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AN OUTPUT-SENSITIVE ALGORITHM
FOR COMPUTING VISIBILITY GRAPHS*

SUBIR KUMAR GHOSH? AND DAVID M. MOUNTS

Abstract. The visibility graph of a set of nonintersecting polygonal obstacles in the plane is an undirected
graph whose vertex set consists of the vertices of the obstacles and whose edges are pairs of vertices (u, v)
such that the open line segment between u and v does not intersect any of the obstacles. The visibility graph
is an important combinatorial structure in computational geometry and is used in applications such as
solving visibility problems and computing shortest paths. This paper presents an algorithm that computes
the visibility graph of a set of obstacles in time O(E + n log n), where E is the number of edges in the
visibility graph and n is the total number of vertices in all the obstacles.
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1. Introduction. The visibility graph of a set of nonintersecting polygonal obstacles
in the plane is a graph whose vertex set consists of the vertices of the obstacles and
whose edges are the pairs of vertices (u, v) such that the open line segment between
u and v does not intersect any of the obstacles. In this paper an output-sensitive
algorithm is presented for computing the visibility graph of a set of polygonal obstacles.
The visibility graph is a fundamental combinatorial structure in computational
geometry; it is used, for example, in applications such as computing shortest paths
amidst polygonal obstacles in the plane [11]. In particular, given a set of polygonal
obstacles in the plane, the shortest-length path between any two points s and travels
along the edges of the visibility graph of the obstacle set augmented with the points
s and [10],[15].

In the worst case the visibility graph of a set of obstacles with n total vertices
may contain O(/12) edges. An O(n2 log n) algorithm for this problem was given by
Lee [9] and Sharir and Schorr [15]. Later, worst case optimal O(n) algorithms were
discovered by Asano et al. 1 and Welzl 16]. If the visibility graph contains relatively
few edges, for example, when there are many densely packed objects, it is desirable
to have an algorithm whose running time is a function of the number of edges.
Hershberger has described an output-sensitive algorithm for the case of computing the
visibility graph within a simple polygon (once the polygon has been triangulated) [6],
and Overmars and Welzl have given an algorithm for computing the visibility graph
for a set of disjoint polygonal obstacles whose running time is O(E log n) and whose
space is O(n), where E is the number of edges in the visibility graph [14].

In this paper we present an algorithm that computes the visibility graph of an
arbitrary set of disjoint obstacles with running time O(E + n log n). The O(n log n)
term is overhead needed for computing a particular triangulation of the obstacle-free
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 889

space, after which the algorithm runs in O(E) time. This is optimal in the worst case
with respect to E and n, since there are cases of n obstacles where E--O(n), but
computing the visibility graph is equivalent to sorting a set of n points 1 ]. The algorithm
uses O(E + n) space. Recalling the application of computing shortest paths amidst
polygonal obstacles, once the visibility graph has been constructed, the shortest path
can then be computed in O(E + n log n) time by Fredman and Tarjan’s variation of
Dijkstra’s algorithm using Fibonacci heaps [2].

The key to the algorithm’s efficiency is a way of structuring the edges of the
visibility graph in terms of a set of objects called funnel sequences. Intuitively, the
funnel sequence associated with an edge of an obstacle encodes the set of vertices that
can see some portion of this edge. We present a novel technique of traversing the
funnel sequences.

Throughout, P will denote a bounded polygonal domain, which we will think of
as a simple polygon (forming the external boundary) whose interior contains a set of
simple polygons (the holes) such that the holes have pairwise disjoint interiors. Define
the free space to be the closed space lying on or within the external boundary and on
or outside the holes. (If no exterior boundary is given, the convex hull of the obstacle
set, which is computable in O(n log n) time, suffices as the external boundary.)
Throughout, in using the term polygonal domain, we will assume the existence of an
external boundary. The boundary of a polygonal domain is represented by a single
counterclockwise cycle of directed edges forming the holes. Thus for each directed
edge, free space lies to the left side of the edge. To simplify the presentation, we will
make the "general position" assumptions throughout that no three vertices of the
polygonal domain are collinear and no two vertices share the same x-coordinates. We
will also assume that each vertex of P is incident on exactly two edges of P (line
segment obstacles can be handled as degenerate polygons with two oppositely directed
edges). Our results hold in the absence of these assumptions, but the presentation
would be complicated by a number of tedious special cases that would need to be
considered.

2. The plane-sweep triangulation. As mentioned in the Introduction, the visibility
graph algorithm is based on a triangulation of free space. Let T1, T2," ", T, denote
the triangles of this triangulation. Thus the free space region defined by P is just the
union of these triangles" P= i% Ti. The visibility graph algorithm operates by
constructing a series of subsets of free space by successively adjoining triangles to one
another, P T, P2 T t_J T2, P3 T [_J T2 [_J T3, etc. We compute a complete visibility
graph for each subset Pk by augmenting the visibility graph for Pk_l. (To be exact,
we simultaneously add a number of triangles incident on a single vertex.) Because of
the nature of the augmentation procedure, it will be important to select the triangulation
and the ordering of triangles in a careful way. Fortunately, there is a simple and natural
triangulation based on plane-sweep which suffices for our purposes. The triangulation
algorithm is essentially equivalent to one described by Mehlhorn [13, pp. 160-172].
Although Mehlhorn’s algorithm assumes that the polygon has no holes, the algorithm
generalizes easily.

The idea behind the plane-sweep triangulation for polygons is most easily illus-
trated by describing the plane-sweep triangulation of a set of points p, p2,..., Pn.
As is common in plane-sweep algorithms, first the points are sorted in increasing order
of their x-coordinates. The triangulation initially contains no edges, just the vertex
whose x-coordinate is minimum. Inductively, let us assume that the first k-1 points
have been triangulated. Think of the outer boundary of the triangulated region as a
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890 s.K. GHOSH AND D. M. MOUNT

polygon Pk-1, namely the convex hull of the first k- 1 points. Clearly the point Pk lies
outside of Pk-1. Thus we can incorporate Pk into the triangulation by connecting Pk
to all of the points on the boundary of Pk-1 that are visible from Pk (thinking of Pk-1
as an obstacle). The point Pk will be joined to an inward-convex chain of vertices on
the boundary of Pk-1.

The plane-sweep triangulation of the interior of a polygonal domain is similar.
First the vertices are sorted by x-coordinate. Let Vl, v2,"" ", vn denote the resulting
sequence. Inductively assume that the first k-1 vertices have been incorporated into
the triangulation. The outer boundary of the triangulated region consists of a set of
disjoint simple polygons, which may degenerate to isolated points and line segments.
Thinking of the edges of the polygonal domain as forming obstacles, the vertex /)k is
incorporated into the triangulation by adding visible segments between Vk and all its
visible neighbors on the boundary of the triangulated region.

The plane-sweep triangulation can be built in O(n log n) time. The important
property of the plane-sweep triangulation, which will be exploited by our algorithm,
is summarized in the next lemma. This lemma follows from the discussion in [13]. See
Fig. 1.

(a) (b) (c)

FIG. 1. Connecting a point to the triangulation.

LEMMA 2.1 (Mehlhorn [13]). Consider the triangles formed as an arbitrary vertex
v is incorporated into the triangulation of a polygonal domain P. These triangles form
either one or two connected sequences about v such that the sides opposite v form an
inward-convex chain with respect to v (degenerating possibly to a single point). If there
are two such sequences, then these sequences are separated from one another by the
boundary of P (Fig. 1 c ).

