
Distance Oracle on Terrain Surface

Victor Junqiu Wei #, Raymond Chi-Wing Wong #, Cheng Long ∗, David M. Mount †
The Hong Kong University of Science and Technology, Hong Kong

∗Queen’s University Belfast, UK
† University of Maryland, USA

{jweiad,raywong}@cse.ust.hk,∗ cheng.long@qub.ac.uk, †mount@cs.umd.edu

ABSTRACT
Due to the advance of the geo-spatial positioning and the com-
puter graphics technology, digital terrain data become more and
more popular nowadays. Query processing on terrain data has
attracted considerable attention from both the academic commu-
nity and the industry community. One fundamental and important
query is the shortest distance query and many other applications
such as proximity queries (including nearest neighbor queries and
range queries), 3D object feature vector construction and 3D object
data mining are built based on the result of the shortest distance
query. In this paper, we study the shortest distance query which
is to find the shortest distance between a point-of-interest and an-
other point-of-interest on the surface of the terrain due to a variety
of applications. As observed by existing studies, computing the
exact shortest distance is very expensive. Some existing studies
proposed ε-approximate distance oracles where ε is a non-negative
real number and is an error parameter. However, the best-known al-
gorithm has a large oracle construction time, a large oracle size and
a large distance query time. Motivated by this, we propose a novel
ε-approximate distance oracle called the Space Efficient distance
oracle (SE) which has a small oracle construction time, a small or-
acle size and a small distance query time due to its compactness
storing concise information about pairwise distances between any
two points-of-interest. Our experimental results show that the or-
acle construction time, the oracle size and the distance query time
of SE are up to two orders of magnitude, up to 3 orders of mag-
nitude and up to 5 orders of magnitude faster than the best-known
algorithm.

1. INTRODUCTION
With the advance of geo-spatial positioning and computer graph-

ics technology, digital terrain data has become increasingly popular
nowadays, and it has been used in many applications such as Mi-
crosoft’s Bing Maps and Google Earth in the industry community.
The terrain data has also attracted considerable attention from the
academic community [8, 10, 29, 35, 24, 36, 20, 19].

Terrain data is usually represented by a set of faces each of which
corresponds to a triangle. Each face (or triangle) has three line

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064038

Figure 1: An Example of Digital Terrain Surface and Geodesic
Shortest Path

segments called edges connected with each other at three vertices.
An example of a piece of terrain data is shown in Figure 1, where
we have 24 faces, 40 edges and 17 vertices.

The geodesic distance between two given locations (or points)
on the surface of the terrain is the length of the shortest path/route
from one point to the other on the surface. For example, in Fig-
ure 1, s and t are two POIs on the terrain surface and the short-
est path from point s to point t is shown and is denoted by GP ,
which corresponds to a sequence of line segments on the faces of
the terrain. Note that the geodesic distance is usually quite differ-
ent from the Euclidean distance, and according to [8], the ratio of
the geodesic shortest distance and the Euclidean distance is up to
300%. In Figure 1, the Euclidean distance between s and t is the
length of the line segment EP .

1.1 Application
In many applications, a set of points-of-interest (POIs) is given

on the surface of the terrain, and it is required to compute the
geodesic distances between pairs of POIs. Some examples are in-
troduced as follows.

(1) Geographic Information System (GIS). In GIS, it is important
to compute the geodesic distance between two POIs. For example,
hikers need the geodesic distance to measure the travel time be-
tween a source and a destination which are landmarks (which are
POIs) in practice [28]. Besides, the vehicles (e.g., Google Map
camera car and military vehicles) estimate the geodesic distance to
measure the travel cost [23, 32]. In life sciences, scientists conduct
distance queries on residential locations (which are POIs) of the
animals in the wildness to study their migration patterns [11, 25].

(2) Computer Graphics and Vision. In computer graphics and
vision [22, 30], measuring similarities between two different 3D
objects is very important. In order to measure similarities between
objects, a number of reference points (which are POIs) [22, 30] are

selected on the surface of each object. These reference points play
an important role in similarity measurement since they are invari-
ant to transformations such as rotation and translation. For each
object, geodesic distances between all pairs of reference points are
computed and are stored as a feature vector for similarity measure-
ment. In this application, multiple geodesic distance computations
are involved.
(3) Scientific Data 3D Modeling. There is a need to model scien-
tific data in 3D models in areas like biology, chemistry, anthropol-
ogy and archeology [1, 17]. In neuroimaging, similar to computer
graphics and vision, a 3D model of an organ is associated with a
set of reference points [1, 17] (which are POIs) and these reference
points correspond to functional units on the organ and the scientists
use the geodesic distance between reference points to analyze tu-
mor development with magnetic resonance imaging (MRI) images.
In neuroscience, scientists conducted spatial queries on a 3D brain
model to study the neuron density and the number of branches in
a region of the brain [31]. Similarly, multiple geodesic distance
computations are involved in this application.
(4) Online 3D Virtual Game. In some online 3D virtual games
like INGRESS, a city (e.g., San Francisco in game INGRESS) has
a terrain surface which consists of a number of portals (which are
POIs). For each portal, it is important to calculate the geodesic
distance from this portal to each of the other portals so that the
influence of this portal is estimated. Here, multiple computations
for geodesic distances are involved.
(5) Spatial Data Mining. There are many data mining techniques
used in the spatial databases. For example, in the clustering tech-
nique, the inner-cluster distance and the inter-cluster distance are
needed. In the co-location pattern mining, shortest distance queries,
are also used frequently. In a city, buildings and parks can be POIs
and in the wildness, radio-telemetry receivers set up for collect-
ing animal movement data could be POIs. In the context of spatial
data mining, the number of geodesic distance computations is very
large.

1.2 Motivation
Consider a terrain T with N vertices. Let P be a set of n POIs

on the surface of the terrain.
Due to a variety of applications in different domains as described

in Section 1.1, computing geodesic distances [26, 6, 34, 24, 20,
19, 2, 3, 12] is very important and is very fundamental to other
proximity queries such as nearest neighbor queries [9, 10, 29, 35,
20, 19], range queries [20, 19] and reverse nearest neighbor queries
[36, 20].

Motivated by this, we aim to study three kinds of queries, namely
vertex-to-vertex (V2V) distance queries, POI-to-POI (P2P) dis-
tance queries and arbitrary point-to-arbitrary point (A2A) distance
queries. Consider the first two types of queries. Each V2V distance
query returns the geodesic distance between a starting point s and a
destination point t, where both s and t are vertices (from V). Each
P2P distance query returns the geodesic distance between a starting
point s and a destination point t, where both s and t are POIs (from
P). Since P2P distance queries, considering both the concept of
vertices and the concept of POIs, is more general than V2V dis-
tance queries, considering only the concept of vertices without the
concept of POIs, P2P distance queries could be regarded as a gener-
alization of V2V distance queries. Specifically, under the problem
setting for P2P distance queries, if for each vertex in the problem
setting for V2V distance queries, we create a POI which has the
same coordinate values as this vertex, then the P2P distance queries
will become the V2V distance queries. Thus, for clarity, in this pa-
per, we focus on P2P distance queries. Consider the third type of

queries. Each A2A distance query returns the geodesic distance be-
tween a starting point s and a destination point t, where both s and
t are two arbitrary points on the surface of the terrain. Since A2A
distance queries allow all possible points on the surface of the ter-
rain, A2A distance queries generalize both P2P and V2V distance
queries. For the ease of illustration, in the main body of this paper,
we first study P2P distance queries. Later, in Appendix C, we study
A2A distance queries.

Our natural goal of answering each P2P distance query is to re-
turn the corresponding distance in a short time. However, none of
the existing studies [26, 6, 34, 24, 20, 19, 2, 3, 12] could achieve
this goal satisfactorily.

Firstly, all existing algorithms [26, 6, 34] computing exact
geodesic distances on-the-fly are still slow even in the moderate-
sized terrain data. The time complexities of the algorithms for
computing exact geodesic distances proposed by [26, 6, 34], are
O(N2 logN), O(N2), O(N log2N) and O(N2 logN), respec-
tively, which is still very large whenN is large. In the literature [29,
35, 20, 19], the algorithm proposed in [6] is recognized as a state-
of-the-art fastest algorithm. Many existing papers [29, 35, 20, 19]
adopt this for finding the geodesic distance. According to [19], the
algorithm proposed in [6] took more than 300 seconds on a terrain
with 200K vertices, which is very slow.

Secondly, although some existing algorithms [24, 20, 19] were
proposed to compute approximate geodesic distances on-the-fly for
reducing the computation time, all of these algorithms are still not
efficient enough for proximity queries and applications involving
many distance queries. The algorithm in [24] computes the approx-
imate geodesic distance/path satisfying a slope condition, the algo-
rithm in [20] computes the lower and upper bounds of the geodesic
distances between two points, and it provides no guarantees on the
qualities of the bounds found, and the algorithm in [19], which is an
improved version of that in [20], runs inO((N+N ′) log(N+N ′))
time where N ′ is the number of additional vertices introduced for
the sake of the guarantee on the qualities of the lower and upper
bounds found.

1.3 Distance Oracle
Motivated by these, to efficiently process the geodesic distance

queries, especially for those cases where queries for many differ-
ent pairs of points are issued, some existing studies [2, 3, 12] aim
at designing geodesic distance (and/or the corresponding shortest
path) oracles. To the best of our knowledge, all existing studies fo-
cused on building oracles for returning approximate geodesic dis-
tances only but no existing studies focused on building oracles for
returning exact geodesic distances (which could be explained by
the high computation cost of computing the exact geodesic dis-
tances). All of these studies [2, 3, 12] are based on auxiliary
point-based oracles. Specifically, they first introduce a large num-
ber of auxiliary points (edges), namely Steiner points (edges), on
the surface of the terrain where each Steiner edge connects two
Steiner points. Then, they construct a graph Gε whose vertices
(edges) are either original vertices (edges) or the Steiner points
(edges). The exact distance between any two vertices/points on
Gε is an ε-approximate geodesic distance between these two ver-
tices/points. The ε-approximate geodesic distance oracles proposed
in [2, 3, 12] indexes the exact distances on Gε. Among these stud-
ies, the oracle in [12] is the best, where the space complexity of
the oracle (called the oracle size) is O(N

sin(θ)·ε1.5 log2(N
ε

) log2 1
ε
)

where θ is the minimum inner angle of any face of the terrain
surface. It can answer ε-approximate P2P distance queries in
O(1

sin(θ)·ε log 1
ε

+ log logN) time.
Unfortunately, these auxiliary point-based oracles have two

drawbacks. The first drawback is that each of these oracles has
a large oracle building time and a large oracle size. This is because
a large number of Steiner points (edges) are introduced during the
oracle construction and the number of Steiner points could be sev-
eral orders of magnitude larger than the number of vertices on the
surface of the terrain. Thus, each of these oracles has a poor em-
pirical performance in terms of both the oracle building time and
the oracle size. The second drawback is that each of these oracles
is constructed based on the structure of the terrain without consid-
ering the information about POIs. In other words, it is constructed
based on the set of vertices regardless of the set of POIs. For ex-
ample, consider the case where there are only two POIs, a naive
oracle storing the geodesic distance for one pair (of POIs) occupies
aO(1) space only but the oracle in [12] could introduce millions of
Steiner points, resulting in a large oracle size and a large building
time.

Motivated by the drawbacks of the existing methods, we pro-
pose a distance oracle called the Space-Efficient Distance Oracle
(SE) such that for any point s and any point t in P , the oracle re-
turns an ε-approximation of the geodesic distance between s and t
efficiently, where ε is a non-negative real user parameter, called the
error parameter. Our SE has three good features: (1) low construc-
tion time, (2) small size and (3) low query time (compared with the
best-known oracle [12]). This is because SE is space-efficient in
the sense that its size is linear to n (i.e., no of POIs). Due to this
space-efficient property, it is much easier for us to design an effi-
cient algorithm for constructing the SE and an efficient algorithm
for answering distance queries.

1.4 Contribution & Organization
We summarize our major contributions as follows. Firstly, we

propose a novel distance oracle called SE, which can be computed
efficiently, has small size and can answer ε-approximate geodesic
distance queries efficiently. Secondly, our SE answers not only
P2P distance queries but also V2V distance queries. Thirdly, in
V2V distance queries, our experimental results show that the build-
ing time, oracle size and query time of SE are, respectively, 5-100
times, 10-100 times and more than 1000 times smaller than those
of the best-known distance oracle [12] on benchmark real datasets.
In P2P distance queries, the building time, oracle size and query
time of SE are 10-100 times, 10-1000 times and 100-10000 times
smaller than those of the best-known distance oracle [12] on bench-
mark real datasets, respectively.

The remainder of the paper is organized as follows. Section 2
provides the problem definition. Section 3 presents our distance or-
acle, namely SE. Section 4 reviews the related work and introduces
some baseline methods. Section 5 presents the experimental results
and Section 6 concludes the paper.

2. PROBLEM DEFINITION
Consider a terrain T . Let V be the set of all vertices on the

surface of the terrain T , andE be the set of all edges on the surface
of the terrain T . Let N be the size of T (i.e., N = |V |). Each
vertex v ∈ V has three coordinate values, denoted by xv, yv and
zv .

Let P be a set of POIs on the surface of the terrain T and n be the
size of P (i.e., n = |P |). In the following discussion, we focus on
the case when n ≤ N . This is because in real-life applications, n ≤
N . For example, in the BearHead dataset, one benchmark dataset
used in the literature, n = 4k and N = 1.4M . In the EaglePeak
dataset, the other benchmark dataset, n = 4k and N = 1.5M .
The discussion about how we handle the case when n > N can be
found in Appendix D. Each POI p ∈ P also has three coordinate

values, denoted by xp, yp and zp. In this paper, we assume that
P contains no duplicate points since any two co-located POIs can
be regarded as one POI in practice, and we can merge any two co-
located POIs into one POI by a simple preprocessing step.

