
Output-Sensitive Well-Separated Pair Decompositions
for Dynamic Point Sets∗

Eunhui Park
Department of Computer Science

University of Maryland
College Park, Maryland

ehpark@cs.umd.edu

David M. Mount
Department of Computer Science

University of Maryland
College Park, Maryland
mount@cs.umd.edu

ABSTRACT
The well-separated pair decomposition (WSPD) is a funda-
mental structure in computational geometry. Given a set P
of n points in d-dimensional space and a positive separation
parameter s, an s-WSPD is a concise representation of all
the O(n2) pairs of P requiring only O(sdn) storage. The
WSPD has numerous applications in spatial data process-
ing, such as computing spanner graphs, minimum spanning
trees, shortest-path oracles, and statistics on interpoint dis-
tances. We consider the problem of maintaining a WSPD
when points are inserted to or deleted from P .

Worst-case arguments suggest that the addition or dele-
tion of a single point could result in the generation (or re-
moval) up to Ω(sd) pairs, which can be unacceptably high in
many applications. Fortunately, the actual number of well
separated pairs can be significantly smaller in practice, par-
ticularly when the points are well clustered. This suggests
the importance of being able to respond to insertions and
deletions in a manner that is output sensitive, that is, whose
running time depends on the actual number of pairs that
have been added or removed. We present the first output-
sensitive algorithms for maintaining a WSPD of a point set
under insertion and deletion. We show that our algorithms
are nearly optimal, in the sense that these operations can
be performed in time that is roughly equal to the number of
changes to the WSPD.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms

∗This work has been supported by the National Science
Foundation under grant CCF-1117259 and the Office of
Naval Research under grant N00014-08-1-1015.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’13, November 05 - 08 2013, Orlando, FL, USA
Copyright 2013 ACM 978-1-4503-2521-9/13/11 ...$15.00.

Keywords
Well-separated pair decomposition, output-sensitive algo-
rithms, dynamic algorithms.

1. INTRODUCTION
The well-separated pair decomposition (WSPD) is a fun-

damental structure in computational geometry and process-
ing of spatial data. A set P of n points determines Θ(n2)
pairs of points. The WSPD provides a concise representa-
tion of these pairs using only O(n) space, subject to a given
approximation error in the accuracy to which each distance
is represented. (See definitions below.) In this paper, we are
interested in the problem of maintaining the WSPD of a dy-
namic point set, where insertions and deletions are possible.

The concept of the WSPD was introduced by Callahan
and Kosaraju [2], but it was anticipated in earlier work by
Greengard and Rokhlin on the fast multipole method [8],
which is widely used in physical simulations. Given a pos-
itive parameter s, called the separation factor, we say that
two sets A and B in a metric space are s-well separated if
they can each be enclosed within balls of equal radii such
that the closest distance between these balls is at least s
times their common radius (see Fig. 1).

≥ sr

r

rA

B

Figure 1: A well-separated pair.

Given an n-element point set P and s > 0, a well-separated
pair decomposition of P with respect to s (an s-WSPD) is
a collection of pairs {A1, B1}, . . . , {Ak, Bk} of non-empty
subsets of P such that

(1) for 1 ≤ i ≤ k, Ai and Bi are s-well separated, and

(2) for any two distinct points p, q ∈ P , there exists exactly
one pair {Ai, Bi} such that p lies in one of these sets,
and q lies in the other.

Throughout, we assume that the points reside in Rd, for a
fixed constant d under the L∞ distance function. (Later,
we will show that replacing the metric with any Minkowski
metric, such as the Euclidean or Manhattan distance, af-
fects only the constant factors. Well-separated pair decom-
positions can also be readily extended to any metric space

of constant doubling-dimension [10].) We treat s and n as
asymptotic quantities, and we will assume that s ≥ 1.

WSPDs have numerous applications in the design of both
exact and approximate algorithms for a spatial data sets.
Given an n-element point set P in Rd, it is possible to use
WSPDs to compute the (exact) closest pair of points of P
in O(n logn) time, and generally for 1 ≤ k ≤

(
n
2

)
, it is

possible to enumerate the (exact) k closest pairs of points
O(k + n logn) time [18]. It is also possible to compute the
nearest neighbor for every point in the set in O(n logn) time
[18]. WSPDs are also used in geometric approximations. For
example, it is possible compute an ε-approximation to the
diameter of a points set (and generally to approximate the
kth smallest interpoint distance) in O(n logn+(1/ε)d) time.
It is also possible to use WSPDs for computing approxima-
tions to the Euclidean minimum spanning tree [19], con-
structing geometric spanner graphs (sparse networks whose
shortest paths are not much longer than the straight-line
distance between points) [12], and building distance ora-
cles for spatial networks [16]. In order to apply any of
these algorithms a dynamic context, it is natural to ask how
quickly can the WSPD be updated when points are inserted
or deleted.