3. The funnel sequence. The visibility graph of a polygonal domain possesses a
great deal of structure when seen within the context of the polygon itself. In this section
we describe the fundamental structure that our algorithm manipulates, called the funnel
sequence for an edge of the polygonal domain P. Funnels arise naturally in shortest-path
and visibility problems in simple polygons [5], [6], [10]. We begin with some definitions
and observations about funnels.

Define a visible chain in polygonal domain P to be a path in the visibility graph
of P. To avoid confusion, we will use the term edge when referring to an edge of a
polygon, and the term visible segment or just segment when referring to an edge in a
visibility graph. A chain is convex if the figure defined by joining the two endpoints
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 891

of the chain is a convex body. Consider a vertex v that is visible from an interior point
z of an edge (x, y) of P. For the sake of illustration, imagine that the edge (x, y) is
directed upwards and point v is to the left of the edge (see Fig. 2). Define the lower
chain of v with respect to (x, y) to be the unique convex visible chain from v to x
such that the interior region bounded by this chain and by the line segments vz and
xz is empty. Intuitively, the lower chain is formed by imagining that the segment vz
is a rubber band and sliding the point z of this rubber band down the edge (x, y) until
reaching x. The upper chain of v with respect to (x, y) is defined analogously for y.
The lower chain, upper chain, and edge (x, y) bound a simple polygon in P which we
call a funnel.

v z v

y

(a) (b)

FIG. 2. Visible chains and funnels.

By definition, the interior of the funnel contains no vertices and no edges of P.
The vertex v is called the apex of the funnel and the edge (x, y) is the base of the
funnel. Unlike funnels that arise in simple polygons [6], in polygonal domains there
may be many funnels sharing a single apex vertex (see Fig. 2(b)). We will think of
these apexes as being distinct objects occupying the same physical location in space.

Considering the visibility graph for P and a vertex v of P. Let Uo, u2," , u,, be
the clockwise sequence of vertices that are visible from v so that (Uo, v) and (v,
are edges of P. For every pair of cyclically adjacent vertices ui-1 and ui, there is a
unique edge e of the polygonal domain that can be seen by an observer located at v
looking between these vertices (for otherwise, there would be another visible vertex
between them). Thus there is a unique funnel whose apex is v, whose base is e, whose
upper chain begins with (v, u_l), and whose lower chain begins with (v, u). Given
the first directed segment (v, u) of the lower chain, the first directed segment (v, u_)
of the upper chain is uniquely determined, and vice versa. An immediate result of this
correspondence is the following.

LEMMA 3.1. There is a 1-1 correspondence between pairs of cyclically adjacent
directed segments of the visibility graph about a vertex v, ((v, Ui_l) (V, U )) for 0 < <-- m,
and the funnels whose apex is v.

COROLLARY. The total number offunnels in a visibility graph with E undirected
edges and n vertices is 2(E- n), which is O(E).
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892 S. K. GHOSH AND D. M. MOUNT

For a given edge (x, y) of the polygonal domain P, let FNL(x, y) denote the set
of funnels whose base edge is (x, y). Recall that the interior of P lies to the left of the
edge, so these funnels all lie on the left of (x, y). For completeness, vertices x and y
can each be thought of as the apexes of degenerate funnels in FNL(x, y). (There are
2n degenerate funnels, so this does not alter the number of funnels asymptotically.)
If v is the apex of a funnel in FNL(x, y), and u is the first vertex on the lower chain
from v to x, then u is visible from the edge (x, y) implying (by convexity of funnels)
that u is the apex of a unique funnel that is contained within v’s funnel. If we think
of the apex u as the parent of the apex v, we see that the set of funnels in FNL(x, y)
forms a tree rooted at x whose paths are the lower chains of FNL (x, y). Note that it
is important to distinguish vertices from apexes here because the same vertex can
appear many times as an apex in FNL (x, y), whereas each apex can appear only once.
Each path from a node to the root of this tree is a convex visible chain that turns
clockwise. Call this the lower tree for the edge (x, y) (see Fig. 3(a)). Analogously, we
define the upper tree to consist of the tree of upper chains of FNL (x, y) rooted at y
(see Fig. 3(b)). Paths from a node to the root in the upper tree are convex visible
chains that turn counterclockwise.

Y

x

(a) (b)

FIG. 3. The lower and upper trees.

We can define a natural linear ordering on the funnels of FNL (x, y) based on
these trees by considering the clockwise preorder traversal of the lower tree. There is
another natural order that results from considering a clockwise postorder traversal of
the upper tree. In both orderings, the degenerate funnel at x is first, and the degenerate
funnel at y is last. Our next result states that these orders are in fact equal to one
another. We refer to this clockwise ordering of funnels as the funnel sequence for the
edge (x, y).

LEMMA 3.2. The linear orders on FNL (x, y) arising from a clockwise preorder
traversal ofthe lower tree and a clockwise postorder traversal ofthe upper tree are the same.

Proof Let fl and f2 be two funnels so that fi precedes f2 in a clockwise preorder
traversal of the lower tree. Think of the lower chains of fi and f2 as paths from the
root x to the apexes of these chains, and think of upper chains as paths from y. There
are two reasons that fi may precede f2: (1) the lower chain of fi is a subchain of the
lower chain off2 and (2) the lower chain off2 diverges clockwise from fi’s lower chain
at some common ancestor.
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 893

In case (1) the apex off1 lies on the lower chain off2. By the emptiness of funnel
f2, the upper chain of fl contains a single segment that lies entirely within f2 and joins
the apex of fl to a vertex v on the upper chain of f2 (either at a point of tangency or
at y). See Fig. 4(a). This implies that the upper chain for f2 diverges clockwise from
the upper chain for fl at v, and hence fl precedes f2 in any clockwise traversal of the
upper tree.

fl

x x

(a) (b)

FIG. 4. Funnel ordering.

In case (2) f’s path diverges from fl along a segment that enters into the interior
off1. Since funnels are empty, this segment must eventually intersect the boundary of

fl at some point z (which may or may not be a vertex). The point z must lie on the
upper chain off1, since it cannot intersect the interior of edge (x, y), and by convexity
it cannot cross the lower chain off1. See Fig. 4(b). If z is the apex off2, implying that
f is an ancestor of fl in the upper tree, then fl precedes f in any postorder traversal
of the upper tree. Otherwise the lower chain of f2 crosses the upper chain of fl at z.
The upper chain of f2 cannot enter into the interior off1 by the emptiness of funnels,
and hence the upper chain of f2 must diverge clockwise from the upper chain fl at
some vertex v before reaching z. This implies that the upper chain for fl precedes f2
in any clockwise traversal of the upper tree. [3

4. The enhanced visibility graph. In this section we describe the basics of the
visibilit.v graph algorithm. We assume that we have computed the plane-sweep triangula-
tion for the polygonal domain P. (Actually, the process described here could be
performed while the triangulation is being built.) Recall from 2 that the vertices
vl, v2,’’ ", vn of P have been sorted in increasing order by x-coordinate, and they
are incorporated into the triangulation in this order. Let Pk denote the triangulated
region containing the vertices Vl," ", vk. We will think of P as a polygonal domain
contained within P (it may be disconnected and contain isolated points and edges).