Given two points, s and t, on the surface of T , the geodesic
shortest path between s and t, denoted by Πg(s, t), is defined to
be the shortest path between the two points on the surface of T .
Note that the geodesic shortest path corresponds to a sequence of
line segments on the surface of the terrain. Consider the example
in Figure 1 where the geodesic shortest path between two points s
and t is denoted by GP . Given two points, s and t, on the surface
of T , the geodesic distance between s and t, denoted by dg(s, t),
is defined to be the length of the geodesic shortest path between
the two points, i.e., Πg(s, t), where the length of a path is defined
to be the sum of the lengths of all line segments of the path. The
geodesic distance dg(·, ·) is a metric, and therefore it satisfies the
triangle inequality.

Note that a full materialization of geodesic distances for all pos-
sible pairs of points in P is not feasible since the complexity of
the oracle size and the complexity of the oracle building time are
O(n2) and O(nN log2N), respectively, which are prohibitively
large.

3. DISTANCE ORACLE
We first present the overview of our distance oracle called SE in

Section 3.1. Then, we present the first component of SE, called the
compressed partition tree, in Section 3.2, the second component
of SE, called the node pair set, in Section 3.3, the query processing
algorithm based on SE in Section 3.4, the construction algorithm of
SE in Section 3.5, and some theoretical results of SE in Section 3.6.

3.1 Overview
Before giving an overview, we first give the concept of a

disk. Given a point p ∈ P and a non-negative real number
r, a disk centered at p with radius equal to r on the terrain
surface, denoted by D(p, r), is defined to be a set of all pos-
sible points on the terrain surface whose geodesic shortest dis-
tance to p is at most r. That is, D(p, r) = {p′|dg(p′, p) ≤
r and p′ is an arbitrary point on the terrain surface}.

With this concept, we are ready to describe our distance oracle
SE which includes two major components, namely the compressed
partition tree and the node pair set.

The first component is the compressed partition tree in which
each node corresponds to a disk containing a set of POIs. In the
leaf level of the tree, there are n nodes each of which corresponds
to a disk containing only one POI. Each node in this level has the
smallest radius (since each node contains only one POI). In the
level just above the leaf level of the tree, there are fewer nodes each
of which corresponds to a disk containing one or more POIs. Each
node in this level has a larger radius (since each node contains one
or more POIs). Similarly, each node in a higher level has a larger
radius. At the root level of the tree, the (root) node has the largest
radius since it contains all n POIs. Note that for different levels,
the tree has different number of nodes (with different radius).

The second component is the node pair set which is a set of the
pairs of nodes from the compressed partition tree. In this node pair
set, each node pair in the form of 〈O,O′〉 is associated with the
distance between the centers of the corresponding disks of O and
O′ where O and O′ are two nodes in the compressed partition tree.
Besides, the node pair set satisfies one interesting property called
the unique node pair match property which is the key to the query
efficiency of our SE. The unique node pair match property states
that for any two points, namely p and q, in P , there exists exactly

one node pair 〈O,O′〉 in the node pair set such that O contains p
and O′ contains q.

Consider a distance query with a source point s ∈ P and a des-
tination point t ∈ P . Let h be the height of the tree. In all of
our experimental results on benchmark real terrain datasets, h is
smaller than 30. We could answer this distance query in O(h) time
using SE. The major idea is to find a node pair 〈O,O′〉 in the node
pair set efficiently such that O contains s and O′ contains t, and re-
turn the distance associated with this node pair. Interestingly, even
though the distance returned is associated to this node pair, it will
be shown later that the distance returned is an ε-approximation of
the geodesic distance between s and t.

The major challenge here is how to design SE which achieves the
space-efficient property (mentioned in Section 1). We will describe
the details of how we address this challenge.

3.2 Oracle Component 1: Compressed Parti-
tion Tree

In this section, we first present a hierarchical structure called a
partition tree to index all POIs in P , which is used for construct-
ing the first component (i.e., the compressed partition tree) of our
distance oracle SE.

A partition tree is defined to be a tree with the following compo-
nents.
• Each nodeO in the tree has two attributes, namely its center,

denoted by cO , and its radius, denoted by rO , where cO is a
point in P and rO is a non-negative real number.
• For each leaf node O, D(cO, rO) contains only one point in
P (which is cO) (and thus contains no objects in P other than
cO). Note that there are n leaf nodes.
• For each internal node O, the center of each child of node
O is in D(cO, rO) and the radius of each child of node O is
equal to 0.5 · rO .
• Each node O in the tree is associated with its representative

set, denoted by RS(O), which is defined to be a set contain-
ing the centers of all the leaf nodes in the subtree rooted at
O.

Given two nodes, namely O and O′, the (geodesic) distance
between O and O′, denoted by dg(O,O

′), is defined to be
dg(cO, cO′).

Let h be the height of the partition tree. The partition tree has
h + 1 layers, namely Layer 0, Layer 1, ..., Layer h. Layer 0 is the
layer containing the root node only. For each i ∈ [1, h], Layer i is
the layer containing all child nodes of each node in Layer (i − 1).
Finally, Layer h is the layer containing all leaf nodes. If a node is
in Layer i where i ∈ [0, h], we also say that the depth of this node
is i. Note that all nodes in the same layer have the same radii. The
radius of Layer i, denoted by ri, is defined to be the radius of one
of the nodes in Layer i. For any i, j ∈ [0, h], we say that Layer i is
higher than Layer j (or Layer j is lower than Layer i) if and only
if i < j.

Next, we give the three properties of this partition tree to be sat-
isfied. We will describe how to construct a partition tree satisfying
these three properties later.
• Separation Property: For each i ∈ [0, h], the radius of each

node in Layer i is r0
2i

and the geodesic distance between any
two nodes in this layer is at least r0

2i
.

• Covering Property: For each layer where X denotes a
set of all nodes in this layer, the region represented by⋃
O∈X D(cO, rO) covers all points in P .

• Distance Property: For each nodeO in the tree, ifO′ is one
of the descendant nodes of O, then dg(cO, cO′) is at most
2 · rO , i.e., cO′ is in the disk D(cO, 2 · rO).

Given a node O in the partition tree, the enlarged disk of node
O is defined to be D(cO, 2 · rO). From the Distance Property,
we deduce that for each node O in the partition tree, all points in
RS(O) (which are points in P) are in the enlarged disk of node O.

EXAMPLE 1 (PARTITION TREE). Consider the points on a
terrain surface as shown in Figure 2. There are 12 points
p1, p2, p3,, p12 in P .

Figure 3 shows three small disks, namely D(p1, r3), D(p2, r3)
and D(p3, r3), one medium-small disk, namely D(p2, r2), one
medium-large disk, namely D(p2, r1), and one large disk, namely
D(p7, r0), where r0, r1, r2 and r3 are four non-negative real num-
bers. Note that r0 is the radius of the large disk, r1 is the radius of
the medium-large disk, r2 is the radius of the medium-small disk
and r3 is the radius of one of the small disks. We also show all
disks to be used in this example in Figure 4.

There are 21 disks in the figure, each of which centers at a point.
For example, the disk D(p7, r0) is a disk with its center equal to
p7 and its radius equal to r0 = dg(p7, p11).

Figure 5 shows a partition tree of height equal to 3 which is
built based on the 12 points shown in Figure 2. In this figure, each
black dot corresponds to a node in the tree. By definition, any two
nodes in the same layer have the same radii. In Layer 0, there is
only one node O21 (i.e., the root node) with its radius r0 equal to
dg(p7, p11). In Layer 1, there are three nodes, namely O18, O19

and O20, each with its radius r1 equal to 0.5r0. In Layer 2, there
are 5 nodes, namely O13, O14, O15, O16 and O17 each with its ra-
dius r2 equal to 0.25r0. In Layer 3, there are 12 nodes (i.e., leaf
nodes), namely O1, O2, ..., O12, each with its radius r3 equal to
0.125r0. In the figure, we list the center of each node below the
label of the node. For example, there is a label p2 below the label
O13, which means that the center of O13 is p2.

Consider the leaf node O1 with its center equal to p1 and its
radius equal to r3. It is easy to see that diskD(p1, r3) contains only
one point in P (i.e., p1) as shown in Figure 3. The representative
set of this node is a set containing only the center of this node (i.e.,
p1). This holds as well for each of the other leaf nodes (e.g., node
O2 and node O3).

Consider the internal node O13 with its center equal to p2 and
its radius equal to r2. The center of each child of node O13 (i.e.,
node O1, node O2 and node O3) is in disk D(p2, r2) as shown in
Figure 3. Besides, the radius of each child of node O13 is equal
to 0.5 · r2 (since the radius of each child is equal to 0.125r0 and
r2 = 0.25r0). The representative set of this node is a set containing
the centers of all the leaf nodes in the subtree root at O13 (i.e., the
center of node O1 (which is p1), the center of node O2 (which is
p2) and the center of nodeO3 (which is p3)). This holds as well for
each of the other internal nodes.

It is easy to verify that the partition tree shown in this figure
satisfies the three properties described above.

Next, we present our top-down method for building the partition
tree.
• Step 1 (Root Node Construction): We create the root node as

follows.
– Step (a) (Initialization): We assign a variable i, denoting

the layer number, with 0.
– Step (b) (Point Selection): We randomly select a point p in

P .
– Step (c) (Radius Computation): We perform a single-

source all-destination (SSAD) exact shortest path algo-
rithm [34, 6, 26] which takes p as an input of the source
point and executes until the search region of the algo-
rithm covers all points in P . When we terminate the

p
10

p
9

p
8

p
7

p
6

p
5

p
4

p
3

p
2

p
1

p
12

p
11

Figure 2: An Example

D p ,r()
2 2

p
10

p
9

p
8

p
7

p
6p

5

p
4

p
3

p
2

p
1

p
12

p
11

D p ,r()
3 3

D p ,r()
1 3

D p ,r()
7 0

r =0.5r
1 0

1
r =0.5r

2

2
r =0.5r

3

D p ,r()
2 1

D p ,r()
2 3

Figure 3: Some Disks Used in Our Example

p
10

p
9

p
8

p
7

p
6p

5

p
4

p
3

p
2

p
1

p
12

p
11

D p ,r()
2 2

D p ,r()
7 0

r =0.5r
1 0

1
r =0.5r

2

2
r =0.5r

3

D p ,r()
2 1

D p ,r()
5 2

D p ,r()
7 1

D p ,r()
10 1

D p ,r()
10 2

D p ,r()
12 2

D p ,r()
7 2

Figure 4: All Disks Used in Our Example

Layer 0:

Layer 1:

Layer 2:

Layer 3:

r r
2 0
=0.25

r =6
0

r r
3 0
=0.125

r
1=0.5r

0

O
1

O
12

O
11

O
10O

9O
8

O
7

O
6

O
5

O
4

O
3

O
2

O
21

O
18 O

19
O

20

O
17

O
16

O
15

O
14O

13

p
7

p
7

p
2

p
12p

10p
7

p
5

p
2

p
12

p
11

p
10

p
9

p
8

p
7p

6
p

5
p

4
p

3
p

2
p

1

p
10

Figure 5: An Example of Partition Tree

Layer 0:

Layer 1:

Layer 2:

Layer 3:

r r
2 0
=0.25

r =6
0

r
3
=0

r
1=0.5r

0

O
1

O
12

O
11

O
10O

9O
8

O
7

O
6

O
5

O
4

O
3

O
2

O
21

O
19 O

20

O
16

O
15

O
14O

13

p
12

p
11

p
10

p
9

p
8

p
7p

6
p

5
p

4
p

3
p

2
p

1

p
10p

7
p

5
p

2

p
7

p
7

p
10

Figure 6: An Example of Compressed Par-
tition Tree

Layer 0:

Layer 1:

Layer 2:

Layer 3:

r r2 0=0.25

r =60

r3=0

r1=0.5r0

O O10 t()O O1 s()

O21

O20

O16O13

As At

O21 O21

O20

O13 O16

O1
O10

Figure 7: An Example of Distance
Query Processing

algorithm, we obtain the maximum distance d between
p and a point in P .

– Step (d) (Node Construction): We create a root node O
where its center is set to p and its radius is set to d.
Note that in this layer, r0 = d.

• Step 2 (Non-Root Node Construction): We perform the follow-
ing operations.

– Step (a) (Initialization): We increment variable i by 1. We
assign a variable P ′, denoting a set of remaining points
in P to be “covered” by a node in Layer i, with P .

– Step (b) (Iterative Step): We perform the following itera-
tive steps.

∗ Step(i) (Point Selection): Let C be a set containing the
centers of all nodes in Layer i − 1 and let PC be
the set of remaining points in P ′ each of which is
one of the centers of all nodes in Layer i− 1 (i.e.,
PC = P ′ ∩ C). We randomly select a point p from
PC if PC 6= ∅, and select a point p from P ′ based
on a point selection strategy (to be described later)
otherwise.

∗ Step (ii) (Point Covering): We find a set S of all points
in P ′ that are in D(p, r0

2i
) by performing a single-

source all-destination (SSAD) exact shortest path
algorithm which takes p as an input of the source
point and executes the algorithm until the distance
between the boundary of the search region and p
is greater than r0

2i
. We remove all points in S from

P ′.
∗ Step (iii) (Node Creation): We create a node O where

its center is set to p and its radius is set to r0
2i

. Then,
we find the node Oparent in Layer (i − 1) whose
distance to O is the minimum. We set the parent
of O to Oparent .

