradeoff between the multiplicative constant in the space bound and the
additive constant in query time. For example, K = 1 is areasonable choice.) Assign
a weight w, = max((prn] , 1) to each segment x.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

8 S. ARYA ET AL.

After this weight assignment, we run the standard randomized incremental algo-
rithm in which we sample the segments based on their weights. Initially, the map
consists of just the bounding rectangle. Otherwise, if W denotes the total weight of
all the uninserted segments, the probability that x is sampled for insertionis w,/W.

Observe that the weight w, of any segment x is an integer between 1 and Kn+1,
and the total weight W of all the segments is at most (K + 1)x. This follows because

Yowe < (Kpon+1) < (K + Dn.

3. Analysis

We now analyze the space and average query time of the search structure. For the
purpose of analysis, it is useful to consider the following randomized incremental
algorithm which can be easily verified to be equivalent to the actual algorithm
described in the last section. With each segment x, we associate w, entities, which
we call pebbles (note that by definition w, is a positive integer). We use P to denote
the set of pebbles associated with all the segments. At each step of the algorithm we
pick any of the remaining pebbles with equal probability. If the pebble represents
a segment that has not yet been inserted, then the segment is inserted as usual into
the trapezoidal map and search structure. Otherwise, the pebble is simply ignored
(i.e., it has no affect on the trapezoidal map or search structure).

3.1. SPACE ANALYSIS. We first analyze the expected space used by the
search structure. To compute this quantity we will bound the expected number of
structural changes in the trapezoidal map when the ith pebble is inserted, and sum
this over the W steps of the algorithm. This will also give a bound on the space
used by the search structure, since each node added to the structure results from
some change in the trapezoidal map. Let k; denote the number of new trapezoids
created when the ith pebble is inserted. We bound the expected value of this
quantity using backwards analysis.

Consider a fixed set of i pebbles P’ C P.Let 7(P') denote the set of trapezoids
of the trapezoidal map for the set of segments associated with the pebbles in P’.
For a trapezoid T € 7 (P') and pebble p € P’, define a random variable 8(z, p) to
be 1 if pebble p would have caused t to be created had p been inserted last, and
0 otherwise. The expected value of k;, subject to the condition that P is the set of
the first i pebbles, is

; 1
Elki | P'] = — .
kil P = =3) 8tp)
peP! teT(PY)
Reversing the order of summation gives
: 1
Elk; | P'] = — .
i | P'T =~)) otp)
teT(P') peP!

Recall that each trapezoid T € 7 (P") is defined by at most four segments that
bound its sides. Clearly, the trapezoid 7 is created in the last step if and only if one
of the following four conditions hold:

(i) There is exactly one pebble in P’ such that the associated segment forms the
top side of t and this pebble is inserted last;

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

A Simple Entropy-Based Algorithm for Planar Point Location 9

(i) same as (i) for the bottom side;

(iii) there is exactly one pebble in P’ such that an endpoint of the associated
segment lies on the left side of 7 and this pebble is inserted last; and

(iv) same as (iii) for the right side.

Thus there are at most four pebbles in P’ with the property that if they were inserted
last they would have created 7, namely,) pepi (T, p) = 4, and so we obtain
. 1 1
Elk | Pl < = > 4= -40G) = 0().
l . l
TeT(PY)

Here we have used the fact that the number of segments in 7 (P') is at most i and
so, by standard results on the complexity of planar maps, it follows that 7 (P")
contains at most O (i) trapezoids (see de Berg et al. [2000]). Since the bound on
the expected value of k; does not depend on the choice of P’, we can conclude
that it holds unconditionally. Summing E[k;] over the W steps of the algorithm,
it follows that the expected total number of new trapezoids created is O(W).
Recalling that W < (K + 1)n, this gives a bound of O(n) on the expected number
of new trapezoids, hence on the space used by the search structure.

3.2. AVERAGE QUERY TIME. We now analyze the expected value of the average
query time provided by the search structure, measured as the average number of
primitive comparisons, or equivalently, the weighted depth of each leaf of the search
structure. (Recall our convention that the average query time refers to the average
over the different locations of the query point. We are interested in the expectation
of this quantity taken over the random choices made by the algorithm.)