For each k we maintain a structure called the enhanced visibility graph for P.
Before specifying the enhanced visibility graph we first give some definitions. Consider
a vertex v in the visibility graph and consider the visible segments directed out of v.
This list will include the two boundary edges of P incident on v. Let (v, u) be a visible
segment incident on v. Define the clockwise successor of (v, u), CW (v, u), to be the
next visible segment about v in clockwise order and define the counterclockwise successor
of (v, u), CCW (v, u), analogously. Define the clockwise extension CX (u, v) of a visible
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894 s.K. GHOSH AND D. M. MOUNT

segment directed into v as follows (note the reversal of arguments). Rotate the ray
from v through u clockwise by 180 degrees about v. If this sweep lies entirely within
the interior of P locally about v, then the extension is the very next visible segment
encountered after the 180 degree sweep (by our assumption of the noncollinearity of
three vertices, there will be no segment at exactly 180 degrees). If not, then the clockwise
extension is undefined. The counterclockwise extension, CCX (u, v), is defined symmetri-
cally using a counterclockwise sweep. Fig. 5 illustrates three of these entities, and the
fourth, CX (u, v), is undefined for this example. Finally, define REV (u, v) to be the
directed reversal (v, u).

DEFINITION. Define the enhanced visibility graph for polygon P to consist of:
the boundary of P represented such that the two neighbors of a given vertex

can be found in constant time;

CCX(u,v)
/

Um/
CW(v,u)

u CCW(v,u)
FIG. 5. Traversal primitives.

the visibility graph for P, represented such that the operations CCW, CW, CCX,
CX, and REV can be evaluated in constant time each; and

the funnel sequence FNL (x, y), for each edge (x, y) on the boundary of P,
represented (say, as a doubly linked list) so that the operations of split, concatenate,
predecessor, and successor can be performed in constant time each. (To be exact, our
algorithm only maintains the funnel sequence for a selected set of boundary edges
along the right side of P, along which we will augment the triangulation.)

In 7 we will show how to implement CW, CCW, CX, CCX, and REV, but for
now we assume that these operations are available to us. From Lemma 3.1 we may
assume that each funnel apex is uniquely represented by giving the first segment in its
lower chain (directed out of the funnel’s apex), but we will refer to apexes by vertices,
when the funnel is clear from context. Next we observe that the enhanced representation
of the visibility graph contains sufficient information to permit traversals of the upper
and lower trees.

LEMMA 4.1. Consider the enhanced visibility graph of a polygonal domain P, and
suppose that (u, v) is any directed segment of the lower tree of an edge (x, y) of P, such
that u is a parent of v. Thefollowing relatives ofu and v in the lower tree can be computed
in constant time:

(i) the parent of u,
(ii) the extreme clockwise and counterclockwise children of v, and
(iii) the clockwise and counterclockwise siblings of v.
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 895

Analogous claims hold for the upper tree.

Proof We prove the lemma for lower trees, and a symmetric argument establishes
the result for upper trees. For (i), by the clockwise turning of the lower chains, the
parent of u in the lower tree is the apex whose lower chain begins with the head vertex
of the clockwise extension CX (v, u), that is, CX (REV (u, v)), provided it exists (see
Fig. 6). If this extension is undefined, then it follows (by the emptiness of funnels)
that u =x, and hence u is the root of the tree.

FIG. 6. Tree traversal.

Since (u, v) is a segment of the lower tree for (x, y), v is the apex of a funnel that
is visible from the interior of the edge (x, y). The first lower chain segment of this
funnel is (v, u) and the first upper chain segment is CCW (v, u). Let (v, u’) CCW (v, u).
To establish (ii), let (w, v) be the directed edge on the polygon’s boundary, such that
the interior of the polygon lies to the left of this directed edge. If the counterclockwise
extension CCX (u, v) is undefined (implying that w lies in the halfplane to the right
of segment (u, v)), then, by the convexity of lower chains, v cannot have a child in
the lower tree, and hence is a leaf. Otherwise, any children of v must lie between
CCX (u, v) and (v, w) counterclockwise about v (see Fig. 6). Let z be such a vertex.
For z to be a child of v, the funnel with apex z whose lower chain begins with segment
(z, v) must be visible from the interior of edge (x, y). This is true if and only if the
counterclockwise angle u’vz is less than 180 degrees. (The "only if" part of this
statement is true from the convexity of the upper chains. The "if" part holds because
if u’vz is less than 180 degrees, then the ray from z through v passes through the
interior of the funnel whose apex is v and strikes the interior of the edge (x, y).)

Let w’ be chosen such that if the counterclockwise extension CCX (u’, v) exists,
then (v, w’)=CW(CCX (u’, v)), and otherwise w’--w. Clearly, w’ is computable in
constant time, and it follows from the previous discussion that the children of v are
exactly those apexes z visible from v that lie counterclockwise from the head of
CCX (u, v) to w’, assuming that this angular sector is not empty. If so, the reversal of
these two edges, REV(CCX (u, v)) and REV (v, w’), are the first edges of the lower
chains of the extreme clockwise and counterclockwise children of v, respectively. If
the sector is empty, then v is a leaf.

For (iii), note that the clockwise sibling of v is just CW (u, v), provided that v is
not the extreme clockwise child of u. A symmetric statement holds for the counterclock-
wise sibling of v. By (ii) we can test whether v is an extreme child of u.
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896 s.K. GHOSH AND D. M. MOUNT

COROLLARY. Given the enhanced visibility graph, clockwise and counterclockwise
traversals of the lower and upper trees can be performed in time proportional to the sizes

of the trees, and a funnel can be traversed in time proportional to its size.

5. Splitting the funnel sequence. Our next task is to describe how to use the ability
to traverse the enhanced visibility graph in order to add a new vertex into the visibility
graph.

The basic loop of the visibility graph algorithm consists of successively adding
triangles from the triangulation of the polygonal domain and updating the visibility
graph with each addition. We assume inductively that an enhanced visibility graph
has been computed for the interior of the triangulated region so far. For each new
triangle added, we update the visibility graph appropriately. The fundamental operation
on which our algorithm is based is procedure SPLIT. This procedure is given an
enhanced visibility graph for a polygonal domain P, a directed edge (x, y) on the
external boundary of P, and a point v lying to the right of this edge so that the triangle
xvy is external to P. The procedure essentially merges the triangle xvy into P (erasing
the edge (x, y)) and computed the enhanced visibility graph of the resulting polygonal
domain.

After the edge (x, y) is removed, every vertex in P that was visible from some
interior point of the edge (x, y) will be visible from either the interior of edge (x, v)
or edge (v, y) or both. The apex of a funnel of P is visible from both edges (x, v) and
(v, y) (through the funnel) if and only if the apex is visible from v. Consider a funnel
with apex u, whose upper chain is U and whose lower chain is L. (We will often refer
to a funnel by giving the name of the vertex that is its apex whenever the actual funnel
is clear from context.) If u can see v through the funnel, then SPLIT will add the
visible segment between u and v, in effect splitting the funnel u into two funnels, one
for FNL (x, v) whose lower chain consists of L and whose upper chain has only the
segment (u, v), and one for FNL (v, y) whose upper chain consists of U and whose
lower chain has only the segment (u, v) (see Fig. 7(a)). If u can see only one edge
through the funnel, say the lower edge (x, v), then SPLIT will make u the apex of a
funnel to be added to FNL (x, v). The lower chain of such a funnel will consist of L,
and the upper chain will consist of a tangent segment from v to the upper chain U,
followed by the remainder of U to u (see Fig. 7(b)).

