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THE DECOMPOSITION OF A RECTANGLE INTO RECTANGLES OF
MINIMAL PERIMETER*

T. Y. KONG?, DAVID M. MOUNTS:, AND A. W. ROSCOE

Abstract. We solve the problem of decomposing a rectangle R into p rectangles of equal area so that
the maximum rectangle perimeter is as small as possible. This work has applications in areas such as flexible
object packing and data allocation. Our solution requires only a constant number of arithmetic operations
and integer square roots to characterize the decomposition, and linear time to print the decomposition. The
discrete analogue of the problem in which the rectangle R is replaced by a rectangular array of lattice points
is also considered, and three heuristic methods of solution are given. All of the heuristic methods operate
by finding a discrete approximation to our optimal decomposition of R, but with different tradeoffs between
the accuracy of the approximation and running time.
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1. Introduction. A fundamental problem in geometrical and combinatorial com-
puting is how to decompose a large object into smaller objects subject to various
constraints. By a decomposition of a region R we mean a finite set of closed regions
whose union is R and whose interiors are pairwise disjoint. The regions of the
decomposition need not be connected. Decomposition problems generally fall into
one of two classes. In the first class, the objects have fixed dimensions, as in the
knapsack and bin-packing problems [8], [11], [12]. In the second class the objects
satisfy certain properties, as in decompositions of simple polygons into polygons that
are star-shaped [2], convex [5], 17], triangular [7], or involve rectangles and rectilinear
polygons [6], [9]. We consider a middle ground between these two classes in which
the objects are of some specified area (or volume), but their shapes are not fully
specified. In other words, the objects are flexible. The objective is to produce a
decomposition in which the objects are not severely stretched; that is, they are nearly
circular or square. More specifically, we consider the following problem involving the
decomposition of a rectangle into rectangles of equal area or measure.

RECTANGULAR DECOMPOSITION. Given a rectangle R of height A and width B,
and given an integer p, decompose R into p rectangles of equal area in such a way
that the maximum rectangle perimeter is minimized.

Intuitively, the problem is to make the p rectangles in the decomposition of R as
close to squares as we can. A special case of this problem in which R is a square was
solved in [15]. The solution to the rectangular decomposition problem is a straightfor-
ward generalization of decomposition presented there, but the proof of optimality in
the rectangular case is significantly more complex. A related problem with uncon-
strained areas was considered for the square in [1].

If we remove the restriction that R be decomposed into rectangles then we obtain
another interesting problem. Define the projection-perimeter of a measurable plane set
to be twice the sum of the lengths (measures) of its projections on the coordinate axes.
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1216 T.Y. KONG, D. M. MOUNT, AND A. W. ROSCOE

GENERAL DECOMPOSITION. Given a rectangle R on the Cartesian plane with sides
parallel to the coordinate axes of height A and width B, and given a positive integer
p, decompose R into p regions of equal measure in such a way that the maximum
projection-perimeter is minimized.

Here the terms height and width denote the length of the projection onto the y-
and the x-axis, respectively.

In this paper we solve the rectangular decomposition problem. We also show that
for certain values of A, B, and p, the optimal rectangular decomposition is, in fact, a
solution to the general decomposition problem. For all values of A, B, and p, we prove
that the optimal rectangular decomposition is a solution to the following problem,
which can be thought of as a compromise between the rectangular and general
decomposition problems. Define a pseudorectangle to be any set that is congruent to
a Cartesian product P x Q, where P and Q are measurable subsets of the real line. (In
particular, every rectangle is also a pseudorectangle.)

PSEUDORECTANGULAR DECOMPOSITION. Given a rectangle R on the Cartesian
plane with sides parallel to the coordinate axes, of height A and width B, and given
a positive integer p, decompose R into p pseudorectangles of equal measure in such
a way that the maximum projection-perimeter is minimized.

We consider a model of computation in which unit charge is assessed for
+,-,.,/,-_<, and integer square root on rational numbers representable using
O(log (p/A/ B)) bits of precision. In this model of computation our optimal rec-
tangular decomposition can be characterized in constant time and output in O(p) time.

These decomposition problems and their higher-dimensional counterparts have a
number of applications:

Flexible object packaging. There are p sacks of fluid that are to be placed in a
box of volume A, and each sack is to fit into a rectangular box of volume A/p. The
dimensions of the partitions may vary, but to minimize the stress on each sack, it is
desirable to make the boxes as nearly cubical as possible.

Circuit decomposition. Given a large circuit, laid out on an A x B board (for
example, a mesh of computer processors), decompose the circuit by slicing the board
into p rectangles of equal area. To minimize the interboard communications, the
perimeter of each board should be as small as possible.

Flexible circuit layout. In VLSI layout, a designer wants to place p functionally
identical circuits on a rectangular chip of area A. Each circuit can be deformed into
an arbitrary rectangle, as long as the area is equal to Alp. However, highly eccentric
rectangles lead to long wire lengths. It is desirable to reduce the length of the longest
side of each rectangle, which implies that its perimeter is minimized.

An analogue of the general decomposition problem can be posed on a rectangular
array of lattice points.

LATTICE DECOMPOSITION. Given positive integers A, B, and p, partition an A B
array of lattice points into p subsets each containing at most [AB/p points, in such
a way that the maximum projection-perimeter of a subset is minimized.

This arises in the following data-allocation problem for parallel computation of
tables.

Data allocation for parallel computers. We wish to compute all of the values of
a binary function f on the Cartesian product S T, where IS] A and ]T B. The
computation is to be performed in parallel on p identical processing units. The function
values are computed as follows. The ith processor computes the values of f on some
subset W of S x T. The sets W, l<-i<-p, form a partition of S T. To minimize
computation time, each processor is assigned at most lAB function values to
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DECOMPOSITION OF A RECTANGLE 1217

compute. Each processor has a small amount of local memory used for storing its
operands. The objective is to minimize this storage. The amount of storage used by
the ith processor is equal to the number of operands needed to compute the values
of W/, which equals one half of the projection-perimeter of W.

The data allocation problem was in fact the initial motivation for this work [13],
[15]. Although we will not present an exact solution to the lattice decomposition
problem, we will give heuristic methods based on the idea of approximating our
solution to the pseudorectangular decomposition problem on the discrete lattice. The
quality of these approximate solutions will be good when A and B are large relative
to p.