∗ Step (iv) (Additional Node Creation): We repeat the
above steps (i.e., Steps (i)-(iii)) until P ′ is empty.

– Step (c) (Next Layer Processing): We repeat the above
steps (i.e., Step (a) and Step (b)) until the number of
nodes in Layer i is equal to n.

LEMMA 1. The partition tree generated by the above procedure
satisfies the Separation, Covering and Distance Properties.

PROOF. For the sake of space, all the proofs in the paper can be
found in Appendix B.

Some implementation details of this algorithm are given as fol-
lows.
Implementation Detail 1 (Point Selection Strategy in Step
2(b)(i)): We propose two heuristic-based point selection strategies
as follows. The first one is called the random selection strategy.
It randomly selects a point p from P ′. The second one is called
the greedy selection strategy which is to select a point from P ′ in
the “densest” region (or formally cell) on the surface of the terrain.
The major idea of this strategy is to select a point from P ′ in the
densest region (because if this point is selected as the “center” of
the disk, then this disk can cover many points (which could come
from the densest region)). Specifically, this strategy requires some
additional operations included in other steps, and we describe them
as follows. (A) Between Step 2(a) and Step 2(b), we construct a
grid on the x-y plane with the cell width equal to O(r0

2i
). Then, we

insert all points from P ′ in corresponding cells, and all point IDs
in each cell are indexed in a B+-tree. We also build a max-heap
containing all non-empty cells whose keys are the sizes of their
B+-trees. (B) In Step 2(b)(i), in the case that PC = ∅, we select a
point p in P ′ by finding the cell with the greatest number of points
in P ′ and randomly selecting a point p from P ′ in the cell. (C) In
Step 2(b)(ii), for each point p′ in S, we remove p′ from the B+-
tree of its corresponding cell and decrease the key of the cell in the
max-heap by 1.
Implementation Detail 2 (SSAD algorithm): Note that in Step
1(c) and Step 2(b)(ii), we need to perform the SSAD algorithm [6,

26] which is a best-first search algorithm. There are two versions of
this algorithm here, but the major principle is the same for each but
with different stopping criteria. The major principle is described
as follows. The algorithm performs a search that starts from s and
expands its search with the vertex in V which has not been pro-
cessed and has its minimum geodesic distance dmin to s. For each
vertex expansion, all points in P on each face expanded together
with the vertex are computed with their geodesic distances. Note
that we know that for each vertex expansion, all vertices in V with
their geodesic distances smaller than dmin have been processed.
The first version of this algorithm (in Step 1(c)) has an input of a
source point s only. For each vertex expansion, the first version
of the algorithm checks whether all points in P have been visited.
If yes, this algorithm terminates. The second version of this algo-
rithm (in Step 2(b)(ii)) takes as its inputs a source point s and a
distance threshold d′ (denoting the boundary of the search region
starting from s). For each vertex expansion, the second version of
the algorithm checks whether dmin is larger than d′. If yes, this
algorithm terminates. The time complexity of each of these two
versions is O(N logN + k), whereN is the number of vertices in
V processed and k is the number of points in P processed.

Finally, we analyze the depth h of the partition tree. The follow-
ing lemma presents the depth of the partition tree.

LEMMA 2. h ≤ log(
maxp,q∈P dg(p,q)
minp,q∈P dg(p,q)

) + 1

By our assumption of Section 2 that there are no duplicate POIs,
it follows that minp,q∈P dg(p, q) is strictly positive. We want to
emphasize that the upper bound of h (i.e., log(

maxp,q∈P dg(p,q)
minp,q∈P dg(p,q)

) +

1) is a small value in practice. Firstly, in all of our experimental
results, h is at most 30. Secondly, even in the extreme case where
the minimum distance is one nanometer (= 10−9m) and the max-
imum distance is the length of the Earth’s equator (≈ 4 × 107m),
Lemma 2 yields an upper bound of only 56.

Consider the first component called the compressed partition tree
which is a variation of the partition tree.

We construct the compressed partition tree Tcompress based on
the original partition tree Torg as follows. Firstly, we generate
Tcompress by duplicating Torg . Secondly, whenever there is a node
O in Tcompress containing only one child node Ochild , if there is a
parent node Oparent of O, then we remove the parent-and-child re-
lationship betweenO andOchild and then the parent ofOchild is set
to Oparent . Then, we delete O. We repeat this step iteratively until
there is no node in Tcompress containing only one child. Thirdly, for
each leaf node in Tcompress , we set its radius to 0.

Note that each leaf node (containing no child node) is still kept
after the above operation since each node removal operation in-
volves a node containing only one child node. Note that for each
point p in P , there exists exactly one leaf node whose center is p.
Given a point p in P , its corresponding leaf node, denoted byOp, is
defined to be the leaf node in the compressed partition tree whose
center is p. Besides, given a node O in the compressed partition
tree, the layer number of the layer containing O in the compressed
partition tree is defined to be the layer number of the layer contain-
ing O in the (original) partition tree.

EXAMPLE 2 (COMPRESSED PARTITION TREE). Consider
the partition tree (Figure 5) in Example 1. According to the above
procedure, since node O17 has only one child node (i.e., node
O12), we remove the parent-and-child relationship between O17

and O12 and then we set the parent of O12 to node O20 (which is
the parent of O17 in the original partition tree). Then, we remove
node O17. After this operation, we do a similar operation for node

O18 containing only one child node O13. After that, no node in the
resulting tree contains only one child. Finally, for each leaf node in
the resulting tree, we set its radius (i.e., r3) to 0. The resulting tree
is the compressed partition tree as shown in Figure 6. Note that the
layer number of the layer containing node O20 is 1 and the layer
number of the layer containing node O12 is 3 (although the node
O17 in Layer 2 of the (original) partition tree (which connects O12

and O20) is removed).

As will be shown later, the space complexity of the compressed
partition tree is O(n) (which is linear to n).

3.3 Oracle Component 2: Node Pair Set
Consider the second component of SE called the node pair set.

Before we define this, we give some definitions based on the com-
pressed partition tree which will be used in the node pair set.

Given two nodes O and O′ in the compressed partition tree, O
and O′ are well-separated [5] if and only if dg(cO, cO′) ≥ (2

ε
+

2) ·max{r, r′} where r is the radius of the enlarged disk of O and
r′ is the radius of the enlarged disk of O′. Given two nodes O and
O′ which are well-separated in the compressed partition tree, we
say that 〈O,O′〉 is a well-separated (node) pair.

Given a node pair 〈O,O′〉 and two nodes O and O′ in a tree
where (1) O is either O or a descendant node of O and (2) O′ is
either O′ or a descendant node of O′, we say that 〈O,O′〉 contains
〈O,O′〉. Note that in our context, a node pair 〈O,O′〉 has an order.
Specifically, even if 〈O,O′〉 contains 〈O,O′〉, it is possible that
〈O′, O〉 does not contain 〈O,O′〉.

In practice, given two points p and q ∈ P with their correspond-
ing leaf nodes Op and Oq in the compressed partition tree, we say
that 〈O,O′〉 contains 〈p, q〉 if 〈O,O′〉 contains 〈Op, Oq〉.

Next, we give a method of generating the node pair set given a
compressed partition tree. We maintain a variable S storing a set of
node pairs, initialized as {〈Oroot , Oroot〉} where Oroot is the root
node of the compressed partition tree. At each iteration, we extract
a pair 〈Oi, Oj〉 from S which is not well-separated. Then, we select
the node in the pair 〈Oi, Oj〉whose radius is larger. Without loss of
generality, we assume that Oi is selected and let C1, C2,, Cm
denote its children. Next, we insert 〈C1, Oj〉, 〈C2, Oj〉, ..., and
〈Cm, Oj〉 into S. For each x ∈ [1,m], 〈Cx, Oj〉 is said to be a
pair generated by 〈Oi, Oj〉 andOi is said to be split from 〈Oi, Oj〉.
Note that if Oi and Oj have the same radius, then we select the
node with a smaller node ID in the pair 〈Oi, Oj〉 for processing. We
repeat the above procedure until each pair in S is well-separated.

Let S be the set of node pairs returned by the above procedure.
S is called the node pair set of SE.

In the above procedure, note that whenever we check whether
a node pair 〈Oi, Oj〉 is well-separated, we have to compute the
distance between Oi and Oj . Later in Section 3.5 as a part of the
oracle construction, we will explain how we compute this distance
efficiently.

The following theorem shows a key property of the node pair set
generated, namely the unique node pair match property.

THEOREM 1. Let S be the node pair set of SE. Each node pair
in S is a well-separated pair and for any two points p and q in P ,
there exists exactly one node pair 〈O,O′〉 in S containing 〈p, q〉
and the distance associated with this node pair is an ε-approximate
distance of dg(p, q).

Next, we present the following theorem showing that there are
O(nh

ε2β
) node pairs considered in the procedure of generating the

node pair set (which is linear to n) where β is a real number and is
in the range from 1.5 and 2 in practice.

THEOREM 2. There are only O(nh
ε2β

) node pairs considered in
the procedure of generating the node pair set and thus there are
O(nh

ε2β
) in the node pair set of SE.

Finally, we adopt a standard hashing technique, namely the per-
fect hashing scheme [7], to index all node pairs in the node pair set
of SE. The hashing technique takes a linear space and requires a
linear preprocessing time in expectation in terms of the number of
the node pairs in the node pair set of SE. Given two nodes O and
O′ in the compressed partition tree, we could check whether there
exists a node pair 〈O,O′〉 in the node pair set of SE in constant
time and if so, it could also return the associated geodesic distance
dg(O,O

′) in constant time.

3.4 Query Processing
Next, we present how we use our distance oracle SE for a dis-

tance query with a source point s ∈ P and a destination point
t ∈ P .

We first present one naive method, whose time complexity is
O(h2), for this distance query. Next, we present an efficient algo-
rithm whose time complexity is O(h).
Naive Method: Before we introduce the naive method, we give
some notations first. Let Oroot be the root node of the compressed
partition tree. By our notation convention, we know that Os de-
notes the corresponding leaf node of point s in the compressed par-
tition tree and Ot denotes the corresponding leaf node of point t in
the compressed partition tree. Let As be the array of size h + 1
where As[i] is equal to the node in Layer i along the path from Os
to Oroot in the compressed partition tree if there exists a node in
Layer i and is equal to ∅ otherwise for each i ∈ [0, h]. We have an-
other notation At which has a definition similar to As and involves
the path starting from Ot instead of Os. We denote the Cartesian
product between the set of all nodes in As and the set of all nodes
inAt byAs×At. It is easy to have the following observation from
Theorem 1: there exists exactly one pair 〈O,O′〉 in As × At such
that 〈O,O′〉 contains 〈s, t〉 and 〈O,O′〉 is in the node pair set of
our SE.

Based on this observation, we have the following naive method
for a distance query. Firstly, we find a leaf node Os and a leaf
node Ot. Then, we construct array As (At) by traversing from Os
(Ot) to Oroot . Secondly, for each node O ∈ As and each node
O′ ∈ At, we check whether node pair 〈O,O′〉 is in the node pair
set of our SE. If so, we return the distance associated with 〈O,O′〉.
Otherwise, we continue to check the next node pair.

Note that by this observation, the above naive method must re-
turn one distance value (associated with one node pair) at the end.

The correctness of the naive method (i.e., the ε-approximation)
comes naturally from Theorem 1.

It is easy to verify that the time complexity of the naive method
is O(h2) since the first step takes O(h) time and the second step
takes O(h2) time (because the second step involves O(h2) node
pairs and each node pair requires to be checked with its existence
in the node pair set of our SE inO(1) time using the perfect hashing
scheme).
Efficient Method: Next, we will present our efficient algorithm for
the distance query which takes O(h) time. Before we present the
algorithm, we give some concepts first.

Let Layer(O) be the layer number of the layer containing node
O.

We categorize node pairs 〈O,O′〉 into one of three types. A
node pair 〈O,O′〉 is said to be a same-layer node pair if O
has the same layer as O′ in the compressed partition tree (i.e.,
Layer(O) = Layer(O′)). A node pair 〈O,O′〉 is said to be

a first-higher-layer node pair if O has a higher layer than O′ in
the compressed partition tree (i.e., Layer(O) < Layer(O′)). A
node pair 〈O,O′〉 is said to be a first-lower-layer node pair if O
has a lower layer than O′ in the compressed partition tree (i.e.,
Layer(O) > Layer(O′)).

Consider the compressed partition tree as shown in Figure 6.
The node pair 〈O14, O15〉 is a same-layer node pair. The node
pair 〈O14, O7〉 is a first-higher-layer node pair and the node pair
〈O6, O15〉 is a first-lower-layer node pair.

By definition, in a same-layer node pair 〈O,O′〉, both node O
and node O′ are in the same layer. We know that in a first-higher-
layer node pair 〈O,O′〉, since node O has a higher layer than node
O′, we know that there exists a layer higher than the layer contain-
ing node O′, and thus we deduce that O′ has a parent node in the
compressed partition tree. With the following lemma, interestingly,
we know that the layer containing the parent of node O′ is equal to
or higher than the layer containing nodeO. We could have a similar
conclusion for a first-lower node pair.

LEMMA 3. Consider a node pair 〈O,O′〉 in the node pair set
of our SE. If 〈O,O′〉 is a first-higher-layer node pair, then the layer
containing the parent of nodeO′ is equal to or higher than the layer
containing node O. If 〈O,O′〉 is a first-lower-layer node pair, then
the layer containing the parent of nodeO is equal to or higher than
the layer containing node O′.