Y Y

11

(a) (b)

FIG. 7. Splitting a funnel.
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 897

To illustrate the operation of SPLIT in greater detail, consider two funnel apexes
u and that are visible from v in consecutive clockwise order about v. Between these
apexes lies a pocket of visibility, where there may exist apexes that can see the edge
(x, y), but not the vertex v. Extend the visible segments (v, u) and (v, t) until reaching
points q’ and r’ on the boundary of P (see Fig. 8). There are no vertices or polygonal
edges in the triangle vq’r’ because there are no visible vertices between u and t. Imagine
for the moment two funnels whose apexes are the points q’ and r’. These points are
visible from the interior of edge (x, y), and hence (as apexes of two funnels that pass
between u and t) they can be put into the linear order of FNL (x, y). It is not hard
to see that q’ and r’ will be consecutive in funnel order and (as will be proved in
Lemma 5.2) q’< r’. (We will use the notation < and > to relate apexes in funnel
order.) Let q be the true apex in FNL (x, y) that precedes q’ in funnel order, and let
r be the true apex in FNL (x, y) that succeeds r’. It may be that q u or r t. Intuitively,
if q u, then every apex a, u < a =< q, has its visibility of v blocked from below by u.
(We say an apex q’s visibility of v is blocked from below by u if the lower chain of q
passes through u, and u is a point of tangency with respect to v on this chain.) These
apexes are only visible from the upper edge (v, y). Similarly, if r t, then every apex
a, r-<_ a < t, has its visibility of v blocked from above by t. These apexes are only visible
from the lower edge (x, v).

The procedure SPLIT operates by finding the funnel apexes that are visible from
v in clockwise order. For each consecutive pair of visible apexes that it finds (such as
u and t) there is a pocket of edge visible apexes. The procedure locates apexes (such
as q and r) at which the pocket can be split. Since the funnel sequence is a simple
doubly linked list, the splitting can be done in constant time, once the endpoints of
the split are known. The key to the efficiency of the procedure is to locate t, q, and r
quickly, once u is known. The heart of the SPLIT procedure is a search of the enhanced
visibility graph, which when given a visible vertex u, finds these entities and, in general,
a number of other visible vertices in time proportional to the number of visible pairs
encountered. Thus the effort of the algorithm will be amortized against the number of
newly discovered visible segments.

Before describing the SPLIT procedure, we investigate the deeper structure of the
upper and lower trees. The fundamental intuition that we exploit is that within a

FIG. 8. Splitting the funnel sequence.
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898 s.K. GHOSH AND D. M. MOUNT

sufficiently small region, namely two vertices that are adjacent in funnel order, the
visibility structure is really no different than the visibility structure of a simple polygon
without holes. To make this intuition more formal, we begin with a definition. Consider
a pair of apexes q < r that are consecutive in the funnel order of the edge (x, y). Define
the hourglass of q and r to consist of the edge (x, y), the upper chain from r to y, the
line segment (r, q), and the lower chain from q to x (see Fig. 9).

LEMMA 5.1. (i) The four parts of an hourglass do not intersect each other except at
their endpoints, and thus they define a closed simple polygon.

(ii) The interior of the region bounded by the hourglass is empty, that is, it contains
no vertices or edges of P.

Proof To prove (i) consider the upper tree for edge (x, y). Since q immediately
precedes r in funnel order, by Lemma 3.2, r is the clockwise postorder successor of q
in the upper tree. Thus either r is the parent of q in the upper tree or else r is the
furthest counterclockwise leaf in the subtree rooted at the clockwise sibling of q. If r
is the parent of q in the upper tree, then the hourglass degenerates into the funnel for
q, and both parts of the lemma follow immediately. Thus assume that r is not the
parent of q, and let s denote the parent of q in the upper tree (see Fig. 9). The upper
chain from r to y passes through s. By the clockwise and counterclockwise turning
natures of the lower and upper trees, respectively, the line passing through q and s

separates the upper chain from r to y from the lower chain from q to x; thus these
portions of the hourglass’s boundary do not intersect (except at their endpoints). This
line also separates the segment (q, r) from the lower chain passing from q to x, implying
that these parts of the hourglass boundary do not intersect. A symmetric argument
(applied to the lower tree) shows that segment (q, r) does not intersect the upper chain
from r to y. Finally, since all these structures lie within P, none of them intersects the
edge (x, y).

To show (ii), consider the region R bounded by the portion of the upper chain
from r to s, the segment (q, s), and the segment (q, r). Clearly, the region R, together
with the interior of the funnel for q, subdivide the interior of the hourglass into disjoint
regions. Because q and r are consecutive in the funnel order, there can be no vertices
in the interior of R. Furthermore, there can be no edges of P in the interior of R since,
in the absence of vertices in the region, such an edge would have to cross either the
segment (q, s) or else the upper chain from r to s, but these are formed entirely from

FIG. 9. The hourglass defined by two consecutive apexes.
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 899

visible segments. This implies that the interior of R is empty. Fact (ii) follows
imrnediately by the emptiness of the funnel for q.

We will also need the observation that there is consistency between the funnel
ordering for edge (x, y) and the new edges.

LEMMA 5.2. Let (x, y) be an edge of a polygonal domain P, and let v be a point
external to Pforming an empty triangle with (x, y). Let P’ be the polygonal domain which
results by replacing the edge (x, y) with the two edges (x, v) and (v, y). Let u and w be
two apexes of FNL (x, y) such that u precedes w in funnel order.

(i) If u and w are both visible from v in P’, then u precedes w in clockwise order
about v from x to y.

(ii) If u and w are not visible from v in P’, but both are visible from the lower edge
(x, v), then u will precede w in the funnel order of (x, v) (as apexes in FNL (x, v)).

(iii) If u and w are not visible from v in P’, but both are visiblefrom the upper edge
(v, y), then u will precede w in the funnel order of (v, y) (as apexes in FNL (v, y)).

Proof Assertion (ii) holds because in this case the lower chains for all such funnels
are unaffected, and thus the tree relationships are preserved. Assertion (iii) holds
because in this case, the upper chains for such funnels are unaffected, and thus the
tree relationships are preserved (using Lemma 3.2).

To prove (i), we consider the two ways in which u can precede w in the lower
tree. If u is an ancestor of w in the lower tree, then the lemma follows immediately
from the convexity of the lower chains and the fact that w is visible from v. Otherwise,
since u precedes w in funnel order, they share a common ancestor u" in the lower
tree, and the lower chain passing from x to w diverges clockwise from the lower chain
from x to u at u". This implies that the first segment on the path from u" to w passes
into the interior of the funnel for u. Since the funnel for u is empty, this segment must
intersect the upper chain for u at some point z (not necessarily a vertex). Since u is
visible from v, all of its upper chain is visible from v, and all the points on this upper
chain lie clockwise from u about v. Thus z lies clockwise from u. By the convexity of
the lower chains, and the fact that w is visible from v, w lies clockwise from z and
hence clockwise from u about v.

We now return to the description of the SPLIT procedure. SPLIT is a recursive
procedure that is called under the following conditions. We are given the enhanced
visibility graph for a polygonal domain/9, an edge (x, y), and a point v external to
forming a triangle with (x, y). Throughout the description, P, x, y, and v will remain
constant. We are also given a funnel apex u that is visible from v. Let w be the parent
of u in the upper tree. By Lemma 3.2, w follows u in funnel order. By the convexity
of the upper chain, it follows that w is also visible from v. We assume that all of the
visible segments from (v, x) to (v, u) in clockwise order about v have been added to
the visibility graph but that none of the visible segments after this have been added.
Let FNL [u, w] denote the subsequence of FNL (x, y) that contains all the funnels (in
funnel order) between u and its parent w, noninclusive. (Note that the elements of
FNL [u, w] have edge (x, y) as their base, not the segment (u, w).) It is easy to see
that, since w is the parent of u in the upper tree, the upper chain of every funnel in
FNL [u, w] passes through w (although the lower chain of every funnel in FNL [u, w]
need not pass through u).