This paper is organized as follows. In 2 we solve the rectangular decomposition
problem and prove that the optimal rectangular decompositions are also optimal
solutions to the pseudorectangular decomposition problem. This work is based on two
interesting combinatorial lemmas that give lower bounds on the amount of stretching
and compressing that must occur when p rectangles of equal area are packed into an
A x B rectangle. In 3 we describe three procedures for approximating, or digitizing,
the geometric decomposition described in 2 on an integer lattice of height A and
width B. These digitization procedures provide different tradeoffs between desirable
characteristics of the digitization and running time. Ideally, the digitization should
respect the geometric solution and preserve areas as closely as possible. We say that
a digitization is equitable if it has the property that the area of each digitized region
is at most the ceiling of the area of the original region. We give an algorithm for
computing an equitable digitization by reduction to the problem of finding a feasible
flow in a graph. This algorithm runs in time polynomial in A+ B +p. We give two
efficient algorithms that produce approximations to an equitable digitization.

2. Optimal decomposition of a rectangle. Let R be a rectangle in the Cartesian
plane, with sides parallel to the coordinate axes, of height A and width B. Let p be
any positive integer. In this section we solve the problem of how to decompose R into
p rectangles R1, R2,’’ ", Re of equal area in such a way that the maximum of the
perimeters of the Ri’s is as small as possible. Our solution actually minimizes the
maximum projection-perimeter over all decompositions of R into pseudorectangles of
equal measure.

If the rectangle R is sufficiently thin relative to p, in particular if
max (A/B, B/A), then it is easy to see that the optimal decomposition results by simply
partitioning the longer side of R into p equal parts. So we shall henceforth assume
that p > max (A/B, B/A).

From now on, whenever we refer to a pseudorectangle we will assume that it is
so oriented that its sides are parallel to the coordinate axes. Unless otherwise stated,
the term projection will mean a projection on one of the coordinate axes. The two
projections of a pseudorectangle are generally not connected sets. If a projection is a
finite union of disjoint open and closed intervals then by the length of the projection
we mean the sum of the lengths of those intervals. More generally the length of a

projection is taken to mean its (Lebesgue) measure. Analogously, when we refer to
the area of an arbitrary, measurable plane set, we mean its measure. When we speak
of the perimeter of a pseudorectangle we mean its projection-perimeter, which is twice
the sum of the lengths of its projections.

The sum of the le.ngths of the projections of a pseudorectangle of given area q
(in our case q- AB/p) is a strictly increasing function of the length of the longer of
the two projections. (For if the longer projection has length (v/+ h) where h -> 0 then
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1218 T.Y. KONG, D. M. MOUNT, AND A. W. ROSCOE

the sum of projections is (x/- + h)+ q(v/-+ h), which is easily shown to be a strictly
increasing function of h when h -> 0.) So if we define the cost of a pseudorectangle to
be the length of its longer projection, and the cost of a decomposition of R into p
pseudorectangles to be the cost ofthe most costly pseudorectangle in the decomposition,
then our optimization problems are equivalent to the problems of finding minimal cost
decompositions of R into p rectangles and into p pseudorectangles of equal area.

Define a row(column) of rectangles to be a set of rectangles whose sides are
parallel to the coordinate axes, all of which have the same projection onto the y-axis
(x-axis). For any integer n such that 1 _-< n _-< p, define an n-row decomposition (n-column
decomposition) of R to be a decomposition consisting of just n rows (columns) of
rectangles, each of which contains either [p/n] congruent rectangles or [p/n] con-
gruent rectangles. Figure 1 shows a 4-row decomposition in the case p 23, and a
5-column decomposition in the case p 27.

FIG. 1. A 4-row decomposition and a 5-column decomposition.

If p/n is an integer then the n-row decomposition is an n-by-(p/n) array of
congruent rectangles with sides A/n and Bn/p. If p/n is not an integer then an n-row
decomposition has p-n [p/nJ rows of rectangles, each of which contains exactly
[p/n congruent rectangles, and n [p/n -p rows of rectangles, each ofwhich contains
exactly [p/nJ congruent rectangles. If we regard two n-row decompositions that are
related by a permutation of rows to be the same, then for each 1 _-< n _-< p there is just
one n-row decomposition of R. Thus, we may refer to "the" n-row decomposition of
R. The cost of an n-row decomposition is the maximum of the side lengths"
B [p/ nJ A [p/ nJ/p, B [p/ n ], A[p/ n ]/p. Clearly the maximum will be either the
first or last of these values. Analogously the cost of an n-column decomposition is
max (a/[p/nJ,B[p/n]/p).

Intuitively, a decomposition into pseudorectangles of equal area has minimum
cost when the pseudorectangles have horizontal and vertical projections that are nearly
equal. Ideally, the rectangle would be divided exactly into squares with side lengths
x/’AB/p, i.e., into x/Ap/B rows and x/Bp/A columns. This is possible only when these
square roots are integers. However, we will show that one of four decompositions
based on the floors and ceilings of these square roots must be a minimal-cost decompo-
sition.

These four decompositions are the h-row, h-row, k-column, and k-column
decompositions of R, where h= [x/Ap/BJ, h= [x/Ap/B], k= [v/Bp/AJ, and k=
[x/Bp/A]. (The four quantities h, h, k, ke all lie between 1 and p, because we are
assuming that p > max (A/B, BA).)
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DECOMPOSITION OF A RECTANGLE 1219

From now on we shall use the term principal decomposition to denote an hi-row,
hz-row, kl-column, or kz-column decomposition of R. The main objective of this
section is to prove the following theorem.

THEOREM 2.1. At least one of the four principal decompositions of R is an optimal
decomposition of R into pseudorectangles of equal area.

This theorem provides us with a simple algorithm for finding an optimal decompo-
sition. The algorithm performs O(1) arithmetic operations. Once it is determined which
decomposition is to be used, it is an easy matter to output the boundaries of the
rectangles in O(p) time.

Outline of the Proof of Theorem 2.1. The key results on which the proof is based
are Lemmas 2.3 and 2.4. Each implies a good lower bound .on the cost of any
decomposition of R into pseudorectangles. The lower bounds are explicitly stated in
Lemma 2.5.