Consider the compressed partition tree as shown in Figure 6.
The error parameter ε is set to 2. Note that for illustration pur-
pose, this error parameter is set to 2 but in practice, it should be
set to a smaller value (e.g., 0.1) as what we did in our experimental
studies. The node pairs 〈O14, O7〉 and 〈O16, O12〉 are both first-
higher-layer node pairs in the node pair set of our SE. The parent
of O7 (O12) is O15 (O20). The layer containing O15 is the same
as that containing O14 and the layer containing O20 is higher than
that containing O16. Similar illustrations could be made to the two
first-lower-layer node pairs in the node pair set of our SE, namely
〈O6, O15〉 and 〈O13, O20〉, in a symmetric way.

Let parent(O) be the parent of node O in the compressed par-
tition tree.

With Lemma 3, we have the following observation.

OBSERVATION 1. Consider a node pair 〈O,O′〉 in the node
pair set of our SE. If 〈O,O′〉 is a first-higher-layer node pair, then
Layer(parent(O′)) ≤ Layer(O) < Layer(O′). If 〈O,O′〉
is a first-lower-layer node pair, then Layer(parent(O)) ≤
Layer(O′) < Layer(O).

Consider the compressed partition tree as shown in Fig-
ure 6. The node pairs 〈O14, O7〉 and 〈O16, O12〉 are both
first-higher-layer node pairs in the node pair set of our SE.
parent(O7) (parent(O12)) is O15 (O20). It is clear that
Layer(parent(O7)) ≤ Layer(O14) < Layer(O7) and
Layer(parent(O12)) ≤ Layer(O16) < Layer(O12). Similar
illustrations could be made to the two first-lower-layer node pairs
in the node pair set of our SE, namely 〈O6, O15〉 and 〈O13, O20〉,
in a symmetric way.

Based on Observation 1, we give the major idea why we could
have an efficient algorithm. Note that the naive method requires
that O(h2) node pairs should be enumerated. However, our effi-
cient method just needs to enumerate O(h) node pairs. Specifi-
cally, our efficient method involves three steps. Roughly speaking,
the first step handles same-layer node pairs in As ×At, the second
step handles first-higher-layer node pairs in As ×At, and the third
step handles first-lower-layer node pairs in As ×At.

Specifically, the first step checks whether there exists a node
O in As and a node O′ in At such that 〈O,O′〉 is a same-layer
node pair and 〈O,O′〉 is in the node pair set of SE. If there ex-
ists such a node pair 〈O,O′〉, we return the distance associated
with 〈O,O′〉. This can be done in O(h) time by linearly scan-
ning both arrays As and At from index 0 through h and checking
whether 〈As[i], At[i]〉 is in the node pair set of SE where i ∈ [0, h]
(note that 〈As[i], At[i]〉 is a same-layer node pair). The second
step is to check whether there exists a node N in As and a node
N ′ in At such that 〈O,O′〉 is a first-higher-layer node pair and
〈O,O′〉 is in the node pair set of SE. If there exists such a node
pair 〈O,O′〉, we return the distance associated with 〈O,O′〉. This
can be done in O(h) time by the following sub-steps. For each
i ∈ [1, h], if At[i] 6= ∅, then we obtain the layer number j of
the layer containing the parent of At[i] (in O(1) time) and, for
each k ∈ [j, i), check whether 〈As[k], At[i]〉 is in the node pair
set of SE (in O(j − i) time) (note that it is sufficient to scan to
check 〈As[j], At[i]〉, 〈As[j + 1], At[i]〉, ..., 〈As[i − 1], At[i]〉 for
one particular node At[i] in At based on Observation 1). It is easy
to verify that the second step takes O(h) time since we can scan
O(h) elements in As and O(h) elements in At. The third step is
similar to the second step, but this step focuses on the first-lower-
layer node pairs instead of the first-higher-layer node pairs. Details
are skipped here since similar descriptions are applied. Thus, the
overall time complexity of the efficient method is O(h).

EXAMPLE 3 (QUERY PROCESSING). The error parameter ε
is set to 2. Consider the example as shown at the left hand side in
Figure 7, where Os is O1 and Ot is O10. It shows all edges and all
nodes along the path from the leaf nodeO1 with its center p1 to the
root node and the path from the leaf nodeO10 with its center p10 to
the root node. The pair 〈O13, O16〉 containing 〈O1, O10〉 is the pair
in the node pair set of SE. In this example, As = [O21, ∅, O13, O1]
and At = [O21, O20, O16, O10]. Consider the figure at the right
hand side in Figure 7. All node pairs processed in the query pro-
cessing algorithm are shown in the form of node pairs connected
by lines (which are solid lines, thin dashed lines and thick dashed
lines). Specifically, each node pair connected by a solid line is a
same-layer node pair processed. Each node pair connected by a thin
dashed line is a first-higher-layer node pair processed. Each node
pair connected by a thick dashed line is a first-lower-layer node pair
processed. Our query algorithm checks all the three types of node
pairs. When one of the node pairs processed is in the node pair set
of SE, we return the distance associated with this node pair.

It is worth mentioning that the total number of lines in this figure
corresponds to the greatest number of node pairs processed, which
is equal to O(h) instead of O(h2) (denoting the total number of
lines in a complete bipartite graph between As and At). Thus, the
query step is very efficient.

It is easy to verify that the distance returned by the efficient
method is ε-approximate based on Theorem 1.

3.5 Oracle Construction
In this section, we first present a naive method of constructing

SE and then present an efficient method of constructing SE.

Naive Method: We first present a naive method of constructing SE.
First, we build a partition tree Torg . Then, we build a compressed
partition tree Tcompress based on Torg and delete Torg . Next, we
follow the procedure described in Section 3.3 to generate all node
pairs for the node pair set. Note that for each node pair considered,
we have to compute the distance between the two nodes in the node

pair. In the naive method, for each node pair considered, we per-
form the SSAD algorithm, which takes the center of one node in the
node pair as an input of the starting point and performs the search
until it reaches the center of the other node in the node pair.

We proceed to analyze the running time of the naive method. It
takes O(nhN log2N) to build Torg since there are O(nh) nodes
in Torg and each node has to perform the SSAD algorithm which
takes the center of this node as an input of the starting point and
performs the search until it reaches a certain radius inO(N log2N)
time. It takes O(nh) time to construct Tcompress , since Tcompress

could be constructed with a postorder traversal of Torg and there
are O(nh) nodes in Torg . For each node pair 〈O,O′〉 generated,
we need to perform the SSAD algorithm which takes the center
of one node in the node pair as an input of the starting point and
performs the search until it reaches the center of the other node in
the node pair to compute dg(cO, cO′). Thus, the total running time
of generating the node pair set is O(nh

ε2β
N log2N). In conclusion,

the total running time of the naive method of constructing SE is
O(nhN log2 N

ε2β
).

Efficient Method: Since the naive method takes O(nhN log2 N

ε2β
)

time to construct the SE distance oracle, which is very costly, we
propose an efficient algorithm of constructing SE next. The major
reason why the naive method is slow is that in the naive method,
for each node pair considered in the procedure described in Sec-
tion 3.3, the naive method has to perform an expensive SSAD al-
gorithm, and thus the number of times that the SSAD algorithm
is called is equal to the number of node pairs considered. How-
ever, we will present an efficient algorithm which could reduce the
number of times that the SSAD algorithm is called from the total
number of node pairs considered to the total number of nodes in
the (original) partition tree by using a new concept called an en-
hanced node pair (which is a node pair involving two nodes in the
same layer of the (original) partition tree and satisfying a condition)
(to be introduced later). Specifically, the efficient method has two
major differences from the naive method. The first difference is
that the efficient method includes an additional (pre-computation)
step of computing the distance between the two nodes involved in
each possible enhanced node pair. Although there areO(hn2) pos-
sible enhanced node pairs and we have to compute the distances
of these pairs, the total number of times that the SSAD algorithm
is called in this additional step is just equal to the total number
of nodes in the (original) partition tree (which is O(hn)). The
second difference is that the efficient method finds the distance
of each node pair 〈O,O′〉 considered in the procedure described
in Section 3.3 by searching one of the “pre-computed” distances
of the enhanced node pairs containing the node pair 〈O,O′〉 and
assigning this distance (of the enhanced node pair found) to the
distance of the node pair 〈O,O′〉 (instead of performing the ex-
pensive SSAD algorithm). Note that the time complexities of both
the search operation and the assignment operation are O(h) (to be
shown later), which is much lower than the time complexity of the
SSAD algorithm (i.e., O(N log2N)). Later, we will show that
for each node pair 〈O,O′〉 considered in the procedure described
in Section 3.3, there exists one enhanced node pair containing the
node pair 〈O,O′〉, which is a key to the efficiency of the efficient
method.

Before we present the efficient method, we define the concept of
the enhanced node pair. Given two nodesO andO′ in the (original)
partition tree, 〈O,O′〉 is said to be an enhanced node pair if O
and O′ are in the same layer of the (original) partition tree and
dg(O,O

′) < l · rO where l = 8
ε

+ 10. Note that l is about 4 times
the well-separated factor (i.e., 2

ε
+ 2). The ratio of 4 (= 2 × 2)

is split two parts. The first part (i.e., a ratio of 2) comes from the
radius of the enlarged disk of a nodeO (defined in the definition of
the well-separated pair) which is two times the radius of node O.
The second part (i.e., another ratio of 2) comes from our design.

With the definition of the enhanced node pair, we give the fol-
lowing lemma which is used in our efficient method.

LEMMA 4. Consider a node pair 〈O,O′〉 considered in the
procedure described in Section 3.3. There exists an enhanced node
pair 〈O,O′〉 such that (1) 〈O,O′〉 contains 〈O,O′〉, (2) cO = cO
and (3) cO′ = cO′ .

The major idea why we can design an efficient method compared
with the naive method is that the efficient method is designed based
on Lemma 4 using the concept of the enhanced node pair.

We present the efficient algorithm of constructing SE as follows.
• Step 1 (Tree Construction): We build the partition tree Torg

and a compressed partition tree Tcompress based on Torg .
Tcompress just constructed becomes the first component of
SE.
• Step 2 (Enhanced Edge Creation): We insert all possible

enhanced edges into Torg . Specifically, for any two nodes O
and O′ in the same layer of the (original) partition tree Torg ,
if 〈O,O′〉 is an enhanced node pair, then we add an edge
connecting them. We call an edge added in this step an en-
hanced edge. We associate a distance to each enhanced edge
added. Specifically, for each enhanced edge connecting O
and O′, we associate the distance between these two nodes
(i.e., dg(cO, cO′)) with this edge. To construct all the en-
hanced edges together, for each node O in the partition tree,
we perform the SSAD algorithm which takes cO as an in-
put of the source point and performs the search until the disk
D(cO, l · rO) is totally expanded.
• Step 3 (Perfect Hash Construction): We insert all en-

hanced edges into the perfect hash [7] (with an oracle build-
ing time and a space cost which are linear to the total number
of edges in expectation).
• Step 4 (Node Pair Set Generation): We generate the node

pair set, the second component of SE, using Torg added with
enhanced edges. Specifically, we follow the procedure de-
scribed in Section 3.3 to generate all node pairs for the node
pair set. However, we present a detailed implementation of
how to compute dg(cO, cO′) for each node pair 〈O,O′〉 gen-
erated in the procedure. For each node pair 〈O,O′〉 gener-
ated, we find an enhanced edge connecting a node O and a
node O

′
in Torg such that (1) 〈O,O′〉 is an enhanced node

pair, (2) 〈O,O′〉 contains 〈O,O′〉, (3) cO = cO and (4)
cO′ = cO′ . (Note that by Lemma 4, there exists such an
enhanced edge.) This step of finding an enhanced edge can
be done in O(h) time by

– (1) first obtaining cO fromO and cO′ fromO′ (inO(1)
time),

– (2) then accessing the corresponding leaf node O of cO
and the corresponding leaf node O′ of cO′ (in O(1)
time),

– (3) traversing both the path P from O to the root node
and the path P ′ from O′ to the root node together start-
ing from Layer h to Layer 0 to check whether the node
O being traversed along P and the node O

′
being tra-

versed alongP ′ (in the same layer) have their node pair
〈O,O′〉 found in the perfect hash (in O(h) time), and

– (4) returning the enhanced node edge connectingO and

O
′

(if these two nodes have their node pair 〈O,O′〉
found in the perfect hash) (in O(1) time).

Then, the distance associated with this enhanced edge corre-
sponds to the distance we want (i.e., dg(cO, cO′)).

3.6 Theoretical Analysis
Before analyzing SE, we introduce a well-known concept called

the largest capacity dimension originally defined on a metric
space [21, 13]. For the sake of space, the definition and the dis-
cussion of the largest capacity dimension could be found in the
appendix. In the appendix, we show that in an extreme case where
the terrain surface is a 2D plane, the largest capacity dimension β
is at most 1.3. In a general case, β is a little bit larger than 1.3
(since the terrain surface could be regarded as a 2D surface with
some fluctuations in terms of height).

Our experimental results show that the largest capacity dimen-
sion β of the terrain surface that we considered is between 1.3 and
1.5.

Then, we present the oracle building time, oracle size, query time
and distance error bound of our SE in the following theorem.

THEOREM 3. The oracle building time, oracle size, query time
and distance error bound of SE areO(N log2 N

ε2β
+nh logn+ nh

ε2β
),

O(nh
ε2β

), O(h) and ε, respectively.

4. RELATED WORK AND BASELINES
In this section, we present the related work and baseline methods

in Section 4.1 and Section 4.2, respectively.

4.1 Related Work
The existing studies of finding the exact geodesic distance be-

tween two vertices are [26, 6] and [34]. Their time complexities
are O(N2 logN), O(N2), O(N log2N) and O(N2 logN), re-
spectively, which are impractical even on moderate terrain data.