It is well known (see, e.g., [2, 9, 19]) that, given an n-
element point set in Rd, its possible to build an s-WSPD of
size k = O(sdn) in timeO(n logn+k). This is nearly optimal
in the worst case, since it is easy to prove that a uniformly
distributed point set is expected to require Ω(sdn) pairs. It
is conventional wisdom, however, that typical point sets are
far from uniform. Effects such as clustering, correlations
among coordinates, and boundary effects tend to reduce the
number of well-separated pairs. This reduction can be quite
significant, even in spaces of moderate dimension [13]. For
this reason, it is important to consider output-sensitive algo-
rithms, that is, algorithms whose running time depends on
the number of changes to the WSPD structure. While the
aforementioned batch WSPD construction is output sensi-
tive, existing algorithms for maintaining a WSPD are not.

Our interest in WSPDs arises from compression and clus-
tering applications involving points derived from digital ter-
rain elevation maps. Given an m×m elevation map and an
integer k < m, we can partition the map into k × k square
blocks, each of which is treated as a point in k2-dimensional
space. These points can be clustered in order to identify re-
gions of similar local topography, and generally WSPD de-
compositions can be used to analyze local topographical re-
lationships. To demonstrate the value of an output sensitive
approach, we considered two data sets. The first involved
a 2400 × 2400 elevation map from the area near Washing-
ton, D.C. (A small random perturbation was added to each
elevation to avoid duplicate values.) The second involved
a synthetically generated elevation map of the same size in
which the elevations were sampled from a uniform distribu-
tion over a similar range of elevations. In each case, the map
was decomposed into 2 × 2 blocks, which were then inter-
preted as a set of (2400/2)2 = 1.44 million points in R4. The
plot on the left of Figure 2 shows the number of newly cre-
ated well-separated pairs by the insertion of a single point
into both the Washington, D.C. (“real”) data set and the
random (“uniform”) data set as a function of the separation
factor. The plot on the right shows the ratio between them.
As the separation factor grows, the ratio grows to over two
orders of magnitude.

WSPs vs. Separation Factor

Separation factor

N
ew

 W
S

P
s

pe
r

in
se

rt
io

n

● ●
●

●

●

●

●

●

●

●

2 4 6 8 10

0
50

,0
00

10
0,

00
0

● uniform
real

Ratio of WSPs vs. Separation factor

Separation factor

R
at

io

2 4 6 8 10

0
10

0
20

0
30

0

WSPD size for real vs. uniform data (d=4)

Figure 2: New well-separated pairs resulted from
the insertion of a single point for terrain data and
uniformly distributed data in R4.

WSPD constructions in Rd are based on hierarchical spa-
tial subdivisions, and in particular, variants quadtrees and
kd-trees [15]. Callahan and Kosaraju used a fair-split tree.
Fischer and Har-Peled [4] point out that the construction
can be based on the simpler compressed quadtree, which is
the approach that we take here (see Section 2 for definitions).
WSPD construction algorithms all have the same general
structure. The points are stored in the leaves of an appro-
priate partition tree of size O(n). The k sets of the WSPD
are generated by a recursive top-down algorithm and are rep-
resented as pairs of nodes of the tree, {ui, vi} for 1 ≤ i ≤ k
(see Fig. 3). The corresponding pairs {Ai, Bi} of the decom-
position consist of the points of the subtrees rooted at ui
and vi, respectively (that is, contained within their respec-
tive cells). Construction algorithms generate only maximal
pairs, meaning that the parent pair, {par(ui),par(vi)}, is
not s-well-separated.

A1

B1

ui

vi

Figure 3: Each WSP is represented by a pair of
nodes in the quadtree.

Clearly, a given point set does not have a unique s-WSPD.
Fischer and Har-Peled [4] observed this issue in their algo-
rithm for maintaining the WSPD of a dynamic point set.
They observed that the number of well separated pairs can
vary based on the choice of the coordinate system’s origin,

which in turn affects the quadtree structure. They showed
that this instability could be ameliorated in expectation by
applying a random translation to the point set. In par-
ticular, they showed that it is possible to maintain an s-
WSPD of a point set under insertions and deletions in time
O(sd(logn+log s) logn) with high probability. WSPDs have
also been considered in a dynamic context mostly in the
context of metric spaces. Examples include the deformable
spanner of Gao, Guibas, and Nguyen [6] and dynamic span-
ners by Gottlieb and Roditty [7] and Roditty [14].