Plainly, any decomposition of R that attains one of these two lower bounds must
be optimal. This simple observation is used to derive a variety of sufficient conditions
on A, B, and p for one ofthe four principal decompositions to be an optimal decomposi-
tion (Lemmas 2.8, 2.9, and 2.10). We establish Theorem 2.1 by verifying that whatever
the values of A, B, and p are, at least one of these sufficient conditions is sure to be
satisfied.

We begin by dealing with a trivial special case.
LEMMA 2.1. If hi h2 and kl k2 then the four principal decompositions are the

same, and this decomposition is optimal
Proof If h hz h and k k2 k then h x/Ap/B and k x/Bp/A, so hk p,

and A/h x/AB/p B/k. Thus, all four of the decompositions yield an h-by-k array
of equal squares. It is clear from our definition of optimality that this decomposition
is optimal.

Our next goal is to derive the lower bounds on the cost of decompositions of R.
We state these bounds in Lemma 2.5. One of our two bounds follows from a well-known
result that is usually attributed to Chebyshev:

LEMMA 2.2 (Chebyshev). If X X and Yl >- >- Yn, then the arithmetic
mean of the sequence xy, ., xnyn does not exceed the product of the arithmetic mean

of the xi and the arithmetic mean of the
Proof For all i>j the product (xi- x)(yi-y) is nonpositive, so the sum of all

such products is nonpositive. But this sum is precisely n(W-UV), where U is the
mean of the xi, V is the mean of the Yi, and W is the mean of the

The next two lemmas imply the lower bounds we seek.
LEMMA 2.3. Let h and k be positive integers such that (h-1)(k-1)<p. Let

{Rill <- <- p} be a collection ofpseudorectangles each ofarea AB/p contained in R whose
interiors are pairwise disjoint. Then there is some pseudorectangle Ri whose shortest
projection has length at most max (A/ h, B k).

Proof Let ai be the length of the projection of Ri on the y-axis, and let bi be the
length of the projection of Ri on the x-axis.

If some vertical line meets at least h of the Ri then there is such that ai <--A h.
If some horizontal line meets at least k of the Ri then there is such that bi <--B k. In
either case we are done.

Suppose towards a contradiction, that all horizontal lines meet at most k-1 of
the Ri, and all vertical lines meet at most h- 1 of the Ri. This implies that the sum of
the ai is at most A(k-1) and the sum of the bi is at most B(h-1). Therefore the
product of the mean of the ai and the mean of the bi is at most AB(h-1)(k-1)/(pZ),
which in turn is less than AB/p by the hypotheses of the lemma.
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1220 T.Y. KONG, D. M. MOUNT, AND A. W. ROSCOE

Without loss of generality, assume that the ai are arranged in ascending order.
Since for each i, aibi AB/p, the bi are in descending order. It follows, by Lemma 2.2,
that the mean of the product ab is at most the product of the means, which we showed
to be less than AB/p. However, since abi AB/p, the mean of the products is equal
to AB/p, a contradiction. [3

LEMMA 2.4. Let h and k be positive integers such that p< (h+ 1)(k+ 1). Let
{Rill <-i<=p} be a collection of (possibly disconnected) regions of area AB/p whose
union is R. Then there is some region Ri whose longest projection has length at least
min(A/h,B/k).

Proof. Let a be the length of the projection of Ri on the y-axis, and let b be the
length of the projection of R on the x-axis.

If some vertical line meets at most h of the R then there is such that a >= A/h.
If some horizontal line meets at most k of the Ri then there is such that
b>-_ B/k. In either case we are done. Thus, we may assume that each vertical line
passing through R meets at least h + 1 of the R, and each horizontal line passing
through R meets at least k + 1 of the R.

First, we show that there is some such that

(1) a, + b >_- min (A/ h + Bh/p, B/ k + Ak/p).

Our assumption implies that the sum of the ai is at least A(k+ 1), and that the sum
of the bi is at least B(h+l). Thus there is some such that ai+b >-

(A(k+ 1)+ B(h+ 1))/p.
Next, we show that (A(k+l)+B(h+l))/p>-_min(A/h+Bh/p,B/k+Ak/p).

Suppose not. Then we derive a contradiction as follows. Since p < (h + 1 )(k + 1) we have

(2) p-h(k+l)<-k,

(3) p-k(h+l)<-h.

It follows from (A(k+ 1)+ B(h+ 1))/p<A/h+ Bh/p and (2) (by routine manipula-
tions) that

Bh<A(p-h(k+ 1))-<_ Ak.

Symmetrically, from (A(k+l)+B(h+ 1))/p<B/k+Ak/p and (3) we have

Ak < B(p- k(h + 1)) _-< Bh,

giving the required contradiction. Thus (1) is proved. If a+bi>-A/h+Bh/p, then
since aib=AB/p=(A/h)(Bh/p), it follows that max(a,b)>-max(A/h, Bh/p) >-

min (A/h, B k), as claimed. By symmetry, the same is true if a + bi
To state the lower bounds implied by the last two lemmas, define the following

values where the variables h and k range over positive integers"

C =min {max (a/h, B/k)l(h- 1)(k- 1)<p},

S=max {min (a/h, B/k)[p< (h+ 1)(k+ 1)}.

The reason for the names C and S is that we found it helpful to visualize the
"bad" pseudorectangles R and Rj in parts (i) and (ii) of the next lemma as a compressed
and a stretched pseudosquare, respectively.

LEMMA 2.5. In any decomposition of R into pseudorectangles R1, ", Rp of equal
area"

(i) There is an R whose shortest projection has length at most C; hence the cost of
the decomposition is at least AB/(pC).
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DECOMPOSITION OF A RECTANGLE 1221

(ii) There is an Rj whose longest projection has length at least S; hence the cost of
the decomposition is at least S.

Proof. Assertion (i) follows from Lemma 2.3 and assertion .(ii) from Lemma
2.4.

By Lemma 2.5(ii) any decomposition of R in which the longer projection of every
pseudorectangle has length at most S is optimal. Also, since the length of the shorter
projection of a pseudorectangle of a given area determines the length of the longer
projection, it follows from Lemma 2.5(i) that any decomposition of R in which the
shorter projection of every pseudorectangle has length at least C is optimal. (Thus
Lemma 2.5 generalizes Propositions 1 and 2 in [15].)