Motivated by the intrinsic expensive cost of computing exact
geodesic distances, many existing studies focus on computing ap-
proximate geodesic distances [24, 20, 19]. In [24], the authors stud-
ied the problem of finding an approximate geodesic shortest path
which satisfies a slope constraint. In [20], the authors proposed an
algorithm for finding a geodesic path between two points satisfy-
ing a condition on the terrain surface and computing the lower and
upper bounds of the geodesic shortest distance based on the length
of the path found, but the gap between the bounds depends on the
structure of the terrain surface, and thus it could be very large im-
plying that there exists no guarantee on the qualities of the bounds.
In [19], the authors proposed a Steiner point-based algorithm in-
troducing additional points called Steiner points on the surface of
the terrace for finding an ε-approximate geodesic shortest path be-
tween two points, where ε is a user-specified parameter. The al-
gorithm computes tighter lower and upper bounds of the geodesic
distance than those of [20], which do not depend on the underlying
terrain. According to the experimental results in [19], the algorithm
ran more than 300 seconds even for a setting with a very loose error
parameter ε = 0.25. All of these algorithms compute the approxi-
mate geodesic distances on-the-fly, which is not efficient enough in
(real-time) applications involving many distance queries.

In order to answer the geodesic shortest path/distance queries
more efficiently, some existing studies aim at designing oracles [18,
2, 3, 12]. [18] proposed a data structure for the Single-Source All-
Destination (SSAD) approximate geodesic shortest path queries,
where the source point of each shortest path query is already given
before the data structure is built. This data structure could answer

Algo. Oracle Building Time Oracle Size Query Time

SP-Oracle [12] O(N
sin(θ)·ε2

log3(Nε) log2 1
ε) O(N

sin(θ)·ε1.5
· log2(Nε) log2 1

ε) O(1
sin(θ)·ε log 1

ε + log log(N + n))

SE(Naive) O(nhN log2 N

ε2β
) O(nh

ε2β
) O(h2)

K-Algo [19] – – O(
l3maxN

(lmin·ε·
√

1−cos θ)3
+ lmax·N
ε·lmin·

√
1−cos θ

log(lmax·N
ε·lmin·

√
1−cos θ

))

SE O(N log2 N

ε2β
+ nh logn + nh

ε2β
) O(nh

ε2β
) O(h)

Table 1: Comparison of Different Methods with Error Bound ε (where β ∈ [1.3, 1.5] and h < 30 in practice)

Dataset No. of
Ver-
tices

Resolution Region
Covered

No. of
POIs

BH 1.4M 10 meters 14km ×
10km

4k

EP 1.5M 10 meters 10.7km×
14km

4k

SF 170k 30 meters 14km ×
11.1km

51k

Table 2: Dataset Statistics

SE(Greedy)
SE(Random)

SE-Naive
SP-Oracle

K-Algo
Theoretical bound (ε)

10
1

10
2

10
3

10
4

0.05 0.1 0.15 0.2 0.25

(a)

B
u

ild
in

g
 T

im
e

 (
s)

ε

10
-2

10
-1

10
0

10
1

10
2

0.05 0.1 0.15 0.2 0.25

(b)

S
iz

e
 (

M
B

)

ε

10
-410
-310
-210
-110
010
110
210
310
410
5

0.05 0.1 0.15 0.2 0.25

(c)

Q
u

e
ry

 T
im

e
 (

m
s)

ε

0.01

0.05

0.1

0.15

0.2

0.25

0.05 0.1 0.15 0.2 0.25

(d)

E
rr

o
r

ε

Figure 8: Effect of ε on SF dataset (Smaller Version) (P2P Distance Queries)

any shortest path query from this fixed source point to any desti-
nation. However, this data structure is limited to a fixed source
point. Even though different data structures from all possible
source points could be built, the total space occupied by all these
data structures is prohibitively large, which is not feasible in prac-
tice. [2, 3] designed an oracle for approximate geodesic shortest
path queries and [12] designed an oracle for approximate geodesic
shortest distance queries. These two oracles share similar ideas,
and the one in [12] is better in terms of oracle size and query time
mainly because geodesic distance queries are intrinsically easier
than geodesic path queries. Specifically, the oracle in [12] has its
space complexity of O(N

sin(θ)·ε1.5 · log2(N
ε

) log2 1
ε
) and its query

time complexity of O(1
sin(θ)·ε1 log 1

ε
+ log logN), where θ is the

minimum inner angle of any face on the terrain surface.
As will be introduced later, we use this oracle as a baseline or-

acle for comparison, and our experimental results show that this
oracle has a scalability issue due to its large oracle size, and its cor-
responding query time is significantly larger than that of our oracle.

Some other related studies include those proximity queries re-
lying on the geodesic shortest distance queries [9, 10, 29, 35,
36]. Specifically, [9, 10, 29] studied k-NN queries, [35] studied
dynamic kNN queries and [36] studied reverse nearest neighbor
queries.

Besides, some studies [5, 14, 27] focused on studying well-
separated pairs. [5] studied it in the Euclidean space, [14] studied
its dynamic case (e.g., insertion and deletion) and [27] studied it on
road networks. However, they are different from ours because we
studied it in the terrain context and different contexts give different
challenges (e.g., in the terrain context, how to build a distance or-
acle involving many expensive geodesic distance computations is
very challenging).

4.2 Baseline Methods
In this section, we first present two baseline oracles (Sec-

tion 4.2.1), then give one baseline on-the-fly algorithm (Sec-
tion 4.2.2) and finally compare them with SE (Section 4.2.3).

4.2.1 Baseline Oracles
In this part, we first introduce two baseline oracles, namely the

Steiner point-based oracle (in short, SP-Oracle) and the naive im-
plementation of SE (in short, SE(Naive)).
Steiner Point-Based Oracle: The first baseline oracle is called
the Steiner point-based oracle (in short, SP-Oracle) proposed in
[12] which were originally proposed for vertex-to-vertex distance
queries and could also be adapted for both POI-to-POI (P2P)

distance queries and arbitrary point-to-arbitrary point (A2A) dis-
tance queries. Next, we describe how this adapted distance oracle
[12] could handle A2A distance queries only (since A2A distance
queries could be regarded as a general setting compared with P2P
distance queries). Its major idea is as follows. It first introduces
O(1

sin(θ)·
√
ε

log 1
ε
) additional points called Steiner points on each

face of the terrain surface and O(N
sin(θ)·ε log 1

ε
) Steiner edges con-

necting Steiner points on the same face, where θ is the minimum
inner angle of any face on the terrain surface. It then constructs
a graph, denoted by Gε, where the set of vertices in the graph is
the set containing all the Steiner points and all existing vertices
and the set of edges in the graph is the set of all existing edges
and all the additional edges added each with its weight equal to
its corresponding Euclidean distance. SP-Oracle indexes the exact
distances between any two Steiner points on Gε. Consider a A2A
distance query. Given two arbitrary points, namely s and t, on the
surface of the terrain, SP-Oracle finds (1) a setXs of Steiner points
on the face containing s and its adjacent faces, and (2) another set
Xt of Steiner points on the face containing t and its adjacent faces.
Then, for each point ps in Xs and each point pt in Xt, it computes
a distance equal to the sum of the Euclidean distance between s and
ps, the exact distance between ps and pt on Gε and the Euclidean
distance between pt and t. Finally, it returns the smallest distance
computed as the estimated geodesic distance between s and t. We
present the oracle building time, oracle size, query time, and dis-
tance error bound of SP-Oracle in Table 1.

SE(Naive): The second baseline is called the naive method of SE
(in short, SE(Naive)) which is exactly our SE with the naive method
for the both the oracle construction and the query processing. We
present the oracle building time, oracle size, query time, and dis-
tance error bound of SE(Naive) in Table 1.

4.2.2 Baseline On-the-fly Algorithm
The Kaul’s algorithm (in short, K-Algo) recently proposed

in [19] could be used as the baseline algorithm which computes
the approximate geodesic distance on-the-fly (since it is the best-
known algorithm in the literature). Although K-Algo is a non-
distance oracle algorithm, it is interesting to compare it with our
SE. The time complexity of K-Algo is O(

l3maxN

(lmin·ε·
√
1−cos θ)3

+
lmax·N

ε·lmin·
√

1−cos θ
log(lmax·N

ε·lmin·
√
1−cos θ

))1 where lmin (resp., lmax) is

1By Section 4.2 of [19], its running time is O((N +N ′)(log(N +
N ′) + (lmax·K

lmin
√
1−cos θ

)2) where N ′ = O(lmax·K
lmin

√
1−cos θ

N) and K

the length of the shortest (resp., longest) edge and θ is the minimum
inner angle of any face.

4.2.3 Comparison
We compare the oracle proposed in this paper, i.e., SE, and the

three baselines, i.e., SP-Oracle, SE(Naive) and K-Algo, in terms of
error bound, oracle building time, oracle size and query time, and
the results are shown in Table 1. We highlight some of the compar-
ison results as follows. Consider the error bound. Our SE and all
baseline methods, namely SP-Oracle, SE(Naive) and K-Algo, have
the same error bound equal to ε. Consider the oracle building time.
As described before, we know that SE has a lower oracle building
(or oracle construction) time complexity than SE(Naive). Besides,
in our experimental results, the empirical oracle building time of
SE is smaller than that of SP-Oracle. Consider the oracle size. The
oracle size of SE is the same as that of SE(Naive). Besides, in our
experimental results, the empirical oracle size of SE is smaller than
that of SP-Oracle. Consider the query time. Since h is very small
(at most 30 in our experimental results), SE has the lowest query
time complexity compared with SE(Naive) and SP-Oracle. K-algo
has the largest query time which is significantly larger than others.

5. EMPIRICAL STUDIES

5.1 Experimental Setup
We conducted our experiments on a Linux machine with

2.67 GHz CPU and 48GB memory. All algorithms were imple-
mented in C++.
Datasets. Following some existing studies on terrain data [29,
9, 24], we used three real terrain datasets, namely BearHead
(in short, BH), EaglePeak (in short, EP) and San Francisco
South (in short, SF) and these datasets can be downloaded from
http://data.geocomm.com/. For each of these terrain datasets, we
extracted a set of POIs from the corresponding region in Open-
StreetMap. Table 2 shows the dataset statistics. Besides, a smaller
version of SF dataset which corresponds to a small sub-region of
the SF dataset and contains 1k vertices and 60 POIs was also used
since one of the baselines, SE-Naive, is not feasible on any of the
full datasets due to its expensive cost of building an oracle.
Algorithms. Our new oracle SE and three baselines, SP-
Oracle [12], K-Algo [19] and SE-Naive, are studied in the exper-
iments. For SE, we study two variations: one is SE(Greedy) which
is based on the greedy point selection strategy and the other is
SE(Random) which is based on the random point selection strat-
egy.
Query Generation. Each P2P (V2V) query was generated by ran-
domly sampling two POIs (vertices) on the surface of a terrain,
one as a source and the other as a destination. Each A2A query
was generated by randomly selecting two arbitrary points, one as
a source and the other as a destination. To randomly select an ar-
bitrary point, we first generated a 2D coordinate (x, y) which is
a point randomly selected in the 2D rectangular region covered by
the terrain and then computed the point on the terrain surface whose
projection on the x-y plane is (x, y).

Table 3 shows the statistics of the query distances of all queries
performed on each dataset as shown in Table 2.

Factors & Measurements. Three factors, namely ε (the error pa-
rameter), n (the number of POIs), and N (the number of vertices

is a parameter which is a positive number at least 1. By Theorem 1
of [19], we obtain that its error bound ε is equal to 1

K−1
. Thus, we

obtain this time complexity.

Dataset max min avg. std.

BH 16.57 0.82 7.8 3.33
EP 14.15 0.33 6.25 3.15
SF 16.92 0.48 7.09 3.6

Table 3: Statistics of Query Distances (km)

in a terrain), were studied. Four measurements, namely (1) oracle
building time (which is the time for constructing the distance ora-
cle), (2) oracle size (which is the space consumption of the distance
oracle), (3) query time (which is the time for answering a distance
query based on the oracle) and (4) error (which is the error of the
distance returned based on the oracle), were used for evaluating the
oracles. For the query time, 100 queries were answered and the
average running time was returned.

5.2 Experimental Results
In this section, we present the results of P2P distance queries in

Section 5.2.1, other experiments (e.g., V2V distance queries and
A2A distance queries) in Section 5.2.2, and a summary of the re-
sults in Section 5.2.3.

5.2.1 P2P Distance Queries
Effect of ε. We tested 5 different values of ε from
{0.05, 0.1, 0.15, 0.2, 0.25}. Figure 8(a)-(d) show the results on the
smaller version of the SF dataset. According to the results, (1) the
building times of SE(Greedy) and SE(Random) are almost the same
and are both smaller than those of SP-Oracle and SE-Naive, e.g.,
when ε = 0.05, SE(Greedy) and SE(Random) have their build-
ing times 1 order (resp., at least 2 orders) smaller than that of SP-
Oracle (resp., SE-Naive), (2) the sizes of SE(Greedy), SE(Random)
and SE-Navie are 2-3 orders of magnitude smaller than that of SP-
Oracle, (3) the query time of SE(Greedy) is the smallest and about
half of that of SE(Random), and the query times of both SE(Greedy)
and SE(Random) are orders of magnitude smaller than those of oth-
ers, and (4) the errors of all oracles are very small and much smaller
than the theoretical bound (which is ε).