Recall that funnels are not stored explicitly as upper and lower chains, but rather
we only store the first segment of the lower chain and extract all other segments from
traversals of the enhanced visibility graph. Thus as segments are added to the enhanced
visibility graph, the structure of the funnels changes. With this in mind, on return from
the call SPLIT (u, w), the following tasks will be completed.
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900 S.K. GHOSH AND D. M. MOUNT

(1) All the visible segments between v and visible apexes of FNL u, w] are added
(each addition will, in effect, split some funnel into two funnels),

(2) FNL [u, w] is split into two funnel sequences, those with apexes visible only
to the lower edge (x, v) and those with apexes visible only to the upper edge (v, y).
The first set of funnels are concatenated onto the end of FNL (x, v) and the second
set is concatenated onto FNL (v, y). (Note that the addition of the visible segments
in (1) implies that all funnels in FNL [u, w] will be in either one class or the other.)

FNL (x, v) and FNL (v, y) are initialized to empty. The algorithm proceeds by
first creating the visible segment (v, x), then calling SPLIT (x, y), which does the bulk
of the work, and finally adding the visible segment (v, y). The fact that SPLIT will
encounter visible pairs in clockwise order about v together with Lemma 5.2 implies
that the final order of these newly formed sequences will be correct. We now give an
annotated description of the procedure. Throughout the description, unless otherwise
noted, all funnels and the lower and upper trees belong to FNL (x, y). Although we
will often ignore the distinction between apexes and vertices in the description below,
recall that every apex is represented by the first edge of its lower chain.

PROCEDURE SPLIT (u, w):
(1) We begin by searching for the last funnel apex q after u in funnel order whose

visibility of v is blocked by u. The path to q in the lower tree may visit many
vertices that are invisible from v, so we seek a more efficient route. Our method
instead locates the successor r of q in funnel order (see Fig. 10). Since we
have added the visible segment (u, v), this segment is the first segment of an
apex in the lower tree of FNL (v, y). Let u’ be the extreme clockwise child
of this apex in the lower tree for (v, y). This is the most clockwise child of u
whose visibility of v is blocked by u.

FIG. 10. Searching for a new visible apex.

(a) If u’ is undefined, because the apex associated with (u, v) is a leaf in the
lower tree of FNL (v, y), then it follows that there is no apex of FNL (x, y)
whose visibility of v is blocked by u, and so we can take q to be u and r to
be the successor of u in funnel order, and continue with step (2).
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 901

(b) Otherwise let us think of u’ (represented by the segment from u’
to u) as an apex in FNL (x, y). Let S denote the set of apexes who
are descendents of either u’ or of its siblings in the lower tree lying
counterclockwise of u’. These apexes will be consecutive in
FNL (x, y), starting from just after u to q. These are exactly the
apexes whose visibility of v is blocked by u. The first apex r

immediately following S in the funnel order of FNL (x, y) will be
the postorder successor of u’ (ignoring the ancestors of u’) in a
clockwise traversal of the lower tree of (x, y).

The apex r can be found by the following loop which walks along
the lower tree of (x, y) towards the root. Let u"-u. Throughout
the loop we will maintain the invariant that u" is the parent of u’.
While u’ is the extreme clockwise child of u", let u’- u" and let u"
be assigned its parent in the lower tree of (x, y). On exit of this
loop, let r be the next clockwise sibling of u’ in the lower tree.
(Since u y, such a successor will eventually be found.) Take q to
be the predecessor of r in funnel order.

(This traversal toward the root of the lower tree of (x, y) is compli-
cated technically by the fact that the tree has been altered during
previous calls to SPLIT by the addition of visible segments from
these vertices to v. However, the data structure described in 7 has
no difficulty ignoring these added segments and taking their clock-
wise neighbors instead.)

(2) If q u, all the funnels following u up to q are known to be hidden from v,
but can see the edge (v, y). Split the list FNL [u, w] just after u and up to
and including q, yielding the sublist of apexes a such that u < a =< q (in funnel
order). Concatenate this sublist to the end of FNL (v, y).

(3) Let s be the parent of q in the upper tree. The following properties relating
r, s, and w are now relevant. These are proven later in Lemma 5.3.

(a) Both w and s lie on the upper chain from r to y so that s lies between
r and w (inclusive) on this chain.

(b) The set of apexes on the upper chain from r to y that are visible
from v form a contiguous subchain whose last element is either r or
an apex such that the line passing through v and is tangent to
the upper chain.

(c) The segment (v, t) is the next visible segment after (v, u) in clockwise
order about v.

(d) The apex s is visible from v; that is, s lies between and w on this
upper chain.

Property (d) is key to the procedure since it implies that we have "jumped"
from one visible vertex u to another visible vertex s in essentially constant
time. The other properties are used to help locate the intermediate visible
vertices.
The vertex that we are really interested in finding is the vertex t, which closes
off the pocket started by u. Unfortunately, our search procedure only gives
us s, a visible ancestor of t, in the upper tree. It would be tempting to simply
search for at this point, but in order to maintain our complexity bounds,
we must make each piece of work pay off with the discovery of a new visible
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902 S.K. GHOSH AND D. M. MOUNT

(4)

(6)

segment. The remainder of the procedure "mops up" the pockets of visibility
between and w.
Traverse the upper parent chain from s to w, and then backtrack along this
chain from w back through s and towards r. (Backtracking is done by stacking
the vertices visited from s to w and then popping the stack, while the traversal
from s towards r is done by selecting the next clockwise segment in the upper
tree following the segment (s, q) and then continuing along the extreme
counterclockwise child of each succeeding apex. Since r is the next vertex in
the upper tree following q in postorder, this process will eventually terminate
at r if allowed to.) This traversal continues until reaching r or the last apex
that is visible from v. (The apex is a point of tangency on the upper chain

with respect to v (see Fig. 10).) From properties (3)(b) and (3)(d) above it
follows that all of the apexes visited by these traversals are visible from v. Let
to, tl,’’’, tk denote the apexes visited by this traversal in reverse order so
that to and w tk.
The counterclockwise turning of the upper chains implies that every apex
a, r_-< a < in the funnel order, will have its visibility from v blocked by t,
but each apex will be visible from the lower edge (x, v). If r= t, then this
sublist is empty, otherwise split FNL u, w] just before r and just before and
concatenate this sublist to the end of FNL (x, v).
By Lemma 5.2 the apexes to, q,’’’, tk W are given in clockwise order
about v, are all visible from v, and in each case, ti is the parent of ti_ in the
upper tree. It is easy to see that FNL [u, w] consists of the funnels between
u and t, which have already been processed, and the concatenation of
FNL [ti_, ti] for i= 1,2,..., k (including also the visible segments (v, t)).
Thus the preconditions of the SPLIT procedure apply. For running from 1
to k do the following.

(a) Add the visible segment (v, t_), thus effectively splitting the funnel
with apex t_ into two funnels, a lower funnel whose base is edge
(x, v) and an upper funnel whose base is edge (v, y).

(b) Concatenate the lower funnel to the end of FNL (x, v) and concat-
enate the upper funnel to the end of FNL (v, y).

(c) Call SPLIT (ti_, ti). This will find all the visible apexes between t_
and ti and will append all funnels to either FNL (x, v) or FNL (v, y)
as appropriate.