We say that two query points are equivalent if they follow the same path through
the search structure. Consider a partitioning of the plane into slabs by passing a
vertical line through the endpoints of all segments. Each slab is decomposed into
trapezoids by segments that cross the slab. It is easy to see that the query points
inside any such trapezoid are equivalent. Let 7 denote the set of trapezoids in
all slabs. Then the average query time is given by) __; p.d;, where p. is the
probability of the query point lying in 7, and d; is the length of search path for the
query points in t. Note that t is a subregion of a cell of the original subdivision.
Since we make no assumptions about the query distribution within each cell, the
value of p; is unknown to the algorithm. Our analysis holds irrespective of its
value, subject to the obvious constraint that for each cell z € §, the sum of the
probabilities p, for all T C z equals the cell’s probability, namely p,.

Let g be a query point inside a trapezoid t € 7. Let t be contained within
trapezoid z € §. We will prove that the expected length of the search path for ¢,
namely E[d.], is at most 5In(1/p.) + O(1). By considering the contribution of all
trapezoids of S, it follows that the expected value of the average query time is

1 1
> p (51n—+0(1)) = (5In2) <2pzlog)+0(1)
D: zes§ D:

zeS

= (5In2)H + 0(1),

which is the desired bound as stated in Theorem 1.1.
Let ¢; be a random variable that takes the value 1 if the left side of the trapezoid
containing ¢ changes when the ith pebble is inserted and takes value 0 otherwise.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

10 S. ARYA ET AL.

Similarly define the random variables r;, ¢;, and b; for the right, top, and bottom
sides, respectively. We employ the following observation made by Seidel [1991]:
The length of the search path for g grows by at most 2¢; 4+ r; 4+ t; + b; when the
ith pebble is inserted.! Let £ = > 1<i<w Li- Similarly define r, ¢, and b. By the
linearity of expectation, we have

Eld.] < 2E[l]+ E[r]+ E[t] + E[b].

We will show that E[£], E[r], E[t], and E[b] are all bounded by In(1/p.) + O(1),
which implies the desired bound on E[d.].

We will only prove that E[¢] < In(1/p.) + O(1), since the other bounds can
all be proved in a similar way. For 1 < s < 4, let x; denote the four segments
that define z, and let M| be a random variable denoting the step of the algorithm in
which a pebble associated with segment x; is first inserted, and let M be the random
variable max,(M;). Note that M is the step at which all the defining segments are
present, and hence no further changes can occur to the trapezoid containing g. We
can write E[£] as follows:

w
E[¢] =) PrM = jl-E[t|M = j]. ey

Jj=1

Since no changes can occur to the trapezoid containing g after step M, we have
E[4; | M = jlfori > jis 0. Obviously E[¢; | M = j] < 1, since the largest
value that the random variable £; can take is one.

We next prove that E[¢; | M = j] < 1/i fori < j. This is based on backwards
analysis. Suppose that the jth pebble inserted is associated with segment x;, where
l<k<4 LetP/~! C Pbe any fixed set of j — 1 pebbles that contains at least
one pebble associated with the three segments x;, where s € {1, 2, 3, 4} — {k}, and
containing no pebble associated with x;. We claim that for i < j, the expected
value of £;, subject to the condition that P/~! is the set of the first j — 1 pebbles
inserted, is at most 1/ i, irrespective of the choices of x; and P/~!. By the definition
of M, it is clear that this claim would imply that E[¢; | M = j] < 1/i fori < j.

To prove this claim, let P € P/~! be any fixed set of i pebbles. We compute the
expected value of £;, subject to the condition that P’ is the set of the first i pebbles
inserted. Let o be the trapezoid in 7 (P") that contains ¢. The left side of o would
have changed in step i if and only if there is exactly one pebble in P’ such that
an endpoint of the associated segment lies on the left side of o, and this pebble is
inserted last (i.e., in step). The probability of this event is at most 1/i, and thus
the expected value of ¢; is at most 1/i. Note that this bound holds irrespective of
the choice of P'. This establishes the claim at the end of the last paragraph.

In summary we have three cases:

—Ifi > jthen E[¢; | M = j] =0;
—ifi = jthen E[¢; | M = j] < 1; and
—ifi < jthen E[¢; | M = j1 < 1/i.

!'The source of the rather unexpected asymmetry resulting in the extra factor of 2 times ¢; is evident
in example shown on the left side of Figure 2. Trapezoid a, whose right side touches the segment, is
at depth 1, whereas trapezoid d, whose left side touches the segment, is at depth 2.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

A Simple Entropy-Based Algorithm for Planar Point Location 11

From this we obtain
Jj—1 1
E[L|M=jl <1+) - < (nj)+2.
i=1 l

Substituting this in Eq. (1) we obtain

w
E[] <) PrM = jl((Inj)+2) = E[InM]+2.)

j=1

Using the fact that the natural logarithm is a concave function and Jensen’s in-
equality, it follows that E[ln M] < In E[M]. In the remainder we will prove that
E[M] < O(1/p.). Using these facts in Eq. (2) gives the desired bound on E[£].