Based on the results shown above, we adopt the following for
the simplicity of presentation: (1) the results of error for the rest of
experiments are omitted since the errors of all oracles are similar
and very small (smaller than ε/10) compared with the error bound,
(2) the results of SE-Naive on any full datasets are not shown sim-
ply because it cannot be built within a reasonable amount of time,
e.g., within a month, and (3) the results of SE(Greedy) are omitted
for the rest of experiments since SE(Random) and SE(Greedy) have
similar performance and we omit SE(Greedy) for the clarity and by
SE, it means SE(Random) for the remaining presentation.

The results on the other two datasets, namely BH nad EP, are
shown in Figure 13 and Figure 14, respectively, where the results
of SP-Oracle for all settings of ε are not shown since the size of SP-
Oracle exceeds our memory budget (i.e., 48GB). Since the results
on the BH and EP datasets are similar to those on the SF datasets,
for the sake of space, they could be found in [33].
Effect of n. We tested 5 different values of n from
{60k, 90k, 120k, 150k, 180k} and used the SF dataset for this ex-
periment. As mentioned in Section 5.1, we have 51k POIs in the
SF South dataset (170k vertices), and in order to obtain a set of
the targeted number of POIs, we do as follows. Let n denote the
targeted number of POIs we want to generate. Let P be the set of
POIs that we have and n′ be the number of POIs in P . We generate
(n − n′) 2-dimensional points (x, y) based on a Normal distribu-

tion N(µ, σ2), where µ = (x =
∑
p′∈P xp′
n′ , y =

∑
p′∈P yp′
n′) and

σ2 = (1
n

∑
p′∈P (xp′ − x)2, 1

n

∑
p′∈P (yp′ − y)2). If a generated

SE SP-Oracle K-Algo

10
5

10
6

10
7

60 90 120 150 180

(a)

Bu
ild

in
g

Ti
m

e
(s

)

n (k)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

60 90 120 150 180

(c)

Q
ue

ry
 T

im
e

(m
s)

n (k)

10
2

10
3

10
4

10
5

60 90 120 150 180

(b)

Si
ze

 (M
B)

n (k)

Figure 9: Effect of n on SF dataset (P2P Distance Queries)

SE K-Algo

10
5

10
6

10
7

0.5 1 1.5 2 2.5

(a)

Bu
ild

in
g

Ti
m

e
(s

)

N (M)

10
3

10
4

10
5

10
6

10
7

0.5 1 1.5 2 2.5

(c)

Q
ue

ry
 T

im
e

(m
s)

N (M)

10
0

10
1

10
2

10
3

0.5 1 1.5 2 2.5

(b)

Si
ze

 (M
B)

N (M)

Figure 10: Effect of N on BH dataset (P2P Distance Queries)

SE SP-Oracle K-Algo

10
5

10
6

10
7

60 90 120 150 180

(a)

B
ui

ld
in

g
Ti

m
e

(s
)

n (k)

10
1

10
2

10
3

10
4

10
5

10
6

60 90 120 150 180

(c)

Q
ue

ry
 T

im
e

(m
s)

n (k)

10
2

10
3

10
4

10
5

60 90 120 150 180

(b)

S
iz

e
(M

B
)

n (k)

Figure 11: Effect of n on SF dataset (V2V Distance Queries)

point (x, y) is outside the range of the terrain, we simply discard
it and re-do the process until a point within the range is generated.
At the end, we project each generated point (x, y) to the surface of
the terrain and take the projected point as a newly generated POI.
The results are shown in Figure 9. According the these results, our
oracle SE outperforms SP-Oracle in terms of oracle building time,
oracle size and query time and significantly outperforms K-Algo in
terms of query time.
Effect of N . We tested 5 values of N from
{0.5M, 1M, 1.5M, 2M, 2.5M} on synthetic datasets. Each
synthetic dataset with N vertices is a terrain surface from an
enlarged BH dataset (4.2M vertices) simplified by a surface
simplification algorithm [24]. Note that each simplified terrain
surface covers the same region as the original BH dataset with a
different simplification ratio and still has 4k POIs. The enlarged
BH dataset was generated from the BH dataset as follows. On each
face of BH, we added a new vertex on its geometric center and add
a new edge between the new vertex and each of the three vertices
on the face. The results are shown in Figure 10, where the results
of SP-Oracle are not shown since the size of SP-Oracle exceeds
our memory budget (i.e., 48GB).

5.2.2 Other Experiments
V2V Distance Queries: In V2V queries, the original POIs are dis-
carded, and we treat all vertices as POIs. We varied n and ε for
the experiments. Consider the experiment studying the effect of n.
Note that N = n in this experiment. We tested 5 values of n (i.e.,
N) from {60k, 90k, 120k, 150k, 180k} on synthetic datasets, and
each synthetic dataset with N vertices corresponds to a sub-region
of a SF dataset with a higher resolution (10m×10m resolution, 1M
vertices). The results are shown in Figure 11, and according to the
results, SE has its building time and size both at least 1 order of
magnitude smaller than SP-Oracle and its query time 2-3 (resp.,
5-6) orders of magnitude smaller than that of SP-Oracle (resp., K-
Algo).

We also conducted the experiment studying the effect of ε with
values in {0.05, 0.1, 0.15, 0.2, 0.25} on the smaller version of the
SF dataset. The results are also similar. In particular, the query
time of SE is 5-6 orders (resp., 6-8 orders) of magnitude smaller
than that of SP-Oracle (resp., K-Algo).
Arbitrary Point to Arbitrary Point (A2A) Queries. We tested
the A2A distance queries where the query point is not a POI but an
arbitrary point on the terrain surface. We used the low resolution

SE SP-Oracle K-Algo

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(a)

B
u
ild

in
g
 T

im
e
 (

s
)

ε

10
3

10
4

10
5

0.05 0.1 0.15 0.2 0.25

(b)

S
iz

e
 (

M
B

)

ε

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(c)

P
2
P

 Q
u
e
ry

 T
im

e
 (

m
s
)

ε

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(d)

A
2
A

 Q
u
e
ry

 T
im

e
 (

m
s
)

ε

Figure 12: P2P Queries In The Case n > N and A2A Queries

BH (resolution: 30 meter, 150k vertices) dataset by varying ε from
{0.05, 0.1, 0.15, 0.2, 0.25}. Figure 12(a), (b), and (c) shows the
building time, oracle size and query time, respectively. According
to the results, SE outperforms SP-Oracle by several times in terms
of building time and size. The query time of SE is 2-3 (resp., 5-6)
orders of magnitude smaller than that of SP-Oracle (resp., K-Algo).
P2P Queries In The Case n > N . We tested P2P queries of the
case n > N on the low resolution BH (resolution: 30 meter, 150k
vertices) dataset by varying ε from {0.05, 0.1, 0.15, 0.2, 0.25}. We
generated 1M POIs by the same method as mentioned in Sec-
tion 5.2.1. Figure 12(a)(b)(d) shows the building time, oracle size
and query time, respectively. The result is similar to that of A2A
query. Note that the building time and space of P2P Queries in the
case n > N is the same as those of A2A queries since each tested
oracle is the same in the two queries.

5.2.3 Experimental Result Summary
Our SE consistently outperforms the state-of-the-art oracle, i.e.,

SP-Oracle, in terms of all measurements (i.e., building time, oracle
size, and query time) and for any types of distance queries (i.e., P2P
queries, V2V queries and A2A queries).

6. CONCLUSION
In this paper, we studied an important spatial query, the shortest

distance query, which is fundamental to many other spatial queries
and many data mining applications. We proposed a distance or-
acle called SE which have three good features: (1) low construc-
tion time, (2) small size and (3) low query time (compared with
the best-known oracle [12]). Our experimental studies show that
SE consistently outperforms than the best-known algorithm, SP-
Oracle, in terms of all measurements for P2P queries, V2V queries
and also A2A queries. There are several interesting research direc-
tions. One of them is to study how to efficiently update the distance
oracle when there is an update on some POIs.
Acknowledgements: We are grateful to the anonymous review-
ers for their constructive comments on this paper. The research
of Victor Junqiu Wei and Raymond Chi-Wing Wong is supported
by HKRGC GRF 16219816. The research of David M. Mount is
supported by NSF CCF-1618866.

7. REFERENCES
[1] A. Al-Badarneh, H. Najadat, and A. Alraziqi. A classifier to detect

tumor disease in mri brain images. In ASONAM, 2012.
[2] L. Aleksandrov, H. N. Djidjev, H. Guo, A. Maheshwari,

D. Nussbaum, and J.-R. Sack. Algorithms for approximate shortest
path queries on weighted polyhedral surfaces. In Discrete &
Computational Geometry, 2010.

[3] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining
approximate shortest paths on weighted polyhedral surfaces. JACM,
2005.

[4] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest
neighbor. In ICML, 2006.

[5] P. B. Callahan and S. R. Kosaraju. A decomposition of
multidimensional point sets with applications to k-nearest-neighbors
and n-body potential fields. JACM, 1995.

[6] J. Chen and Y. Han. Shortest paths on a polyhedron. In SOCG, 1990.
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press and McGraw-Hill, 3rd
edition, 2009.

[8] K. Deng, H. T. Shen, K. Xu, and X. Lin. Surface k-nn query
processing. In ICDE, 2006.

[9] K. Deng and X. Zhou. Expansion-based algorithms for finding single
pair shortest path on surface. In WWGIS. 2005.

[10] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A
multi-resolution surface distance model for k-nn query processing.
VLDBJ, 2008.

[11] B. G. Dickson and P. Beier. Quantifying the influence of topographic
position on cougar (puma concolor) movement in southern california,
usa. Journal of Zoology, 2007.

[12] H. N. Djidjev and C. Sommer. Approximate distance queries for
weighted polyhedral surfaces. In ESA. 2011.

[13] M. Fan, H. Qiao, and B. Zhang. Intrinsic dimension estimation of
manifolds by incising balls. Pattern Recognition, 2009.

[14] J. Fischer and S. Har-Peled. Dynamic well-separated pair
decomposition made easy. In CCCG, 2005.

[15] F. Fodor. The densest packing of 12 congruent circles in a circle.
Contributions to Algebra and Geometry, 2000.

[16] J. Golay and M. Kanevski. A new estimator of intrinsic dimension
based on the multipoint morisita index. Pattern Recognition, 2015.

[17] S. A. Huettel, A. W. Song, and G. McCarthy. Functional magnetic
resonance imaging. In Sinauer Associates, 2004.

[18] T. Kanai and H. Suzuki. Approximate shortest path on a polyhedral
surface based on selective refinement of the discrete graph and its
applications. In GMPTA, 2000.

[19] M. Kaul, R. C.-W. Wong, and C. S. Jensen. New lower and upper
bounds for shortest distance queries on terrains. VLDB, 2015.

[20] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen. Finding shortest
paths on terrains by killing two birds with one stone. VLDB, 2013.

[21] B. Kégl. Intrinsic dimension estimation using packing numbers. In
NIPS, 2002.

[22] M. Kortgen, G. J. Park, M. Novotni, and R. Klei. 3d shape matching
with 3d shape contexts. In CESCG, 2003.

[23] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert. Natural
terrain classification using three-dimensional ladar data for ground
robot mobility. Journal of field robotics, 2006.

[24] L. Liu and R. C.-W. Wong. Finding shortest path on land surface. In
SIGMOD, 2011.

[25] A. Mårell, J. P. Ball, and A. Hofgaard. Foraging and movement paths
of female reindeer: insights from fractal analysis, correlated random
walks, and lévy flights. Canadian Journal of Zoology, 2002.

[26] J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete
geodesic problem. SIAM Journal on Computing, 1987.

[27] J. Sankaranarayanan and H. Samet. Distance oracles for spatial
networks. In ICDE, 2009.

[28] L. T. Sarjakoski, P. Kettunen, H.-M. Flink, M. Laakso,
M. Rönneberg, and T. Sarjakoski. Analysis of verbal route
descriptions and landmarks for hiking. Personal and Ubiquitous
Computing, 2012.

[29] C. Shahabi, L.-A. Tang, and S. Xing. Indexing land surface for
efficient knn query. VLDB, 2008.

[30] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint

appearance, shape and context modeling for multi-class object
recognition and segmentation. In ECCV, 2006.

[31] F. Tauheed, L. Biveinis, T. Heinis, F. Schurmann, H. Markram, and
A. Ailamaki. Accelerating range queries for brain simulations. In
ICDE, 2012.

[32] N. Vandapel, R. R. Donamukkala, and M. Hebert. Unmanned ground
vehicle navigation using aerial ladar data. The International Journal
of Robotics Research, 2006.

[33] V. J. Wei, R. C.-W. Wong, C. Long, and D. M. Mount. Distance
oracle on terrain surface (technical report). In
http://www.cse.ust.hk/~raywong/paper/distanceOracle-technical.pdf.

[34] S.-Q. Xin and G.-J. Wang. Improving chen and han’s algorithm on
the discrete geodesic problem. ACM Trans. Graph., 2009.

[35] S. Xing, C. Shahabi, and B. Pan. Continuous monitoring of nearest
neighbors on land surface. In VLDB, 2009.

[36] D. Yan, Z. Zhao, and W. Ng. Monochromatic and bichromatic
reverse nearest neighbor queries on land surfaces. In CIKM, 2012.

APPENDIX
A. LARGEST CAPACITY DIMENSION

Consider a metric spaceX with a distance metric d(·, ·). Given a
positive real number r, a set Y ⊆ X is said to be r-separated if for
any two distinct points x, y ∈ Y , d(x, y) ≥ r. Given a positive real
number r and a set S ⊆ X , the r-packing number of S, denoted
by M(r, S), is defined to be the maximum cardinality of an r-
separated subset of S. Given a metric space X and a distance mea-
sure d, a set S ⊆ X and two positive real numbers r1 and r2, the
scale-dependent capacity dimension of S w.r.t. r1 and r2, denoted
by D(S, r1, r2), is defined to be − logM(r1,S)−logM(r2,S)

log r1−log r2
[21].