The next step in the proof is to establish a variety of sufficient conditions on A, B,
and p for one of the four principal decompositions to attain one of the lower bounds
on cost stated in Lemma 2.5. As it turns out, these sufficient conditions are most
conveniently stated in terms of the following four quantities:

ho= [p/ k2J, go= [p/ h2J
h3 [p/k,], k3 [p/hl].

Before deriving the sufficient conditions, we prove two useful technical lemmas.
LEMMA 2.6. (i) ho<_- hi-<- h-<- h3;
(ii) ko_-< k _-< k2 =< k3;
(iii) Either k2 k3 or ho hi;
(iv) Either h2 h3 or ko kl.
Proof. Plainly, p/ka=p/ [x/Bp/A] <-p/x/Bp/A= x/Ap/B. Hence ho<- hl.

Similarly, h >--h2. So (i) holds, and, by symmetry, so does (ii). Next, observe that if
hlk2<-_p then hi is an integer such that hl<=p/k2, so hi --< [p/k2J =ho, whence (i)
implies that h ho. If on the other hand hlk2 >=p then by an analogous argument
k2 k3. So (iii) holds, and by symmetry so does (iv).

LEMMA 2.7. (i) If hi ha and kl < ks then ho < h ha < h3.
(ii) If k ks and h < h_ then ko < k ks < k3.
Proof. If h ha and k < ks then v/Ap/B is an integer but x/Bp/A is not, so

ho<-p/[x/Bp/A] <p/v/Bp/A= x/Ap/B h, and similarly h3 > ha. This proves (i), and
(ii) follows by symmetry.

If all the rectangles in a principal decomposition are congruent, then by Lemma
2.5 that decomposition is optimal if the longest (shortest) side of the rectangles has
length at most S (at least C). This simple observation yields the following sufficient
conditions for one of the principal decompositions to be optimal.

LEMMA 2.8. (i) Ifko k and h2-- h3 then the h2-row and kl-column decompositions
are the same. If, in addition, A ha>-_ C or B/k <-S then this decomposition is optimal

(ii) If ho h and k k3 then the k-row and h-column decompositions are the
same. If, in addition, B/k2 >- C or A/hi <- S then this decomposition is optimal

Proof. Suppose ko k and ha h3. The first hypothesis implies k [p/h2J <-- p/h2
and the second implies ha [p/k] >=p!kl. Hence kh2 p, so the h2-row and k-
column decompositions are the same; the decomposition is an h2-by-k array of
congruent rectangles with sides of length A/ha and B/k. A side of length A/he is a
shortest side, and a side of length B/k, is a longest side, so if A/h2 >- C or B!k <= S
then the decomposition is optimal by Lemma 2.5. This proves (i); (ii) follows by a
symmetrical argument.

A principal decomposition usually contains exactly two different kinds of
rectangles (see Fig. 1). If it is clear that one kind of rectangle is costlier than the other,
and that the longest (shortest) side of the costlier rectangles has length at most S (at
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1222 T.Y. KONG, D. M. MOUNT, AND A. W. ROSCOE

least C), then by Lemma 2.5 the decomposition is optimal. The following lemma gives
sufficient conditions for one of the principal decompositions to be optimal, based on
this idea.

LEMMA 2.9. (i) If ko < k and B/ko < S then the h2-row decomposition is optimal
(ii) If k3 > ke and B/ k3 >- C then the h-row decomposition is optimal
(iii) If ho < hi and Aho <- S then the k2-column decomposition is optimal
(iv) If h3 > he and A/h3 >= C then the k-column decomposition is optimal.
Proof Suppose ko < k and B/ko<= S. Now each rectangle in an he-row decomposi-

tion either has a side of length B/[p/he] or has a side of length B/[p/h2]. But (since
we are assuming ko<k)[p/h2]<=ko+ l<-k<=/Bp/A, so a side of length B/[p/he]
is the longest side of a rectangle of area AB/p, and (afortiori) the same is true of a
side of length B [p/heJ. As Bko<= S, B [p/heJ <-- S, and (afortiori) B [p/he] <- S.
So the he-row decomposition is optimal by Lemma 2.5 (assertion (ii)). This proves
part (i) of Lemma 2.9. Part (ii) is proved by an analogous argument by making
substitutions that are order-inverting. That is, k is replaced by k3_, h by h3-i, <= by
=>, by ], S by C, and so on. Parts (iii) and (iv) are symmetrical with (i) and (ii). [3

If the longest side of one kind of rectangle in a principal decomposition has length
at most S, while the shortest side of the other kind of rectangle has length at least C,
then by Lemma 2.5 the decomposition is optimal. Hence we have the following sufficient
conditions for optimality.

LEMMA 2.10. (i) Ifho h Ah <= S, andAh2 >- C, then the k2-column decomposi-
tion is optimal.

(ii) Ifha he, A/h <- S, andA/ h2 >- C, then the kl-column decomposition is optimal.
(iii) If ko k, B/k <= S, and Bike > C, then the he-row decomposition is optimal.
(iv) If k k2, B/k <-S, and Bike > C, then the h-row decomposition is optimal.
Proof Suppose ho h, Ah <- S, and Ahe >- C. Then [p/keJ hi. There are two

cases" either p/ke ha or p/ke h + 1.
In the first case the k2-column decomposition consists of ke columns, each of

which contains h congruent rectangles. Each of these rectangles has a side of length
A/h, and (since by definition h <-_x/Ap/B) this is the longest side of the rectangles.
Hence A hi <= S implies that the decomposition is optimal (by assertion (ii) of Lemma
2.).

In the second case we note that, by Lemma 2.7(i), ho-- h implies that either h < he
or k ke. So we may assume that h < h, for if k ke and h he then Lemma 2.10
is certainly true (by Lemma 2.1). By hypothesis [p/ke] h + 1, so [p/ke] he. Now
each rectangle in the ke-column decomposition either has a side of length
A/ [p/ keJ (=A/ h,) or has a side of length A/[p/ke](=A/he). Since h, <-.,lAp/B<= he,
a side of length A/h is a longest side, and a side of length A/he is a shortest side.
Recalling that A/h <= S and A/he>= C, we see that Lemma 2.10 now follows from
Lemma 2.5. This proves assertion (i); the other assertions follow by symmetrical
arguments. [3

Finally, we need to show that for all values of A, B, and p at least one of the
sufficient conditions for optimality holds. The proof is by case analysis, based on the
following lemma.