The only nontrivial observations needed to establish the correctness of SPLIT are
the properties mentioned in step (3).

LEMMA 5.3. Properties (a), (b), (c), and (d) listed in step (3) of the above algorithm
are all true.

Proof Since q and r are consecutive in funnel order, where q precedes r, we can
apply Lemma 5.1 to the hourglass of q and r. As in that lemma, if r is the parent of
q in the upper tree, then the hourglass degenerates into a funnel, and s r and is
visible from v. The lemma follows immediately from basic funnel properties. It was
shown in the proof of Lemma 5.1 that s lies between r and y on the upper chain. We
show that s is between w and r. By Lemma 5.1 and the convexity of the upper and
lower chains, since u is an ancestor of q on the lower chain, the parent of u, namely
w, is an ancestor of the parent of q, namely s, on the upper chain. This establishes
(3)(a). Property (3)(b) is a simple consequence of Lemma 5.1 and the convexity of
the chains.
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 903

We argued earlier that all apexes strictly after u and up to q are hidden from v.
To prove (3)(c) we first argue that all apexes starting with r, and up to but not including
t, are also hidden from v. Property (3)(c) will then follow from Lemma 5.2, because
will be the next visible vertex in funnel order. If r t, then this sequence of apexes

is empty and the claim is trivially true. Otherwise the line passing through v and u is
tangent to the lower chain from q to x (or possibly q u). The apex r lies on the
opposite side of this line because r’s visibility of v is not blocked by u. Since r t,
is a point of tangency with respect to v along the upper chain. By extending the
segments (v, u) and (v, t) through u and t, respectively, to the boundary of P, we have
a wedge that separates q from r. This wedge contains no apexes in its interior, for
otherwise q and r would not be adjacent in funnel order. Since is an ancestor of r
in the upper tree, all the successors of r up to, but not including, are descendents
of in the upper tree (because funnel order corresponds to a postorder traversal of
the upper tree), and it is easy to see that is a point of tangency with respect to v for
the upper chains of all of these successors. Thus all these apexes are hidden from v,
implying that is the next visible apex.

To prove property (3)(d) we claim that s lies on the portion of the upper chain
from r to y which is visible from v. Since this chain is convex and is a point of
tangency, this means that we must show that s lies on the portion of this upper chain
from to y. Suppose that s were to lie in the invisible portion of the upper chain from
r to t. Consider the upper tree edge from q to s. Because this segment is tangent to
the upper chain from r to y (and is directed so that its extension through s would stab
the segment (x, y)) it would follow that q lies clockwise from with respect to v.
However, by our construction, q’s visibility of v is blocked by u (or q equals u), so
q lies counterclockwise of u with respect to v. This leads to a contradiction because
we have just shown that is clockwise of u with respect to v. E]

Ignoring the time needed to manipulate the underlying data structure (which we
will show to be O(E) in 7), the algorithm’s running time is proportional to the
number of visible segments added.

LEMMA 5.4. Assuming that the graph is represented as an enhanced visibility graph,
the running time of SPLIT (x, y) is proportional to the number of visible segments added
to v.

Proof The procedure performs essentially only local traversals of the enhanced
visibility graph, by walking around either the lower or upper trees for the edge (x, y).
As mentioned in Lemma 4.1, these traversals can be performed in constant time
assuming that the graph is represented as an enhanced visibility graph.

Let E denote the number of visible segments added to v during the call
SPLIT (x, y). To show that SPLIT runs in O(E) time note that the first argument to
SPLIT is always an apex visible from v, and since successive calls are to apexes in
further funnel order, SPLIT is never called with this same first argument twice. Thus,
the number of recursive calls is at most Ev. The procedure contains only two loops.
The first loop appears in step (1)(b) when the lower chain is searched starting from u
for the vertex u" that is the parent of r in the lower tree. Each apex visited in this loop
is visible, and we claim that, with the exception of the apex u", none of these apexes
will be visited twice by this loop. The reason is that all subsequent executions of this
loop will begin searching starting from some apex that comes after (or is equal to) the
apex in funnel order. Since is an ancestor of r on the upper chain, t’s ancestors
on the lower chain will be ancestors of the parent of r, namely u".

The second loop appears in step (4) where the upper chain from s back to w is
traversed and then retraversed to t. All of the apexes visited in this process are visible

D
ow

nl
oa

de
d 

10
/1

9/
14

 to
 1

29
.2

.1
9.

10
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



904 S. K. GHOSH AND D. M. MOUNT

by Lemma 5.3, and a recursive call is made for each such apex (except w), and so the
cost of this step cannot exceed O(Ev) altogether. El

6. The overall algorithm. Finally we describe how to use the SPLIT procedure to
compute the enhanced visibility graph for a polygonal domain P. The problem reduces
to that of incorporating a new vertex v into a triangulated region P resulting in an
enlarged triangulated region P’. The difference between this process and the problem
that SPLIT solves is that SPLIT incorporates exactly one new triangle into P, and in
the plane-sweep triangulation we incorporate one or two sequences of triangles whose
bases form an inward-convex chain with respect to v by Lemma 2.1.

For each of these sequences of triangles, let Uo, ul,’’’, u,, be vertices on the
inward-convex chain that are visible from v. We consider three cases.

(1) If the sequence is empty, v cannot see any vertex on P, implying that there
is no change in the visibility graph except the inclusion of the isolated vertex v. This
occurs in the plane sweep whenever a vertex is inserted whose local neighborhood
with respect to P lies to the right of the vertical line passing through v.

(2) If the sequence contains one vertex Uo, then v can see only Uo on P (locally),
implying that v cannot see any other vertices within P. Thus the only change in the
visibility graph is the inclusion of the edge (v, Uo). This will be the case, for example,
for a vertex following case (1). We will think of this single edge as consisting of two
oppositely directed edges that bound a polygon with zero area. The only funnels are
degenerate funnels.

(3) Otherwise, the sequence contains at least two vertices forming an inward-
convex chain with respect to v. In the rest of the discussion, we consider this case.

Each triple (u_l, u, v) forms a triangle (see Fig. 11). The edges (Uo, v) and (v, Urn)
are on the boundary of P’. Our objective is to compute FNL (Uo, v) and FNL (v,
(for P’). Assume inductively that we have already computed FNL (u_, u) for P for
each of the edges (u_, u) on the chain (since this will be a part of the representation
of the enhanced visibility graph for P). For each such edge and vertex v, call the
SPLIT procedure. This splits FNL (u_, u) into two funnel sequences, one for the
lower edge (u_, v), which we call L, and the other for the upper edge (v, u), which
we call U. In the process, SPLIT also adds all the visible segments from v passing
through the edge (u_, u). Although L consists of funnels for the polygon P whose
common base is the edge (u_, v), we can think of them as funnels for P’ whose

u3

FIG. 11. Joining a vertex to an inward-convex chain.
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 905

common base is the edge (Uo, v). Similarly, U can be thought of as a sequence of
funnels for P’. In order to form the desired funnel sequences for P’ we appeal to the
following lemma, which establishes that we can obtain this funnel sequence by con-
catenating the intermediate sequences.

LEMMA 6.1. Consider a point v external to a bounded polygonal domain P and an
inward-convex chain of vertices Uo, u1," , Um m >= 1) on the boundary ofP visiblefrom
v. Let P’ be the polygon obtained by replacing this chain with the edges (Uo, v) and
(v, u,,). Then

(i) FNL (Uo, v) in P’ is equal to the concatenation ofLfor 1 <=j <-_ m, followed by
the trivial funnel whose apex is v.