This dimension is used to measure the ‘intrinsic dimension’ of a
metric space. Many high-dimensional data points are believed to
be distributed in a manifold with a low ‘intrinsic dimension’. In-
tuitively, the ‘intrinsic dimension’ is the number of independent
variables needed to represent the whole dataset. A good estimate
of the ‘intrinsic dimension’ could be used to set the input parame-
ters of the dimension reduction algorithms (e.g., Principle Compo-
nent Analysis). There are many different specific formulations of
the ‘intrinsic dimension’ capturing certain properties [21, 13, 16,
4]. The scale-dependent capacity dimension captures the geomet-
ric property of the data and provides a multi-resolution dimension-
ality which depends on the radius r. It measures the growth rate of
M(r, S) w.r.t. r of a subset S of X . In our context, the data space
X is the set P of all the n POIs and the distance metric d(·, ·) is
the geodesic distance dg(·, ·). Then, we give the definition of a
‘ball’ on a terrain surface. Given a point p ∈ P and a non-negative
real number r, a ball centered at p with radius equal to r, denoted
by B(p, r), is defined to be a set of all POIs in the disk D(p, r).
Then, we give the definition of the capacity dimension of a ball
B(p, r) on the terrain surface which only measures the growth rate
of M(r,B(p, r)) when r reduces from 2r to r

2
.

DEFINITION 1. Given a ball B(p, r) on a terrain surface,
where p is a point in P and r is a positive real number, the ca-
pacity dimension of B(p, r) is defined to be D(B(p, r), 2r, r

2
) =

− logM(2r,B(p,r))−logM(r
2
,B(p,r))

log 2r−log r
2

= 0.5 log
M(r

2
,B(p,r))

M(2r,B(p,r))
.

Consider a set of points whose pairwise geodesic distances are
at least 2r. Since the disk D(p, r) could overlap with at most 2 of
them, we obtain that M(2r,B(p, r)) = 2. Thus, for a given ball
B(p, r), the capacity dimension is equal to 0.5 log

M(r
2
,B(p,r)

2
).

Thus, we obtain that given a disk D(p, r), 2 · 22D(B(p,r),2r, r
2
) is

the maximum number of POIs whose pairwise geodesic distances
are at least r

2
such that the disk D(p, r) contains them.

Next, we define the largest capacity dimension of a set P of
POIs on a terrain surface to be maxp∈P,r∈(0,∞)D(B(p, r), 2r, r

2
),

denoted by β. By the definition of the largest capacity dimension,
any disk D(p, r), where p is a point in P and r is a positive real
number, could contain at most 2 · 22β (i.e. O(22β)) POIs whose
pairwise geodesic distance is at least r

2
.

The definition of largest capacity dimension has an equivalent
presentation as follows. Given a set P of POIs on a terrain surface,
its largest capacity dimension β is the largest positive real number
such that for any point p in P and any non-negative real number r,
the disk D(p, r) overlaps with at most 2 · 22β disjoint disks each
with radius at least r

4
. [15] proved that in the 2D Euclidean space,

a disk with radius r overlaps with at most 12 disjoint disks with
radii equal to r

4.029
. Thus, in the 2D Euclidean space, a disk with

radius r overlaps with at most 12 disjoint disks with radii equal
to r

4
. Based on this, we obtain that in an extreme case where the

terrain surface is a 2D plane, the largest capacity dimension β is
at most 1.3. In general cases, intuitively, β is a little bit larger than
1.3, since the terrain surface could be regarded as a 2D surface with
some fluctuations in terms of height.

B. PROOF

LEMMA 5. Given disks D1(c1, r1) and D2(c2, r2) where (1)
c1 and c2 are two points in P and (2) r1 and r2 are two non-
negative real numbers, for any point p1 in D1 and any point p2
in D2, dg(c1, c2) is an ε-approximate distance of dg(p1, p2) if
dg(c1, c2) ≥ (2

ε
+ 2) ·max{r1, r2}.

PROOF. By Triangle Inequality, we obtain that dg(c1, c2) −
dg(p1, c1)−dg(p2, c2) ≤ dg(p1, p2) ≤ dg(c1, c2) +dg(p1, c1) +
dg(p2, c2). Thus, we obtain that dg(p1, p2) − r1 − r2 ≤
dg(c1, c2) ≤ dg(p1, p2) + r1 + r2. We further obtain that
dg(p1, p2) ≥ (2

ε
+ 2) · max{r1, r2} − r1 − r2 ≥ (2

ε
+

2) · max{r1, r2} − 2 max{r1, r2} = 2
ε
· max{r1, r2}. By the

two inequalities obtained above, we obtain that dg(p1, p2) − ε ·
dg(p1, p2) ≤ dg(c1, c2) ≤ dg(p1, p2) + ε · dg(p1, p2).

PROOF OF LEMMA 1. By Step (b) in the partition tree con-
struction algorithm, the tree built satisfies Separation Property and
Covering Property. Then, we prove that it also satisfies the dis-
tance property: Consider a node O and any of its descendents
O′. Let (O,O1, O2, O3,, Ot, O

′) denote the path from O
to O′ in the partition tree. By Separation Property, we obtain
that rOi = rO

2i
(1 ≤ i ≤ t), rOt = 2 · rO′ . By our build-

ing method, we obtain that dg(cOi , cOi+1) ≤ rOi(1 ≤ i ≤
t − 1), dg(cO, cO1) ≤ rO, dg(cOt , cO′) ≤ rOt . By Trian-
gle Inequality, we obtain that dg(cO, cO′) ≤ dg(cO, cO1) +∑t−1
i=1 dg(cOi , cOi+1) + dg(cOt , cO′). By integrating all the in-

equalities above, we obtain that dg(cO, cO′) ≤
∑t
i=0

rO
2i
≤

2 · rO .

PROOF OF LEMMA 2. Since ∀i ∈ [0, h− 1], ri = 2 · ri+1, we
obtain that h = log r0

rh
. We obtain that r0 ≤ maxp,q∈P dg(p, q)

since r0 is a geodesic distance between two POIs (the center of
the root and its farthest neighbor). It is obvious that rh−1 ≥
minp,q∈P dg(p, q), since otherwise, ∀p ∈ P , the disk D(p, rh−1)
contains only 1 POI and the construction algorithm stops at layer
h-1. Since rh =

rh−1

2
, we obtain that rh ≥ 0.5·minp,q∈P dg(p, q)

by contradiction.
Finally, we obtain that h ≤ log

maxp,q∈P dg(p,q)
0.5·minp,q∈P dg(p,q)

.

PROOF OF THEOREM 1. By the algorithm for generating S, we
obtain that every pair in S is well-separated at the end. Then, we

prove that for any two points p and q in P , there is exactly one pair
〈O,O′〉 containing 〈p, q〉 in S. Consider each iteration of the pro-
cedure presented in Section 3.3. We proceed to prove the statement:
there is exactly one node pair in S containing 〈p, q〉 at the end of
the iteration if at the beginning of the iteration, there is exactly one
node pair, denoted by 〈O1, O2〉, in S containing 〈p, q〉. If 〈O1, O2〉
is not extracted in the iteration, then 〈O1, O2〉 is still the only one
containing 〈p, q〉 at the end of the iteration. Otherwise, 〈O1, O2〉 is
extracted and w.l.o.g., we assume that O2 is split. Since only one
child of O2 is Oq or an ancestor of Oq , exactly one newly inserted
node pair contains 〈p, q〉. Besides, it must be true that at the begin-
ning of the first iteration, exactly one node pair (i.e. 〈Oroot , Oroot〉)
contains 〈O1, O2〉. By induction, we obtain that at the end of the
final iteration, exactly one node pair in S contains 〈p, q〉.

Consider the unique pair 〈O,O′〉 containing 〈p, q〉 in the
node pair set of our SE. Since 〈O,O′〉 is well-separated, then
dg(O,O

′) ≥ (2
ε
+2)·max{r′O, r′O′}, where r′O (resp., r′O′) denote

the radius of the enlarged disk of O (resp., O′). Since the enlarged
disk of O (resp., O′) contains p and q by Distance Property, we
obtain that dg(O,O′) = dg(cO, cO′) is an ε-approximate distance
of dg(p, q) by Lemma 5.

LEMMA 6. Consider a chain of node pairs
〈O1, O

′
1〉, 〈O2, O

′
2〉, ..., 〈Oi, O′i〉, ..., 〈Om, O′m〉, where 〈Oi, O′i〉

is generated by 〈Oi−1, O
′
i−1〉 for each integer i ∈ [2,m]. Let rOi

denote max{rOi , rO′i} for each integer i ∈ [1,m]. ∀k, j ∈ [1,m],
rOk ≥ rOj if and only if k < j.

PROOF OF LEMMA 6. It is easy to see that ∀k, j ∈ [1,m]
where k < j, Ok (resp., O′k) is Oj (resp., O′j) or an ancestor
of Oj (resp., O′j) in Tcompress . Thus, we obtain that rOk ≥ rOj
and rO′

k
≥ rO′j . Since rOk = max{rOk , rO′k} and rOj =

max{rOj , rO′j}, we obtain that rOk ≥ rOj .

PROOF OF LEMMA 3. Consider the chain of pairs
〈O1, O

′
1〉, 〈O2, O

′
2〉, ..., 〈Oi, O′i〉, ..., 〈Om, O′m〉, where

O1 = O′1 = Oroot , Om = O, O′m = O′ and 〈Oi, O′i〉 is
generated by 〈Oi−1, O

′
i−1〉 for all integer i in [2,m] in our

method of constructing the node pair set of SE. Consider the
case that 〈O,O′〉 is a first-higher-layer node pair. We denote
the parent of O′ in Tcompress by parent(O′), there must exist
an integer k such that k ∈ [1,m − 1] and parent(O′) is split
from 〈Ok, O′k〉. This is because otherwise, 〈O,O′〉 would not be
generated. Consider the pair 〈Ok, O′k〉 from which parent(O′) is
split and thus, rparent(O′) = max{rOk , rO′k}. By Lemma 6, we
obtain rparent(O′) ≥ max{rO, rO′} and thus the layer containing
parent(O′) is higher than or equal to that containing O. For
the case that 〈O,O′〉 is a first-lower-layer node pair, the proof is
symmetric and we omit the details.

PROOF OF LEMMA 4. Consider a node pair 〈O,O′〉 consid-
ered in the procedure described in Section 3.3, where 〈O,O′〉 6=
〈Oroot , Oroot〉. Let parent(O) (resp., parent(O′)) denote the par-
ent of O (resp., O′) in Tcompress if O (resp., O′) is not the root
node. It is obvious that 〈O,O′〉 is generated by 〈O, parent(O′)〉
or 〈parent(O), O′〉.

W.l.o.g., we assume that 〈O,O′〉 is generated by
〈parent(O), O′〉. By Lemma 6, we obtain that rparent(O) ≤
rparent(O′) since parent(O′) is split before 〈parent(O), O′〉 is
generated. By Lemma 3, we obtain that rO′ ≤ rparent(O) and
rO ≤ rparent(O′). Let O denote the child of parent(O) in the
original partition tree Torg which is on the path from parent(O)
to O. There are two cases of O and we present that in both cases,
it is true that cO = cO . If O = O, it is obvious that cO = cO .

Then, consider the case where O 6= O. Since any node on the path
from O to O excluding O must have only one child, we obtain that
cO = cO by Step (i) of the building algorithm of Torg . Similarly,
the child Oc of parent(O′) in the original partition tree Torg

which is on the path from parent(O′) to O′ has the same center
withO. Since rparent(O) ≤ rparent(O′), we obtain that rO ≤ rOc .
Then, consider the node O

′
on the path from Oc to O′ in Torg

which is on the same layer as O and has the same center as Oc (By
Step (i), we could always find such a node O). Since cO′ = cO′ ,
we obtain that dg(O,O

′
) = dg(O,O

′). Since 〈parent(O), O′〉
is not a well-separated pair, we obtain that dg(parent(O), O′) ≤
2(2
ε

+ 2) · max{rparent(O), rO′} = 2(2
ε

+ 2)rparent(O). Thus,
we obtain that dg(parent(O), O

′
) ≤ 2(2

ε
+ 2)rparent(O).

Since O is a child of parent(O) in the original par-
tition tree Torg , we obtain that dg(parent(O), O) ≤
rparent(O) = 2rO . By triangle inequality, we obtain that
dg(O,O

′
) ≤ dg(parent(O), O

′
) + dg(O, parent(O)) ≤

2(2
ε

+ 2)rparent(O) + 2rO = 4(2
ε

+ 2)rO + 2rO = (8
ε

+ 10)rO .
Thus, 〈O,O′〉 must be an enhanced node pair, where cO = cO and
cO′ = cO′ .

LEMMA 7. The maximum number of child nodes of each node
O in a partition tree or a compressed partition tree is O(22β).

PROOF. By the definition of the partition tree, the center of each
children of O must lie in the disk D(cO, rO). Besides, by the Sep-
aration Property, the minimum pairwise distance of all its children
must be at most rO

2
. Thus, by the definition of the largest capacity

dimension β, we obtain that the maximum number of children of
each node O in a partition tree is O(22β). It is easy to see that the
converting from a partition tree to a compressed partition tree does
not change the number of children of any undeleted node. Thus,
we obtain that the maximum number of children of each node O in
a compressed partition tree is O(22β).