LEMMA 2.11. (i) Ifh < h2 then min (A/h, B/ko) <- S and max (A/he, B/k3) > C.
(ii) If kl <ke then min (B/kl,A/ho)<=S and max (B/k.,A/h3) >- C.
Proof Suppose hi < he. Then ko [p/(hl + 1)J and k3- [p/(he- 1)]. Hence, (hi +

1 )(ko / 1 > p implying that min (A/h, Bko) <= S, by definition of S. Similarly, he 1
(k3-1)<p; thus max (A/he, B/k3) >- C. This proves (i); as usual, (ii) follows by a
symmetrical argument. [3
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DECOMPOSITION OF A RECTANGLE 1223

Proof of Theorem 2.1. If hi- hs and kl- k_ then we are home by Lemma 2.1.
Suppose h hs and k < ks. Then by Lemma 2.7 ho < hi hs < ha, and so, by Lemma
2.6(iii), ks-k3. Hence, we deduce Theorem 2.1 by combining Lemma 2.11(ii) with
Lemma 2.10(iv) and Lemma 2.9 ((iii) and (iv)). By symmetry, Theorem 2.1 holds if
hi < hs and kl ks.

Now suppose hi < hs and kl < ks. On applying Lemma 2.11(i) we see that there
are four possibilities"

(a) Ah <- S and Bk3 >= C.
(b) B/ko<-S and B/k3>= C.
(c) A/h <- S and A/h_ >-_ C.
(d) B/ko<-S and A/he>= C.
Case (a). Case (a) need not be considered separately as it is symmetrical with

Case (d).
Case (b). If ko < kl or k3 > ks then Theorem 2.1 follows from Lemma 2.9((i) and

(ii)). Otherwise ko k and k3 ke, and Theorem 2.1 follows from Lemma 2.10((iii)
or (iv)).

Case (c). If h0 h or hs h3 then Theorem 2.1 follows from Lemma 2.10((i) and
(ii)). Otherwise ho < h and he < h3, and, by Lemma 2.6(iii), ke k3. Now apply Lemma
2.11(ii) to get the following four subcases:

(cl) B/k<=S and A/h3 >- C.
(c2) Aho <- S and Aha >- C.
(c3) Bkl <-- S and Bke >= C.
(c4) A/ho<-S and B/ke > C.

Since, in the present case, ho < hi and hs < h3, Theorem 2.1 follows from Lemma 2.9
((iii) and (iv)) in Cases (cl), (c2), and (c4). Since, in the present case, ke k3, Theorem
2.1 follows from Lemma 2.10(iv) in case (c3).

Case (d). We again apply Lemma 2.11(ii) to get the same four subcases (cl)-(c4)
now renamed as Subcases (dl)-(d4).

Subcase (dl). Recall that A/hs>=C and B/ko<-S (from (d)). Now if ko<kl or

he < ha then Theorem 2.1 follows from Lemma 2.9((i) and (iv)); if,
on the other hand, k0 kl and he h then Theorem 2.1 follows
from Lemma 2.8(i).

Subcase (d2). Symmetric with Case (b) above.
Subcase (d3). Symmetric with Case (c) above.
Subcase (d4). We have B/ks >-_ C and (from (d)) B/ko<-_S. Hence, if ko<kl then

Theorem 2.1 follows from Lemma 2.9(i), while if ko kl then
Theorem 2.1 follows from Lemma 2.10(iii). [3

We have proved that at least one of four principal decompositions is an optimal
decomposition of R into pseudorectangles. But we conjecture that an optimal decompo-
sition of R into pseudorectangles is in fact an optimal decomposition of R into arbitrary
sets of equal area. In other words, the conjecture is that Theorem 2.1 solves the general
decomposition problem as well as the pseudorectangular decomposition problem. We
end this section with a simple argument which shows that the conjecture is true if
S>-AB/(pC).

Observe, first of all, that in the statement of Lemma 2.4 the Ri’s need not be
pseudorectangles. So we see that a decomposition of R into arbitrary measurable sets
of area AB/p must contain a set whose x- or y-projection has length at least S. As
was explained in our outline of the proof, we established Theorem 2.1 by showing
that at least one of the four principal decompositions attains one of the two lower
bounds stated in Lemma 2.5. In other words we showed that (at least) one of the
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1224 T.Y. KONG, D. M. MOUNT, AND A. W. ROSCOE

principal decompositions either has cost S or has cost AB/(pC). Now suppose
S>= AB/(pC). Then by Lemma 2.5(ii) none of the principal decompositions of R can
have cost AB/(pC). Therefore one of the principal decompositions has cost S, so that
the sum of the height and width of any rectangle in that decomposition is at most
S+ AB/(pS). The fact that a rectangular decomposition of R has cost S also implies
that S>= /AB/p. But we have seen that a decomposition of R into p arbitrary sets of
equal area must contain a set whose x- or y-projection has length at least S; the sum
of the x- and y-projections of that set must be at least S + AB/(pS).

3. Digitizing a rectangular decomposition. As noted in the Introduction, the lattice
decomposition problem, is a discrete analogue to the region decomposition problem.
Recall that the problem is to partition an A B rectangular array of integer lattice
points into p subsets each of size at most [AB/p such that the maximum projection-
perimeter is minimized. We do not know of an efficient solution to the lattice decomposi-
tion problem, but when A and B are large relative to p the results of the previous
section can be used to find an approximate solution. The problem reduces to
approximating the decomposition of an A x B rectangle on the lattice, so that areas
and projection-perimeters are very nearly preserved.

In this section we consider how to compute this approximation, which, to borrow
a term from computer graphics and vision, we call digitization. We present three
digitization algorithms that provide tradeoffs between running time and the quality of
the digitization. The second digitization algorithm is quite general, and operates on
any decomposition into convex polygons. The other digitizations are significantly more
efficient, but operate on a special class of rectangular decompositions which we call
row-major decompositions. Consider the A B rectangle,

R={(x,y)lO<-_xn,o<= y<-A}.