(ii) FNL (v, Urn) of P’ is equal to the concatenation of the trivialfunnel whose apex
is v followed by Uj for 1 <-j <-_ m.

(iii) The computation of Lj and Uj does not affect the computation ofL and U for
any j.

Proof We first prove (i), and (ii) follows by a symmetric argument (together with
Lemma 3.2). Consider the lower tree for FNL (uo, v). Each vertex u is visible from v
and hence is the apex of a funnel for edge (Uo, v) whose lower chain consists of
uo, u,..., uj and whose upper chain consists of the single segment (uj, v). To see
that this forms a funnel, observe that the chain Uo, , uj is inward-convex with respect
to v, and (Uo, v) is an edge of P’. In general, if C is a path in the lower tree for edge
(u_l, uj) in P, then the concatenation of Uo, u,. ., u_ with C forms a chain in the
lower tree for edge (Uo, v) in P’. Conversely, other than the segment (uo, v) (correspond-
ing to a trivial funnel), every path in the lower tree for edge (Uo, v) is of the form
uo, u,. ., uj_ followed by some chain C in the lower tree for edge (uj_, u). Hence,
every funnel in Lj is extendible to a funnel of (Uo, v) and the funnel order within L
is preserved in the extension. Since uy_ is the child of u in the lower tree for (Uo, v), L_
precedes L in the funnel order for (Uo, v). This implies that FNL (Uo, v) is the
concatenation of FNL (uj_, uj) (which is L) for 1 _-<j-<_ m, followed by v.

To prove (iii) we first note that there are two things that might go wrong. First,
when calling SPLIT, the list FNL (u_, u) is destroyed to form Lj and R. However,
SPLIT does not access any funnel sequences other than the one that it is decomposing,
and since funnel sequences are disjoint, one decomposition does not affect another
one. The second thing that may occur is that SPLIT adds visible segments from v to
some of the vertices in P in order to form the visibility graph for P’. It might be that
by adding these segments, we would alter the structure of a funnel in some other funnel
sequence (since we use the visibility structure to traverse the funnel trees). Observe
that it may be the case that this visible segment intersects the interior of a funnel for
some other base edge, or even for this base. The key is that this visible segment does
not alter the set of funnels or the funnel structure for any other base edge. To see this,
consider the apex for a funnel located at some vertex v belonging to some other base
edge e. As shown earlier, the first visible segments of the upper chain and lower chain
for this apex define a wedge whose apex is v such that all rays emanating from v
intersect the boundary of P first at the base e. The only way that the newly added
segment could affect the structure of this funnel would be if the newly added visible
segment is incident upon v and lies within this wedge. However, the fact that the new
visible segment first intersects the base edge (uj_, uj) implies that it cannot lie within
this wedge. By applying this argument to every funnel of the lower tree for base edge
e, we see that the newly added visible segment cannot alter the lower tree for e, and
hence it cannot alter the funnel structure for e. rq

Thus, the overall algorithm for building the enhanced visibility graph of P follows.
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906 s.K. GHOSH AND D. M. MOUNT

(2)

(3)

(4)

Compute the plane-sweep triangulation of P by forming the triangulated
polygons with holes P1, P2,"" ", Pn. The enhanced visibility graph of Po is
empty. For k running from 1 to n, repeat steps (2) through (4).
When vk is added to the triangulation it is connected to either one or two
inward-convex chains of vertices on the boundary of Pk-1. For each such
chain Uo, Ul," ", Urn, perform steps (3) through (4).
If the chain has length zero, then simply add the isolated vertex /)k to Pk-1
forming Pk. If the chain has length one, then add the vertex /)k and the visible
segment (v, Uo) to Pk-1, forming Pk.
If the chain has length two or greater, call SPLIT on the polygon Pk-1 with
each edge (uj_l, uj) and vertex Vk (for 1 _--<j--<_ m) forming L and U. Concat-
enate the Lj’s together with the trivial funnel whose apex is /)k and whose
base is (Uo, Vk) to form FNL (Uo, Vk). Concatenate the trivial funnel whose
apex is Vk and whose base is (Vk, Um) together with the U’s to form
FNL (Vk, Urn). From these we have the enhanced visibility graph for Pk.

The running time of the complete visibility graph algorithm is proportional to the
sum of the times to:

compute the plane-sweep triangulation, which we showed to be O(n log n),
plus the number of edges in the triangulation, which is O(n); and

the time needed to call the procedure SPLIT for each triangle ofthe triangulation,
which we will show to be O(E) in the next section (where E is the number of visible
segments in the visibility graph).

7. Data structure. The only detail omitted in the previous sections is how the
operations REV, CW, CCW, CX, and CCX are implemented. An earlier version of
this paper used finger trees to implement these operations [4]. In this version we use
a simpler data structure based on a data structure for the set Split-Find problem [3].

To implement the operations of CW and CCW, all that is needed is a doubly
linked adjacency list for each vertex such that the entries are sorted in angular order
about each vertex. To implement REV, we cross index entries for oppositely directed
edges. Note that when inserting new visible segments in the SPLIT procedure, we
always have access to the clockwise neighbors ofthe new segment (because the segments
are always inserted into the middle of a funnel apex, and each apex is represented by
the first segment of the lower chain). Thus updates can be performed in O(1) time.

To compute the boundary extensions CX and CCX we will need to make use of
the following observations about the way in which visible segments are added to this
structure. Every vertex v has two phases during which segments are added to it. Phase
A occurs when we are incorporating the new vertex v into the visibility graph in the
SPLIT procedure. All the visible neighbors of v discovered during this phase have
already been visited (have lower x-coordinates) and have already been incorporated
into the visibility graph. As observed in the earlier sections, the visible neighbors added
during this phase are added in clockwise order about v. Phase B neighbors arise when
a vertex u whose x-coordinate is higher than v’s is being incorporated into the visibility
graph, and the SPLIT procedure applied to u discovered that some funnel whose apex
is at v can see u. We have no control over the order (about v) in which these neighbors
appear. All phase A neighbors have been added before any phase B neighbors are added.

A vertical line passing through v divides the plane into two halfplanes; the left
halfplane contains the phase A visible neighbors and the right halfplane contains the
phase B visible neighbors. We will maintain the segments of each phase in clockwise
angular order about v, and we make the convention that there are imaginary vertical
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 907

segments, so that each segment has a predecessor in this order. Extend each phase B
visible segment to a line passing through v. These linear extensions subdivide the left
halfplane into a set of wedges about v. These wedges divide the phase A segments
into disjoint intervals of segments. Each interval is associated with the phase B segment
whose extension is the nearest counterclockwise extension to (immediately preceding)
the interval, and each phase B segment is associated with the first nonempty interval
that lies clockwise from (immediately after) its linear extension (see Fig. 12).

’",, I4(w5) w0(I1)
Phase A

I3 (w4) U5’"............. U4 ",,, w2 (I3)............
w3 (I3)............. w4 (I3)

u3

I2 (Wl)
u2 ,,"

," w5 (I4)

,," Ii(wo)

Phase B

FIG. 12. Visible neighborhood of a vertex.