Let w; and p, denote, respectively, the number of pebbles and the probability
associated with the segment x;, defined previously. Since the algorithm samples W
pebbles without replacement, it can be easily shown that the expected number of
trials needed to select one of the w pebbles associated with x; is (W 4+ 1)/(w; + 1).
Thus

wW+1 W

S_

E[M,] = .
[M;] 1w

By definition,
w, = max(|—Kpsn-| 1) = Kpyn > Knp./4,

and W < (K + Dn. It follows that E[M,] < 4(1 + 1/K)/p.. Since M =
max; <g<4 My, it follows that M < ijl M. Thus

4 1
EIM] = Y EIM,] < 16(1?;—”.
s=1 z

This completes the analysis of the expected value of the average query time.

Remark 3.1. Working out the constants in our analysis, we obtain an upper
bound on the expected query time of (51n2)H + 5[In(1 + 1/K) + In 16 4 2]. Note
that as K increases, the additive constant in the expected query time decreases.
However, since the space used is O((K + 1)n), we obtain a poorer bound on the
space.

Remark 3.2. Our goal was to minimize average-case query time, and so it is
interesting to consider just how bad query times might be for query points lying
in cells of very low probability. Interestingly, even for these points the expected
query time (averaged over the random order of pebble insertion) is at most O (log n).
Intuitively, this follows from the fact that our pebble-based algorithm can be viewed
as being identical to the standard randomized incremental, but with Kn segments,
many of which are duplicates. More formally, observe that wy, > 1 and W <
(K 4+ 1)n, and so we have E[M] < 4K + 1)n. Thus E[£] < In(n) + In(K + 1) +
In4 + 2, which implies that the expected length of the search path for ¢ is at most
51In(n) + O(1), for fixed K. Using this, it also follows that the construction time is
O (nlog n) in the expected case.

This concludes the proof of Theorem 1.1.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

12 S. ARYA ET AL.

3.3. GUARANTEES ON SPACE AND QUERY TIME. In the last section, we showed
thatin O (n log n) time, we can construct a data structure of O (n) space that provides
average query time O(H + 1). The preprocessing time, space, and average query
time all hold in the expected case. In this section we strengthen this result by
showing that we can achieve these bounds on space and average query time in the
worst case. In particular, we prove Theorem 1.2.

Recall that the expectations in our results are computed over the random choices
made by the algorithm. Applying Markov’s inequality, it is easy to see that the
asymptotic bounds on both space and average query time hold with a constant
probability. Thus, after constructing the search structure, by computing its space
and average query time, and rebuilding if the desired bounds on either space or
average query time are violated, we would succeed in finding the desired structure
after a constant number of trials. However, it turns out that we cannot determine
the average query time precisely because a cell z € S may generate a large number
of leaves, possibly at different depths, and the input does not specify how the cell
probability is distributed among these leaves. We now discuss how to overcome
this problem.

First, observe that the average query time is at most) _ p.d™*, where d™* is
the maximum depth of any leaf generated from z. Note that the quantity) p.d"*
can be easily computed in O(n) time by traversing the search structure. We will
show that, with constant probability, > - p.d™* is O(H + 1) and the space used is
O (n). Thus, after repeating the construction an expected constant number of times,
we will produce a search structure satisfying the average query time and space
bounds.

We now give the details. We borrow all the notation and terminology from Section
3.2. In particular, recall that z € S is the trapezoid that contains the query point g.
The four segments defining z are denoted x, x;, x3, and x4. The random variable M
is defined as max; My, where M is the algorithm step in which a pebble associated
with x; is first added.

LEMMA 3.3. Let y > 0 be a parameter and let My = 4y (1 + l/K)i In %.
Then Pr[M > My] < 4(p./2)".

PROOF. By definition, M can exceed M, only if at least one of M, M,, M3,

or M, exceeds M. It follows that Pr[M > M,] < Zle Pr[M, > My]. Let wy
denote the number of pebbles associated with segment x,. The probability that the
algorithm fails to select a pebble associated with x; in Mj successive trials is at
most (1 —w;/ W), Since wy > Knp_ /4 and W < (K + 1)n, we obtain

Knp,/4)M"

Pr[MS > MO] < <1 — m

Using the inequality 1 — x < e™", it is easy to show that the quantity on the
righthand-side is at most (p,/2)". [

LEMMA 3.4. Let A > 0 be a real parameter and j be any positive integer. Let
z be any cell in S. Let d" be the maximum depth of a leaf generated from cell z.
Then

Pr[dM™ = 5(1In2/p.) + D) | M = j] < 2j%(p-/2)*".