A decomposition of R into rectangles is called row-major if it is of the following form.
(1) R is partitioned into r rows by a set of horizontal line segments running from

x 0 to x B. Let 0 ho < hi < < hr A be the y-values of these segments.
(2) Each row is further decomposed by vertical segments into some number of

columns. For the row bounded by hi_l and hi let 0 Vi.o < vi.1 < < vi.., B be the
x-values of these vertical segments.

Note that the decomposition produced by the algorithm of 2 is either row-major,
or can be made so by transposing rows and columns. In this section, we assume that
A and B are positive integers. We assume that the line segments defining the decomposi-
tion are described using rational numbers representable using O(log (p + A + B)) bits
each.

Consider the A B rectangular array of integer lattice points L superimposed on
the rectangle R. That is, L= {(i,j) 10 <= <A, 0=<j < B}. For each (i,j) L. let Sia denote
the open unit square consisting of the points (x, y) for < x < + 1 and j < y <j + 1.
These are called the lattice squares. The rectangle R consists of A horizontal rows and
B vertical columns of squares. Our aim is to approximate a decomposition of R into
p regions by a partition of the lattice squares into p subsets. Although digitization is
common in applications from computer vision and graphics, the goals of our digitization
are rather special. We seek a partition of squares satisfying the following criteria: (1)
the number of lattice squares assigned to a given region of the decomposition is nearly
equal to the area of the region, and (2) the projection-perimeters of a region and its
corresponding subset of lattice squares are nearly equal. We formalize these criteria
by defining two properties of digitizations that we seek to produce through our
algorithms.
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DECOMPOSITION OF A RECTANGLE 1225

DEFINITION. (1) A digitization is overlapping if each region is assigned only lattice
squares Si, that overlap the region.

(2) A digitization is equitable if the number of lattice squares assigned to a given
region does not exceed the ceiling of the area of the region.

All three of the digitization algorithms presented here produce overlapping digitiz-
ations; however, the first and third algorithms do not necessarily produce equitable
digitizations. Define the absolute excess of a digitization to be the maximum signed
difference between the number of lattice squares assigned to a region and the true area
of the region. (Note that the absolute excess may be negative.) An equitable digitization
has an absolute excess less than 1. The relative excess is defined to be the maximum
ratio of these two values. The first digitization algorithm produces a digitization with
relative excess approaching unity as min (A, B) approaches infinity. The second pro-
cedure produces an equitable digitization by reducing the digitization problem to the
problem of finding a feasible flow in a graph. This algorithm is the least efficient of
the three. The third algorithm, is a compromise between these two. Like the first
algorithm, it is very efficient with respect to running time but produces a digitization
that has an absolute excess less than 2 for all input parameters.

The amount of time required to compute the digitization can be measured as the
amount of time required to describe the boundaries of the digitization as a sequence
of line segments. Our first and third algorithms can print the boundaries in O(p) time,
and hence are optimal with respect to this criterion. Our second algorithm runs in
polynomial time in A + B +p, although we do not attempt to find the most efficient
implementation.

Our first algorithm is a simple naive digitization based on point containment.
Stated simply, the set of lattice squares assigned to a region are those whose lower
left corners are contained in the region. If a lattice point (i, j) lies on the boundary
between two or more regions, then the corresponding square is assigned arbitrarily to
one of the regions that overlaps the square. This is easily seen to be an overlapping
digitization. It is also easy to see that as A and B increase relative to p, then the relative
excess of the digitization approaches 1.

Note that the digitization of a given rectangle can be computed in constant time.
This digitization algorithm has the property of mapping rectangles to rectangular arrays
of squares. The other two digitizations that we present do not have this property.

3.1. Absolutely equitable digitization. The second algorithm works by reducing
the digitization problem to a graph flow problem. This algorithm can be applied to
any decomposition of R into convex polygonal regions. Let R1, R2," ", Re denote a
decomposition of R into p polygonal regions.

We define a bipartite flow graph with upper and lower vertex capacities, G
(V, E, L, U), with vertex set V, edge set E, and lower and upper capacity functions L
and U. V consists of the following elements"

region vertices r, r2," ", re, one for each region of the decomposition, and
lattice vertices si,, one for each of the lattice squares, Si, for 0-< < A and

O<=j<B.
The edge set, E, consists of the following pairs:

an edge from each region vertex r to each lattice vertex s whenever the unit
square Sa overlaps the region R,
The vertex capacities are expressed as pairs, (L(v), U(v)), representing the lower and
upper flow capacity for each vertex v. These capacities are"

(1, 1) for each lattice vertex, and
([a], [a ]) for each region vertex r, where a is the area of region R.
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1226 T.Y. KONG, D. M. MOUNT, AND A. W. ROSCOE

For example, Fig. 2 shows a decomposition of R and the corresponding flow
graph.

Let F(v) denote the neighbors of a vertex v. A feasible flow is an assignment f of
nonnegative integers to each edge of E, such that, for each vertex v V

L(v)<- Z f( v, w) -<- U( v).
wF(v)

We say that a digitization is absolutely equitable if the number of lattice squares assigned
to each region is either the floor or ceiling of the area of the region. An absolutely
equitable digitization is, in some sense, the most equitable digitization that we can
hope to achieve. The connection between the digitization problem and the graph G is
established in our next lemma, which follows immediately from our construction.

LEMMA 3.1. There exists an overlapping, absolutely equitable digitization ifand only
if the graph G has a feasible flow.

Although the relationship between the feasible flow problem and the problem of
absolutely equitable digitization gives a method of computing the digitization, it is not
obvious that such a digitization need exist. Our next result applies a generalization of
Hall’s well-known theorem on complete matchings in bipartite graphs to show that
such a digitization exists for all decompositions.

THEOREM 3.1. Given any decomposition ofR into regions with disjoint interiors, an
absolutely equitable digitization of the decomposition exists.

Proof. We make a straightforward adaptation of an existing result from the study
of feasible flows in graphs with lower- and upper-edge capacities 10, p. 81 ], [3, p. 88],
which generalizes Hall’s theorem on the existence of complete matchings in graphs
[4]. This result states that a necessary and sufficient condition for the existence of
nonnegative feasible flow in G is that for all subsets U of region vertices and all
subsets, T, of lattice vertices we have

(4) 2 L(v)<- 2 U(w), 2 L(w)<- 2 U(v).
U wF(U) T vF(T)

The first half of (4) follows by noting that the sum of areas of a set of disjoint regions
U is no greater than the number of unit squares F(U) that cover the set. The second
half follows by noting that the number of disjoint unit squares in a set T is no greater
than the sum of areas of the regions F(T) covering T. V1

COROLLARY. If the regions ofthe decomposition have integer areas, then there exists
an overlapping digitization with an absolute excess of zero.