By maintaining this interval partition of the phase A neighbors, we claim that we
can compute the extensions CX and CCX. Define the clockwise extension candidate
of segment (u, v) to be the visible segment with the smallest clockwise angle greater
than 180 degrees with respect to (u, v). The candidate differs from the true clockwise
extension in that the clockwise extension may not be defined if one of the two boundary
edges of P intersects v locally through this angular sweep. Clearly, it can be tested in
constant time whether the clockwise extension candidate is the true clockwise extension.
A similar definition applies to the counterclockwise extension candidate. If (u, v) is a

phase A segment, then its counterclockwise extension candidate is the extension edge
associated with the interval containing this segment, and the clockwise extension
candidate is the clockwise neighbor of this segment. If (w, v) is a phase B segment,
then the clockwise extension candidate for this edge is the first segment in the interval
associated with this segment and the counterclockwise extension candidate is the last
segment in the previous interval.

From this, it is clear that maintaining extensions can be reduced essentially to the
problem of maintaining a partition of the phase A visible segments of v into a set of
intervals, where the intervals are defined by the linear extensions of phase B visible
segments of v. Let ma denote the number of v’s visible neighbors in A. Since the phase
A neighbors are added in clockwise order, we can easily associate them with the set
of integers S { 1, 2, , ma}. Observe that this is just a ranking of the visible segments
in order of decreasing slope. This is done on completion of the SPLIT procedure when
v is incorporated into the visibility graph.

These integers are stored in a data structure developed by Gabow and Tarjan for
processing Split-Find operations [3]. The Split-Find data structure (not to be confused
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908 S. K. GHOSH AND D. M. MOUNT

with the procedure SPLIT) is designed to process an intermixed sequence of the
following two operations, which are seen to be a reversal of the familiar Union-Find
operations:

Find(i): Return the name of the set containing i.
Split(i): Split the set containing into two sets, one containing all integers less than

or equal to i, and the other containing all integers greater than i.

Given an initial set of size a, a sequence of b Splits and Finds can be processed
in total time O(a + b). In addition, each Find runs in constant time.

As mentioned earlier, the Split-Find data structure is initialized to contain the
integers S associated with the phase A visible segments as soon as the SPLIT procedure
has completed. Before describing the processing of the phase B visible segments, there
is one operation which we will need to discuss which is not supported directly by the
Gabow and Tarjan data structure. When a new phase B segment is discovered, we
need to find the counterclockwise extension candidate, that is, the next larger phase
A segment in slope order. Note that this is not the same as a Find operation because
Find assumes that the exact index of the split point is known. We assume that the
slopes of the phase A segments are stored in an array sorted by decreasing slope. This
order is available to us without sorting because the visible segments are added in slope
order.

To update the structure when a new phase B visible segment (v, w) is added, recall
that we know the existing phase B segment, say (v, w’), immediately preceding this
segment in clockwise order about v. The phase A interval I associated with w’ will be
the interval split by the extension of the new segment. To locate the counterclockwise
extension of (v, w), we perform a dovetailed doubling search starting at each end of
the interval L This is done by locating the endpoints of the interval I in the slope
array, and performing two one-sided doubling searches starting in from opposite ends
of the interval, dovetailing the operations of the two searches into an interleaved
sequence. (Observe that this is essentially a simple implementation of the search
performed by finger search trees.) It follows that the time required to locate the
clockwise extension is proportional to the logarithm of the distance to the nearer of
the ends of the interval.

If the counterclockwise extension of (v, w) is before the first segment of/, then
we associate (v, w) with I and do not split the interval. If (v, w) is the extension
immediately preceding I, then we update I’s associated phase B segment. If the
counterclockwise extension of (v, w) is the last segment in/, we associate (v, w) with
the successor interval of/. Each such trivial search requires constant time, so overall
their running times are bounded by O(mB), where mB is the number of phase B visible
segments incident upon v. Otherwise, we apply the dovetailed search procedure
described above to locate the counterclockwise extension of (v, w). Let us say that the
index of this extension is i. We call Split(i), associating the new interval of elements
that are greater than (clockwise from ui) with (v, w). It follows that when applied
to an interval of size rna, the asymptotic running time of this algorithm satisfies the
recurrence

T(ma) max T(k)+T(ma-k)+min(logk, log(mA-k)),
l<k<rn-1

whose solution is O(mA) (see [12, p. 185]). Combining this with the O(m) cost for
the trivial finds implies that the total time spent searching for extensions about the
vertex v is O(mA d- mn). Summed over all vertices, the total running time of the searches
is O(E).
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AN ALGORITHM FOR COMPUTING VISIBILITY GRAPHS 909

Each CX and CCX operation performs one Find operation (observe that no Find
is needed on a phase B segment, since we simply access the first or last segment in
the appropriate interval). Thus each CX or CCX operation requires O(1) time in our
data structure, and hence O(E) time overall, since our algorithm performs this many
primitive operations. Each Split arises when a visible segment is added in phase B, of
which there are at most mB. Thus the total amount of time spent in the Gabow and
Tarjan data structure processing the Splits is O(ma + mB), which again is O(E) when
summed over all vertices.

8. Concluding remarks. We have given an O(n log n + E) algorithm for construct-
ing the visibility graph of a set of polygonal obstacles in the plane. The construction
is based on the notion of funnels, funnel sequences, and upper and lower trees, which
have arisen in various forms in the study of visibility and shortest paths in polygons.
These notions are combined with a novel method of traversing the visibility graph
utilized in the procedure SPLIT. Together with a variation of Dijkstra’s algorithms
that runs in O(n log n + E) time, this provides a shortest-path algorithm in the midst
of polygonal obstacles whose running time is dependent on the size of the visibility
graph.

The principal drawback of our algorithm is the complexity of its implementation,
particularly due to the extraction of the tree traversal primitives from the enhanced
visibility graph. As an implementation note, there is a simpler data structure for the
Split-Find problem that runs in O(m log* n) time [7]. Although this leads to a theoreti-
cally slower algorithm, O(n log n + E log* n), it is likely that the simpler version will
run faster for all reasonable input sizes. Another interesting issue is that the algorithm
may need to store O(E) segments at every intermediate stage. Overmars and Welzl’s
O(E log n) visibility graph algorithm, although inferior with respect to asymptotic
complexity, requires only O(n) working storage [14]. The need to store the complete
visibility graph at every stage of the algorithm seems inherent in our approach.

Other sorts of visibility graphs are easily derivable from this algorithm. It is a
fairly simple enhancement to the algorithm to label each funnel apex with the unique
edge that can be seen by looking out from the apex through the funnel. From this the
vertex-edge weak visibility graph can be derived (where a vertex and edge are adjacent
if the vertex can see at least one point of the edge). The visibility polygon of a vertex
can be constructed in O(n) time. The edge-edge weak visibility graph can also be
derived (where two edges are adjacent if they contain points which are mutually visible)
since two edges e and e2 are weakly visible if and only if there exist vertices u and v
such that the funnel apex whose lower chain begins with the segment (u, v) sees edge
el, and the funnel apex whose lower chain begins with edge (v, u) sees edge e2.
Although the running time of the algorithm is dependent on the size of the standard
visibility graph E, and not on the size of the edge-edge weak visibility graph Ew, it
can be shown that these two quantities are asymptotically equal. To see this, observe
that the above construction implies that Ew O(E). Any pair of visible vertices (u, v)
can be associated with a weak visibility between two edges of P having u and v as
endpoints. Each weakly visible pair of edges is associated with at most four such visible
pairs, and so E O(Ew) (we thank one of the anonymous referees for this observation).

In general, not all of the visibility graph is needed by the shortest-path algorithm.
In general, shortest paths will travel only along the lines of tangency between the
obstacles. Kapoor and Maheshwari [8] have shown that such a reduced visibility graph
can be computed in O(ER + T) time, where T is the time needed to triangulate the
polygonal domain, and ER is the number of edges in the reduced visibility graph.
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