Since the output size is not uniquely determined by the
input, this raises the question of what is meant by an“output
sensitive” algorithm. Our approach will be to fix a precise
notion of s-WSPD procedurally, that is, as the output of a
particular algorithm. In order to achieve the best running
times, we will strengthen the notion of separation to one
that is easy to compute in a quadtree setting. We will show
that for any given point set, the size of the s-WSPD, under
our notion of strong separation is at most a constant factor
larger than the size of any (standard) s-WSPD for this point
set in any Minkowski Lp metric, for p ≥ 1. Our approach
can be readily generalized to any quadtree-like subdivision.

We relate the update time to the number of changes made
to the WSPD. In our algorithm (as in [4]), there are two
ways that well-separated pairs can change. When a point p
is inserted, new pairs of the form {{p}, Bi} can be created,
and an existing pair {Ai, Bi} can be modified to become
{Ai ∪ {p}, Bi} (see Figure 4). Deletion is just reverse.

Bi

p

Bi

p

AiNew Pair
Modified Pair

Figure 4: New and modified pairs.

Because only newly created or deleted pairs affect our
quadtree-based representation, our output-sensitive bounds
will be based on their number. Our running times do not
depend on the number of modified pairs. This is signifi-
cant, because newly created or deleted pairs tend to arise
in the locality of the inserted or deleted point, respectively,
whereas modified pairs can arise at all scales. Of course,
depending on the application, the modified pairs might also
be of interest. If desired, it is easy to modify our algorithm
to report the modified pairs in an output sensitive manner.

The following theorem presents our main result. We as-
sume that point coordinates are represented as fixed-point
binary numbers that support bit-wise operations (such as
boolean-and, boolean-or, and shift) in O(1) time. Our dele-
tion operation employs a form of “lazy updating,” where
some housekeeping operations are deferred until later, which
results in amortized running time bounds.

Theorem 1. Given an n-element dynamic set P ⊂ Rd
and a parameter s ≥ 1, it is possible to maintain an s-
WSPD for P in the L∞ metric that supports the following
operations and running times:

• Insert point: O(logn+m) (worst case)

• Delete point: O(logn+m) (amortized)

where m denotes the number of newly created (resp., deleted)
pairs in the case of insertion (resp., deletion). (Hidden con-
stants depend on d, but are independent of s.)

The paper is organized as follows. In Section 2, we present
basic definitions and introduce our stronger notion of sepa-
ration. In Section 3 we present static algorithms and utilities
for constructing the WSPD. These are used by our update
algorithms, which are given in Section 4. Conclusions follow
in Section 5.

2. PRELIMINARIES
We begin by recalling some basic concepts related to quad-

trees, upon which our constructions are based. Let Ud =
[0, 1)d denote the half-open d-dimensional unit hypercube.
We define a quadtree box by the following recursive process.
Ud is a quadtree box, and given any quadtree box b, each
of the 2d regions that result by subdividing b into congru-
ent (half-open) hypercubes is also a quadtree box. These 2d

boxes are called the children of b. The subdivision process
naturally defines a 2d-ary partition tree whose nodes corre-
spond to quadtree boxes. Henceforth, we use the term “box”
to mean “quadtree box.”

Consider an n-element point set P ⊂ Ud. Such a set natu-
rally induces a quadtree subdivision, by repeatedly subdivid-
ing each box that contains two or more points of P . Because
the size of the resulting subdivision may be much larger than
n, it is common to compress trivial paths, in which each in-
ternal node has only one nonempty child. A compressed
quadtree is obtained by (i) removing all leaf boxes that con-
tain no point of P and then (ii) replacing any maximal trivial
path with a single edge that goes to the first descendent with
two or more children (see Figure 5). In any fixed dimension,
it is well known that such a quadtree is of size O(n) and can
be constructed in time O(n logn) (see, e.g. [3, 9]). Given
a node u in a compressed quadtree, let par(u) denote its
parent.

Figure 5: Standard and compressed quadtrees.