R1 R2 R3 R4
R1

R2

R3

R4

(3,4) (2,3) (2.3) (0,1)

Row 1 Row 2 Row 3

FIG. 2. The flow graph of a decomposition.
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DECOMPOSITION OF A RECTANGLE 1227

Once the graph G has been constructed, the equitable digitization can be computed
in O(IVI3) time by any known algorithm for finding feasible flows in graphs [3], [18].
The number of vertices V is p + AB and the magnitude of the capacities is at most AB.

In the case where p is small relative to A and B we might hope to find a bound
on the size of the vertex set of G that is independent of A and B. To do this we reduce
the number of lattice vertices as follows. The lattice vertices can be partitioned into
equivalence classes according to the set of regions that they overlap, that is according
to F. The individual lattice vertices forming each equivalence class can then be replaced
by a single aggregate vertex representing the entire class. The capacity of this aggregate
vertex is the sum of the capacities of the individual vertices. It can be shown that if
R is decomposed into p convex polygonal regions then the number of equivalence
classes is O(p2) [14]. This reduction can be computed easily in O(pAB) time, and
the digitization can be computed in O(p6) time by a feasible flow algorithm.

3.2. Nearly equitable digitization. In the previous section we showed that
absolutely equitable digitizations exist, although they are somewhat expensive to
compute. Next we present an efficient digitization algorithm that does not provide us
with an equitable digitization, but does achieve an absolute excess less than 2. Figure
3 shows the result of this digitization of a seven-region decomposition on a lattice of
size 13 13. This digitization has the property that, given a lattice square, the rectangle
to which it is assigned can be determined in O(1) time. The boundary of a digitized
region can be described by a collection of line segments in O(1) time. This is possible
because the algorithm works locally, digitizing each rectangle of the decomposition
without knowledge of the digitization of any other rectangles, as opposed to the graph
flow method which operates globally.

,,,,,I
4- - 4- "1- -/-/-+-+-/-4-+-4.-

--4---@--@-4-i-@--4--/--4-- +-@--4.--4-.____;____- -I-I-I-
4--- .I- .1- 4- -I- / / 4- --t. 4. 4. 4

.--------+ 4- 4. + 4. --.# 4.-- 4. 4.

FIG. 3. A 7-region digitization on a 13 x 13 lattice.

This algorithm makes extensive use of the fact that the decomposition is a

row-major decomposition. The algorithm operates in two phases. First, for each
adjacent pair of horizontal lines hi and hi_ the digitized region lying between hi and
hi_ is determined. In the second phase, within the digitized region between hi and
hi-l, we digitize the region lying between the vertical lines vj and vj_. In our discussion,
we will make use of the following easily verified identity. For all numbers s and t:

Is- t] [s] rt] <- [- tl.
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1228 T.Y. KONG, D. M. MOUNT, AND A. W. ROSCOE

For the first phase of the algorithm, we show how to digitize the region between
the horizontal lines y hi and y hi-s, 1 =< _-< r. For each we digitize the region lying
below hi, denoted Hi, and then define the digitized region between hi and hi-1 to be
the set difference Hi- Hi_l. Hi consists of all lattice squares lying strictly below hi,
that is, Sx,y where y < [hi l, and some subset of the horizontal row of squares Sx,y,
where y [hi]. Consider the set of decomposition vertices lying in this row of squares.
For each such vertex (g, h), construct the vertical lines x [g] and x [g]. Let Gi
denote the set of x-intercepts of these lines, and let 0 gi,o < gi, < < gi, B, the
sorted elements of Gi. These lines partition this horizontal row of lattice squares into
m contiguous blocks. See Fig. 4.

0 =gi,o gi,1 gi,2 gi,3 gi,4 gi,5 = B

FIG. 4. Allocation below a horizontal line.

The portion of this row, bounded above by hi and lying to the left of gij has area
(hi- [hi] )gij. Let Cia denote the ceiling of this value. Cia is the desired total number
of squares to allocate to the left of gi. For the block bounded by gia-1 and gij, we
allocate the leftmost Cij- Cia-. lattice squares to Hi. For example, in Fig. 4, hi- [hiJ
-; hence the number of squares allocated to Hi lying between gi,2--3 and gi,3- 7 is
[7/3]- [3/3] 2. The allocated squares are shaded in Fig. 4.

Using (5), we have

0 -<- Cij Cij._ r(gij gij_)( hi hi <= gij gij-.

Hence, there are enough lattice squares between gii- and gij to satisfy this allocation
scheme. It is an easy consequence of our definition that Hi_

_
Hi, for 1 _-< _-< r. Thus,

the digitization of the row between hi and hi-1 can be defined to be Hi-Hi_l. It is
clear by our construction that each square of Hi-Hi-1 overlaps the region between
h and hi_. The next result states that the boundary of Hi can be computed in constant
time within a fixed block of

CLAIM 3.1. For a lattice square Sx,y where gi,-- <- x < gid, the membership of Sx,y
in Hi can be tested in 0(1) time. The boundary of Hi between gi- and gi,i can be
computed in 0(1) time.

We now describe the second phase of the algorithm in which we complete the
digitization of each rectangle by digitizing the vertical lines. Throughout, we will be
considering the digitized region Hi Hi- for any fixed i, 1 =< i_-< r. Let Vl, v, ,
denote the vertical segments between the horizontal lines h and hi_. Similar to the
first phase, we determine the digitized region lying to the left of vj, for each j, and
then define the final digitized region by set difference. The process is slightly more
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DECOMPOSITION OF A RECTANGLE 1229

complex than the first phase because of the discontinuities in the boundary of Hi and

For an integer g, O<=g<=B, let L(g) denote the number of lattice squares in

Hi-Hi-1 that lie strictly to the left of the vertical line x g. Intuitively, L(g) is a
discrete approximation to the true area g(hi-hi_). For example, in Fig. 4, the true
area bounded by hi 31/2, hi_ 0, and gi,3 7 is 231/2 and L(gi,3) 24. In the special case
that g is the floor or ceiling of a vertical line of the decomposition, then we can bound
the value of L(g) as we now show.