LEMMA 8. Any disk D(c, r), where c ∈ P and r is a non-
negative real number, can hold at most O((22β)i) points, the min-
imum pairwise geodesic distance of which is at least r

2i
.

PROOF. Consider a set PSET of points in D(c, r) such that
their minimum pairwise geodesic distance is at least r

2i
. We first

build a partition tree upon PSET as follows: first, we create the
root to be O(cO = c, rO = r) instead of following Step(a) and the
building procedure of other nodes is the same as Step(b). Since the
radius of each non-root node is half of its parent’s radius, we obtain
that there are totally i layers in the tree. By Lemma 7, we obtain
that the number of children of any node in the compressed partition
tree is at most O(22β). Thus, the number of nodes in Layer i is at
most O(22β) times that in Layer i − 1, where 0 < i ≤ h. Thus,
we obtain that there are at most O((22β)i) nodes in the Layer i. In
other words, PSET has at most O((22β)i) points.

LEMMA 9. The compressed partition tree Tcompress has O(n)
nodes.

PROOF. Let m, k denote the number of nodes and edges in
Tcompress , respectively. By the construction of Tcompress , Tcompress

has n leaf nodes and every inner node in Tcompress has at least
2 children. Thus, Tcompress has m − n inner nodes and at least
2 · (m − n) edges. Since Tcompress is a tree, we obtain that
k = m − 1. Thus, we obtain that k = m − 1 ≥ 2(m − n).
Finally, we obtain that m ≤ 2n− 1.

PROOF OF THEOREM 2. Proof Sketch. To give the intuition
of the proof, we present an intermediate node pair set S′ which is

conceptual. Let T ′ denote the tree which is the same as the orig-
inal partition tree except that the radius of each leaf node is 0. S′

denote a node pair set built by the node pair generating algorithm
presented in Section 3.3 which takes T ′ as input instead of the com-
pressed partition tree. It is clear from a high-level intuition that the
node pair set S of SE is not larger than S′ and the number of the
node pairs considered in the process of generating S is O(|S|) (see
the full proof for the details). In the following, we denote rOx as
the radius of a node Ox in the original partition tree. Consider a
node O in T ′ and a set S ′(O) which is {O′|〈O,O′〉 or 〈O′, O〉
is in S′ and rO ≥ rO′}. Note that ∪O∈TS ′(O) = S′. By the
node pair generating algorithm, we obtain that for each node O′

in S ′(O), 1. O′ is in the same layer as O or one layer lower than
O (see Lemma 10) 2. there is a upper bound on dg(O,O′), i.e.,
O′ lies in a disk D centered at cO′ with a rO- and ε-related ra-
dius (see Lemma 11). Then, together with a property (see Lemma
8) derived from β, we obtain that |S ′(O)| = O((1

ε
)2β) and thus

|S′| = O((1
ε
)2βnh).

Detailed Proof. Now, we delve into the detailed proof and adopt
the same notations as shown in the proof sketch.

LEMMA 10. ∀O′ ∈ S ′(O), rO′ ≤ rO ≤ 2 · rO′

PROOF. Since parent(O′) is split before the node pair 〈O,O′〉
is generated, by Lemma 6, we obtain rparent(O′) ≥ rO .

Since rparent(O′) = 2 · rO′ , we obtain that rO′ ≤ rO ≤ 2 ·
rO′ .

LEMMA 11. ∀O′ ∈ S ′(O), dg(cO, cO′) ≤ (4 2
ε

+ 10) · rO .

PROOF. By our node pair set generating algorithm presented
in Section 3.3, 〈O,O′〉 is generated by 〈parent(O), O′〉 or
〈O, parent(O′)〉 and the node pair which generated 〈O,O′〉 is not
well separated. Consider the case where 〈O,O′〉 is generated by
〈O, parent(O′)〉 (the analysis of the case where 〈O,O′〉 is gen-
erated by 〈parent(O), O′〉 is symmetric, i.e., just with O and O′

swapped, and has the same result and thus, we do not present this
case for the sake of space). We obtain that dg(cO, cparent(O′)) ≤
2 · (2

ε
+ 2) · max{rO, rparent(O′)}, where rparent(O′) = 2rO′

by the definition of the partition tree. By Lemma 10, we obtain
that dg(cO, cparent(O′)) ≤ 2 · (2

ε
+ 2) · rparent(O′). By Triangle

Inequality, we obtain that dg(cO, cO′) ≤ dg(cO, cparent(O′)) +
dg(cO′ , cparent(O′)). By the definition of the partition tree, we
obtain that dg(cO′ , cparent(O′)) ≤ rparent(O′). Thus, we obtain
that dg(cO, cO′) ≤ 2 · (2

ε
+ 2) · rparent(O′) + rparent(O′). By

Lemma 10, we obtain that dg(cO, cO′) ≤ (4 2
ε

+ 10) · rO .

Let S ′′ be a point set containing the centers of all nodes in
S ′(O). By Lemma 10, we obtain thatO′ is either in the same layer
as O in the partition tree or one layer lower than O in the partition
tree. Let S ′′1 (resp., S ′′2) denote {O′′|O′′ ∈ S ′′, O′′ is in the same
layer asO} (resp., {O′′|O′′ ∈ S ′′, O′′ is one layer lower thanO}).

By the Separation Property, we obtain that the minimum pair-
wise geodesic distance of S ′′1 (resp., S ′′2) must be at least rO (resp.,
rO
2

). By Lemma 8, we obtain that the Disk D(rO, (4
2
ε

+ 10) ·
rO) can hold O((22β)log(4

2
ε
+10)) (resp., O((22β)log(2(4

2
ε
+10))))

points whose minimum pairwise geodesic distance is at least
rO (resp., rO

2
). Thus, we obtain that |S ′(O)| ≤ 2 ·

(22β)log(2·(4
2
ε
+10)) = O((1

ε
)2β). There are at most nh such node

O in T . Thus, we obtain that |S′| is O(nh
ε2β

) since ∪O∈TS ′(O) =

S′.
Next, we prove that |S| is at most |S′| (i.e. O(nh

ε2β
)), where S

is the node pair set of SE. Consider a node pair 〈O,O′〉 in S. We

SE K-Algo

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(a)

B
ui

ld
in

g
Ti

m
e

(s
)

ε

10
1

10
2

10
3

10
4

0.05 0.1 0.15 0.2 0.25

(b)

S
iz

e
(M

B
)

ε

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(c)

Q
ue

ry
 T

im
e

(m
s)

ε

Figure 13: Effect of ε on BearHead dataset (P2P Distance Queries)

SE K-Algo

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(a)

B
ui

ld
in

g
Ti

m
e

(s
)

ε

10
1

10
2

10
3

10
4

10
5

0.05 0.1 0.15 0.2 0.25

(b)

S
iz

e
(M

B
)

ε

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(c)

Q
ue

ry
 T

im
e

(m
s)

ε

Figure 14: Effect of ε on EaglePeak dataset (P2P Distance Queries)

denote the node in T ′ which comes from the same node in the par-
tition tree Torg as O (resp., O′) by Ox (resp., Oy). Since 〈O,O′〉
are well-separated, 〈Ox, Oy〉 are well-separated and thus, we could
find a node pair 〈Ox, Oy〉 in S′ containing 〈Ox, Oy〉. We call
〈Ox, Oy〉 the corresponding pair of 〈O,O′〉. Let Op (resp., O′p)
denote the node in T ′ which comes from the same node in Torg as
the parent of O (resp., O′) in Tcompress . Op and O′p are not well
separated, since otherwise, 〈O,O′〉 could not be generated. Ox
(resp., Oy) must be on the path from Op (resp., O′p) to Ox (resp.,
Oy) and any node on the path excluding Ox and Op (resp., Oy and
O′p) must have only one child. Thus, we obtain that any two differ-
ent node pairs in S must have different corresponding pairs. Thus,
we obtain that |S| ≤ |S′| = O(nh

ε2β
). Since in each iteration of

the procedure of generating S, we extract one pair and insert more
than one pair to S. The number of node pairs considered must be
at most 2 times the size of the final S and thus it is O(nh

ε2β
).

LEMMA 12. The oracle building time of SE is O(N log2 N

ε2β
+

nh logn+ nh
ε2β

).

PROOF. The oracle building time of SE consists of the time
torg of building the original partition tree Torg , the time ttran of
transforming the partition tree to the compressed partition tree
Tcompressed , the time ten of creating all the enhanced edges and
the time tnp of generating the node pair set of SE. torg consists of
the running time of B+-tree operations, the point selection algo-
rithm and all SSAD algorithms invoked. Note that we index a set
of points/nodes with a B+-tree and we find the parent of O in Step
(iii) with a SSAD algorithm and dg(O,Oparent) is at most 2rO due
to the covering property. The running time of all the B+-tree opera-
tions in torg is O(nh logn) since there are h layers and each layer
needs O(n) insertion/search operation in B+-tree. For the point
selection algorithm, the random selection algorithm takes O(nh)
time since there are at most nh nodes in Torg and each takes at
mostO(1) time. The greedy selection algorithm takesO(nh logn)
time since in each layer since it takes O(n logn) time to create the
grid and corresponding B+-tree in each cell and there are at most
O(n) heap operations and B+-tree operations. It is obvious that the
overall running time of all SSAD algorithms performed in torg is
smaller than ten . ttran is O(nh) time since the partition tree has
O(nh) nodes. By Theorem 2, there are at most O(nh

ε2β
) node pairs

considered in the procedure described in Section 3.3 and thus, tnp
is O(nh

ε2β
). Next, we will analyze ten .

We introduce a new parameter of the terrain surface, denoted by
θ. θ is defined to be the largest positive real number such that the
number of vertices on the terrain surface in a diskD(c, r) is at least
2θ times the number of vertices on the terrain surface contained in
the disk D(c, r

2
), where c is a POI on the terrain surface and r is a

positive real number at most maxp∈V dg(c, p). Thus, the number
of vertices contained in a disk centered at any POI is at most 1

2θ

times that in a disk with double radius and the same center. For the
root nodeOroot , we expand the diskD(cOroot , r0). For any nodeO
in other layers, we expand the diskD(cO, l·rO), where l = 8

ε
+10.

Note that ∀i ∈ [dlog le, h], l · ri ≤ r0. Since D(c, r0) is a sub-
region on the terrain surface, where c is any point on the surface,
we obtain that the vertices of terrain visited by SSAD algorithm

invoked for each node in layer i is at mostN, if i ∈ [0, dlog le−1];
otherwise, it is N

2θ(i−dlog le)
.

By Lemma 7, there are at most (22β)i nodes in Layer i. Thus,
we obtain that ten is at most O(

∑dlog le−1
i=0 (22β)iN log2N +∑h

i=dlog le
(22β)iN log2 N

22θ(i−dlog le)
) = O(N log2N (22β)dlog le−1

22β−1
+

(22β)dlog le
∑h−dlog le
i=0

(22β)iN log2 N

22θi
) =

O((22β)dlog leN log2N
∑h
i=0(22β

22θ
)i). Our empirical study

verified that θ ≥ β. Thus, we obtain that 22β

22θ
< 1 and thus ten is

O((22β)dlog le−1N log2N) = O(N log2 N

ε2β
). Thus, we obtain that

the oracle building time is O(N log2 N

ε2β
+ nh logn+ nh

ε2β
).

PROOF OF THEOREM 3. By Lemma 12, Theorem 2, and the
analysis in Section 3.4, we obtain the result.

C. A2A DISTANCE QUERY PROCESSING
We present an oracle to answer the arbitrary point-to-arbitrary

point (A2A) distance query based on our proposed distance ora-
cle SE. This oracle is the same as that presented in Section 3 ex-
cept that it takes some Steiner points introduced as input instead of
all POIs, where Steiner points are introduced by the method pro-
posed in [12] (there are O(N

sin(θ)·
√
ε

log 1
ε
) Steiner points, where

θ is the minimum inner angle of any face). Then, we present the
query processing. Given two arbitrary points s and t, we first find
the neighborhood of s (resp., t), denoted by N (s) (resp., N (t))
(It is a set of Steiner points on the same face containing s (resp.,
t) and its adjacent face(s) [12]. Finally, we return d̃g(s, t) =

minp∈N (s),q∈N (t)[dg(s, p) + d̃g(p, q) + dg(q, t)], where dg(s, p)
and dg(q, t) could be computed in constant time by SSAD al-
gorithm and d̃g(p, q) is the distance between p and q estimated
by the oracle constructed. By [12], |N (s)| · |N (t)| = 1

sin(θ)·ε

and if d̃g(p, q) is an ε-approximate distance of dg(p, q), then
d̃g(s, t) is also an ε-approximate distance of dg(s, t). By Theo-
rem 3, we obtain that for any two Steiner points p and q, d̃g(p, q)
is an ε-approximate distance of dg(p, q) and it takes O(h) time
to compute d̃g(p, q) and the building time (resp., oracle size) is

O(N log2 N

ε2β
+ Nh

sin(θ)
√
ε
· log 1

ε
· log

N log 1
ε

sin(θ)
√
ε

+ Nh
sin(θ)

√
ε·ε2β · log 1

ε
)

(resp., O(Nh
sin(θ)

√
ε·ε2β · log 1

ε
)). Thus, we obtain that for any two

arbitrary points s and t, the oracle gives an ε-approximate distance
of dg(s, t) and the query time is O(h

sin(θ)·ε).

D. DISCUSSION FOR CASE WHEN n > N

When n > N , we adopt the same distance oracle described
in Appendix C, which is POI-independent. This distance oracle
could answer not only A2A distance queries but also V2V distance
queries and P2P distance queries (because A2A distance queries
could be regarded as a general setting compared with V2V distance
queries and P2P distance queries).