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

A Simple Entropy-Based Algorithm for Planar Point Location 13

PROOF. Throughout this proof, we compute probabilities conditioned on the
assumption that M = j. Let the jth pebble be associated with segment x;, and
let P/=! C P be any fixed set of j — 1 pebbles that contains at least one pebble
associated with the three segments x,, where s € {1, 2, 3, 4} — {k}, and containing
no pebble associated with x;. In the remainder of this proof, we assume that x; is
fixed and P/~ is the set of the first j — 1 pebbles added. Under these conditions,
we will compute an upper bound on Pr[d"* > A In(2/p.)+ 1]. Our bound will not
depend on the choice of x; and P/~!, hence will apply irrespective of these two
choices (i.e., assuming only that M = j).

For the purpose of analysis, imagine that we partition cell z into a set 7, of at most
2j — 1 trapezoids by passing a vertical line through the endpoints of each segment
corresponding to a pebble in P/~!. Let 7 denote any trapezoid in 7,. Note that
given any search structure built assuming the preceding conditions on the pebble
set (irrespective of insertion order), the search path is the same for all query points
in 7. Let d; be a random variable denoting the length of this search path. Let ¢ be
any query point in t. Define the random variables £, r, ¢, and b as in the last section.
We will show that

Pri¢ > AIn(2/p.) + 11 < j(p./2)* 2.

Let us assume this for now. By symmetry, a similar probability bound also holds
for r, t, and b. Recalling that d; < 2¢ +r +t 4+ b, we obtain

Prid; > 5(0In(2/p.) + D] < j(p./2)*"2
Since d"™ = max,e7. d; and |7;| < 2j — 1, it follows that
Pr[dM™ > 5(In(2/p.) + D] < 2;%(p-/2""?,

which is the desired result.

It remains to show that Pr{¢ > AIn(2/p.) + 1] < j(p./2)*™2. We write £ =
Ziu;l £;, where £; is the random variable that takes the value 1 if the left side of the
trapezoid containing ¢ changes when the ith pebble is inserted, and is O otherwise.
Clearly £; < land ¢; = Ofori > j. Thus £ < 1+ Y /| ¢ Letting L = Y/_ ¢;,
it is clear that Pr{¢ > AIn(2/p.) + 1] < Pr[L > A1n(2/p.)].

In order to bound the latter probability, we will use essentially the same method
as used in computing a tail estimate for the worst-case query time of the randomized
incremental algorithm [de Berg et al. 2000]. As in the analysis of worst-case query
time, a technical difficulty we face is that the ¢;’s are, strictly speaking, not indepen-
dent. This can be handled using a standard trick that allows us to define 0-1 indepen-
dent and identically distributed random variables £/, 1 <i < j—1suchthat{; < ¢;,
Pr[¢; = 1] =1/i,and Pr[¢; = 0] = 1 — 1/i (see de Berg et al. [2000] for details).

Letting L' = i’;ll ¢}, it is clear that Pr[L > AIn(2/p.)] < Pr[L’ > A 1In(2/p.)].
Next we show that Pr[L’ > A 1n(2/p.)] is at most j(p./2)*™2, which will complete
the proof.

For any ¢ > 0 we have

Pr [L' > Alnz} = Pr [e’Ll > emnlﬂ < e_’“nﬂ%E[e’Ll]
P:

(p-/DME[e™], 3)

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

14 S. ARYA ET AL.

where we have used Markov’s inequality in the penultimate step. Further, since the
¢; are independent,

E[e’L/] = E [62{;1 ’e;] = E |:
Setting + = In2, we obtain

E[e’zfl‘] = e’-l+eo-<1—l'> = 1—_H.
i

Thus E[e]_['E [eli] = = j. Substituting this in Eq. (3), we have the desired
result. D

~
—
JE
| |
Il
L
S|
—
[N
S
—_—

LEMMA 3.5. Let A > 0 be a real parameter. Let z be any cell in S. Let d™*
be the maximum depth of a leaf generated from cell z. Then there exist positive
constants ¢y and c; (depending only on K) such that

Pr[d™ > 5(AIn(2/p.) + 1] < (p./2)*7,
PROOF. Let M be as defined in Lemma 3.3. We have

Pr[d"™ > 5(.1n(2/p.) + 1] < Pt(M > Mo]
+Prld™ = 5 In(2/p:) + 1) | M < Mo].