CLAIM 3.2. Let vj be a vertical line of the decomposition between the horizontal lines

hi and hi_. Then
(i) L([vJ)_< [v(hi-hi_)], and
(ii) L([v])->
Proof By definition, both [vJ and Iv] are in Gi and Gi_l. From the definition

of Hi and Hi- it follows that L([vJ)= [[vJ hi] [[vJ hi_]. Part (i) follows by applying
(5) and through simple manipulations. Part (ii) follows analogously.

The digitized region to the left of vj, denoted V, consists of all the squares
Sx,y Hi- Hi-1 for which x < [v2J and a portion of the column of squares for which
x [v2J. If v2 is not an integer, then the set of squares Sx,y with x-<_ [v2J is bounded
on the right by the vertical line x [vj ]. If v2 is an integer, then the overlapping
constraint implies that we cannot allocate any squares to the right of v2 Iv2 ]. Thus
in either case the maximum number of such squares that can be allocated is L( Iv2 ]).
The digitization seeks to approximate the area bounded horizontally between hi and
hi-1 and on the left by vj, that is, vj(hi- hi_l). Thus, we define the size of V, denoted
D2, by combining these two values:

D2 min v2 (hi hi-l) ], L( vj )).
There are L([vjJ) squares allocated strictly to the left of the column [v2J, therefore,
the number of squares Sx,y to be allocated where x [v2J is D2-L([v./J). We select
the topmost squares of the column to be allocated. It follows from Claim 3.2(i) that
0 <-Dj- L( [v2J ). It follows from the definition of D2 that there are enough squares in
column [v2J to satisfy this allocation. Finally, the digitized region between v2 and
is defined to be V- V_I. By definition of D2, this digitization is overlapping.

For example, in Fig. 5, the true area bounded by hi 3, hi_ 0, and v2 71/2 is 25
and L( Iv2 ])= 27 and so D2 25. Since L( [vjJ )= 24, there is one square allocated in
column [vJ.

FIG. 5. Allocation to the left of a vertical line.
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1230 T.Y. KONG, D. M. MOUNT, AND A. W. ROSCOE

CLAIM 3.3. The right-side boundary of V can be computed in 0(1) time.

Proof The right-hand-side boundary is defined by the squares of column [vii
that are in V. These squares can be computed in constant time once we know the
topmost square of column [vjJ in Hi. However, since [v] Gi, the membership of
this square in Hi can be determined in O(1) time by Claim 3.1. [3

In summary, to digitize the rectangle bounded by horizontal lines hi and hi-1 and
vertical lines v and vj_l we apply the first phase of the algorithm to digitize the
horizontal region, and then apply the second phase to complete the digitization. We
claim that this algorithm defines a digitization that is overlapping and has an absolute
excess less than 2.

THEOREM 3.2. Consider the digitization ofeach rectangle in a row-major decomposi-
tion of R described above.

(i) The digitization defines a partition of the set of lattice squares in R.
(ii) The digitization is overlapping.
(iii) The digitization has an absolute excess less than 2.

Proof Parts (i) and (ii) follow from the preceding discussion. Details for both
cases appear in [14]. To prove (iii), consider a digitized region bounded by vertical
segments vj and vj_l between rows hi and hi-1. The size of the allocation is

D Dj_ min (Ivy(hi- hi_)], L( [vj ]))-min ([v_(hi- hi_l)], L( r/.)j_l ]))
<- [vj(hi- hi-i)] lv-l(hi- hi-1)J (by Claim 3.2(ii))

< [(v v_)(hi- hi_)] + 1 (by Equation (5))
< v v.i_l)( hi hi_l) + 2.

Thus, the digitization has absolute excess less than 2. [3

The fact that the absolute excess may exceed 1 results from the min appearing in
the definition of D. This seems to be an inherent consequence of the constraint that
the digitization be overlapping and the locality exploited by the algorithm.

The running time of the algorithm follows from Claims 3.1 and 3.3 together with
a few additional observations. By Claim 3.1, we can find the digitization of a rectangle,
provided that the number of points in Gi is not too large. We can ignore all the vertices
of the decomposition, except for those that appear within the set of unit squares that
cover the rectangle, since the remaining vertices cannot affect the digitization here.
The vertices to be considered will consist of the four corners of the rectangle, plus any
other vertices along the horizontal edges of the rectangle. If the decomposition is
generated by the algorithm presented in 2, the widths of adjacent rectangles differ
by at most a factor of 1/2, from which it follows that the number of such vertices is
never greater than 2. From this observation we have

CLAIM 3.4. When the algorithm is applied to the n-row and n-column decompositions
generated by the algorithm of 2 and ifp <= AB, then we have the following"

(i) The region containing a given lattice square can be determined in O(1) time.

(ii) The boundary of a digitized region can be computed in O(1) time.

4. Fur’ther remarks. We have given a simple algorithm for decomposing a rectangle
into rectangles of equal area whose maximum perimeter is minimized. We have shown
that this algorithm is optmzl over the more general category of decompositions into
pseudorectangles. We have also given an approximate solution to the discrete problem
of partitioning grid squares into sets of equal size so that the maximum pseudoperimeter
(sum of projections) is minimized.

There are a number of open questions remaining. In 2, we showed that our
decomposition is optimal over all decompositions into pseudorectangles. Is it true that
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the decomposition is optimal even over all measurable, possibly disconnected, regions ?
The remark following Lemma 2.5 states that the algorithm is optimal (with respect to
pseudoperimeter) for decomposition into arbitrary measurable sets, for certain input
values. Also, the question of solving the rectangle decomposition problem in higher
dimensions is open.

There is a wide class of similar partitioning problems that are related to the
problems considered here. For example, given an A B rectangle R and a set of
positive real numbers al, a2,’", ap, where Yi ai AB, decompose the rectangles into
rectangles of area ai, so that the maximum eccentricity (ratio of a rectangle’s longer
to shorter side) is minimized. It is also natural to consider alternate cost criteria, such
as the sum of perimeters, rather than the maximum perimeter.
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