By Lemma 3.3, the first term is at most 4(p./2)”, and by Lemma 3.4 the second term
is at most 2M3(p./2)*'"2. Setting y = A and simplifying, the lemma follows. [J

LEMMA 3.6. There exists a constant ¢ such that, with probability at least 3 /4,
forallcellsz € S, d™ < c(In(1/p.) + 1).

PROOF. Setting A to be a sufficiently large constant in Lemma 3.5, it follows
that

Pr[d™ > 50.1n(2/p.) + 1)] < (%)2

Thus the probability that 4" > 5(AIn(2/p.) + 1) for some cell z is at most
Zzes(Pz/2)2 < 1/4. The lemma now follows. []

An immediate corollary of Lemma 3.6 is that) __¢ p.d™ = O(H + 1) with
probability at least 3/4. By Markov’s inequality, the space used is also O(n) with
probability, say, at least 3/4. Thus the bounds on both space and) __¢ p.d™ hold
with probability at least 1/2. By repeating the construction expected a constant
number of times, we obtain a linear-size data structure that guarantees O(H + 1)
expected query time. This concludes the proof of Theorem 1.2.

4. Experimental Results

We have run experiments on the weighted randomized incremental algorithm, com-
paring its performance to the standard unweighted version. We measured the query
time of the algorithm by counting the average number of comparisons needed to
answer a query and the space used by the search structure. We tested the method
on a number of randomly generated Delaunay triangulations. Rather than using

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

A Simple Entropy-Based Algorithm for Planar Point Location 15

comparisons vs. std dev (uniform) comparisons vs. entropy (uniform)

40 T T T 40 T T T T

20 — . > - ¢4 |
[22] [22]
= =
o o
2] 2
g 20 — g 20 —
£ £
[o} [o}
o e Unweighted o & Unweighted

10F OH3 Weighted - 10+ OH3 Weighted -

n 1 n 1 n 1 n 1 PR 1 | -
% 0.05 01 0.15 0.2 O 6 8 10 12 14
Standard Deviation Entropy
(a) (b)

FIG. 5. Uniform subdivision: number of comparisons versus (a) standard deviation; and (b) entropy.

the weighting scheme described in Section 2, we instead chose to use a slightly
different weighting method which we felt is more natural for triangulations. For
each cell z, we assigned a weight of p./3 to each of its three sides, where p, is the
probability that the query point lies in z. For each edge x, let p, denote the sum of
its assigned weights. The number of pebbles assigned to x was then chosen to be
wy = [Spyn]. (Thus K = 5 in our implementation.)

We used both a uniform and a nonuniform subdivision for our experiments. These
subdivisions are Delaunay triangulations of 10,000 points, generated as follows. For
the uniform subdivision, the points were generated uniformly in a unit square. For
the nonuniform subdivision, ten points were chosen from the uniform distribution,
and a Gaussian distribution with a standard deviation of 0.04 was centered at each
point. We will refer to the latter as the clustered Gaussian distribution.

For both subdivision types, the query points were generated from a clustered
Gaussian distribution with ten uniformly distributed centers (the centers differ from
those used in generating data points for the clustered Gaussian case). We obtained
different distributions by varying the standard deviation of the Gaussian distribution
from 0.001 to 0.2, which gave us a way to control the entropy of the subdivision.
Intuitively, lower standard deviations correspond to lower entropies.

For each subdivision and query distribution, we used a training set of 100,000
points to estimate the probability of the query point lying in each cell. We conducted
ten runs for a given subdivision and fixed-cell probabilities. In each run, we built
the search structure for both the weighted and unweighted randomized incremental
algorithms, and computed the average number of comparisons over 30,000 query
points. Finally, we computed the average of this quantity over these ten runs, and
plotted it as a function of the standard deviation and the entropy of the subdivision.

The results for uniform and nonuniform subdivisions are shown in Figures 5 and
6, respectively. We summarize the key observations:

(a) The average number of comparisons for the weighted algorithm is always less
than that for the unweighted algorithm. As expected when the standard devia-
tion (and hence the entropy) is small, the advantage of the weighted over the
unweighted algorithm is much larger. For example, when the standard deviation

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

16

40

30

comparisons vs. std dev (nonuniform)

40

30

S. ARYA ET AL.

comparisons vs. entropy (nonuniform)

12} 4 12}
c c
[=} 1 o 1
= =
g 2o - y
g [£)
o o
O ¢ Unweighted o ¢ Unweighted 1
10 -0 Weighted 10 -0 Weighted .
0 [PR PR B PR | PR | " n] 0 1 1 " 1 1 1 "
0 0.05 0.1 0.15 0.2 3 4 5 6 7 8 9
Standard Deviation Entropy
(a) (b)

FIG. 6. Nonuniform subdivision: number of comparisons versus (a) standard deviation; and (b)
entropy.

is 0.01, the weighted algorithm uses about 40-50% fewer comparisons than
the unweighted algorithm.

(b) The average number of comparisons for the unweighted algorithm shows no
significant relation to the standard deviation (and hence the entropy) of the
distribution. In contrast, the average number of comparisons for the weighted
algorithm appears to grow linearly with the entropy. (By fitting a line to the data,
it appears that the average number of comparisons grows as 1.94H + 3.11 for
the uniform subdivision, and as 1.75H + 4.49 for the nonuniform subdivision.
This suggests that the actual performance of the algorithm is better than the

bound of about 3.47H + 24.77 predicted by our analysis.)

The total number of nodes in the search structure for the weighted and un-
weighted algorithms is similar; about 9n, where n is the number of segments.
The space used does not seem to depend on the entropy of the subdivision.

(©)

ACKNOWLEDGMENTS. We would like to thank Raimund Seidel for helpful com-
ments and pointing out an error in the analysis of Section 3.2 in an earlier version
of this article.

REFERENCES

ARYA, S., CHENG, S.-W., MOUNT, D. M., AND RAMESH, H. 2000a. Efficient expected-case analysis for
planar point location. In Proceedings of the 7th Scandinavian Workshop on Algorithm Theory. Lecture
Notes in Computer Science, vol. 1851. Springer Verlag, Berlin. 353-366.

ARYA, S., MALAMATOS, T., AND MOUNT, D. M. 2000b. Nearly optimal expected-case planar point
location. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science.
208-218.

ARYA, S., MALAMATOS, T., AND MOUNT, D. M. 2001. Entropy-Preserving cuttings and space-efficient
planar point location. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms.
256-261.

ARYA, S., MALAMATOS, T., MOUNT, D. M., AND WONG, K.-C. 2007. Optimal expected-case planar point
location. SIAM J. Comput. to appear.

COLE, R. 1986. Searching and storing similar lists. J. Alg. 7, 202-220.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND SCHWARZKOPF, O. 2000. Computational Geom-
etry: Algorithms and Applications, 2nd ed. Springer Verlag, Berlin.

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

A Simple Entropy-Based Algorithm for Planar Point Location 17

EDELSBRUNNER, H., GUIBAS, L. J., AND STOLFL, J. 1986. Optimal point location in a monotone subdi-
vision. SIAM J. Comput. 15, 2, 317-340.

Iacono, J. 2001. Optimal planar point location. In Proceedings of the 12th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. 340-341.

IacoNo, J. 2004. Expected asymptotically optimal planar point location. Comput. Geom. Theory
Appl. 29, 19-22.

KIRKPATRICK, D. G. 1983. Optimal search in planar subdivisions. SIAM J. Comput. 12, 1, 28-35.

KNUTH, D.E. 1998. Sorting and Searching,2nd ed. The Art of Computer Programming, vol. 3. Addison-
Wesley, Reading, MA.

MEHLHORN, K. 1977. Best possible bounds on the weighted path length of optimum binary search trees.
SIAM J. Comput. 6, 235-239.

MULMULEY, K. 1990. A fast planar partition algorithm, 1. J. Symbol. Comput. 10, 3—4, 253-280.

SARNAK, N., AND TARJAN, R. E. 1986. Planar point location using persistent search trees. Commun.
ACM 29,7 (Jul.), 669-679.

SEIDEL, R. 1991. A simple and fast incremental randomized algorithm for computing trapezoidal de-
compositions and for triangulating polygons. Comput. Geom. Theory Appl. 1, 1, 51-64.

SEIDEL, R., AND ADAMY, U. 2000. On the exact worst case complexity of planar point location. J.
Alg. 37,189-217.

SHANNON, C. E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423, 623—
656.

RECEIVED DECEMBER 2004; ACCEPTED JANUARY 2006

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 17, Publication date: May 2007.