Each node of a compressed quadtree is naturally associ-
ated with a box, which is often called its cell. Following [9],
we define the level of a box u, denoted lev(u), to be the
base-2 logarithm of its side length, and we define the level
of a node to be the level of its associated box. (Through-
out, we use lg to denote the base-2 logarithm. Because we
start with Ud, a node’s level is the negation of its depth in
a standard quadtree.) It is convenient to think of a point as
a degenerate box of side length zero, that is, a box at level
−∞. (We will often blur the distinction between a node and
its associated box by using the same name for both.) Given
an integer k ≥ 0 and a box u such that lev(u) ≤ −k, let u↑k

denote the (unique) box at level lev(u) + k that contains u.
(Due to compression, this box need not correspond to any
node of the tree.)

Given a compressed quadtree for P and a box b, define
node(b) to be node of the highest level in the tree whose
associated box is contained within (or is equal to) b. If
no such node exists (which happens if b contains no point
of P) then we assume that node(b) returns a special null
value. By storing the quadtree in a balanced structure (e.g.,
as a topology tree [5], link-cut tree [17], or quadtreap [11])
node(b) can be computed in O(logn) time. This is called a
box query.

As mentioned in the introduction, we compute the WSPD
assuming the L∞ metric. Given two boxes u and v, define
dist(u, v) to be the minimum L∞ distance between any two
points, one from u and one from v. Since the radius of the
smallest L∞ ball enclosing a box is half the box’s side length,
it follows that u and v are s-well separated if dist(u, v) ≥
s · 2`/2, where ` = max(lev(u), lev(v)).

2.1 Strong Separation
For the sake of simplicity and efficiency, we will need a

stronger notion of separation in our algorithms. (We shall
see in Lemma 3 below that this alters the size of the WSPD
by only a constant factor.) We start by introducing a quad-
tree-based notion of separation. We say that two boxes u
and v are homogeneously s-well separated if there exist two
(quadtree) boxes u′ and v′ of equal level such that u ⊆ u′

and v ⊆ v′, and u′ and v′ are s-well separated. If two boxes
u and v are homogeneously s-well separated, then clearly
they are s-well separated. (As shown in Figure 6(a), the
converse does not hold.)

u

v′

2`

2`

(b)

homogeneously 1-w.s.

` = msl1(u, v)

u and v are

u′
v

2lev(u)

2lev(u)

u

v

homogeneously s-w.s.

(a)

u and v are not

for any s > 0

Figure 6: Homogeneous separation.

To minimize the size of the WSPD, it is important that
the well-separated pairs are maximal in some sense. If u and
v are homogeneously s-well separated, there exists a unique
maximum level ` at which u′ and v′ reside. We call this the
maximum separation level, and we denote it by msls(u, v)
(see Figure 6(b)).

Assuming a model of computation supporting bit manip-
ulations, msls(u, v) can be computed in constant time, for
any boxes u and v. (For our algorithms, we will only need
msl1(u, v).)

Lemma 1. Assume we have a model of computation that
supports in O(1) time the bitwise operations boolean-or (“∨”),
complement (“x”), and exclusive-or (“⊕”), left shift (“�”),
and integer base-2 logarithm (that is, the index of the most
significant bit) on point coordinates. Given two boxes u and
v that are homogeneously 1-well separated, it is possible to
compute msl1(u, v) in O(1) time.

Proof. Consider a homogeneous 1-well separated pair
{u, v}. To motivate our construction, let ` = msl1(u, v),
and let u′ and v′ be the boxes of level ` containing u and v,
respectively. Let p′ = (p′1, . . . , p

′
d) and q′ = (q′1, . . . , q

′
d) de-

note the lower left corners of u′ and v′, respectively. Since u′

and v′ are 1-well separated, we have dist(u′, v′) ≥ 2`/2, and
by basic properties of boxes and the definition of the L∞ dis-

tance, we have maxi |p′i − q′i| > 2`. Therefore, maxi
∣∣ p′i
2`
− q′i

2`

∣∣
> 1. Note that for any point p in u′, ∀i,

⌊
pi
2`

⌋
=

p′i
2`

. Thus,
letting p and q be the lower left corners of u and v, respec-

tively, we have ∀i,
⌊
pi
2`

⌋
=

p′i
2`

, and
⌊
qi
2`

⌋
=

q′i
2`

. Thus, to
compute ` = msl1(u, v) it suffices to compute the largest
` ≤ 0 such that

max
1≤i≤d

∣∣∣⌊ pi
2`

⌋
−
⌊ qi

2`

⌋∣∣∣ > 1. (1)

Algorithm 1 Find msl1(u, v)

Input: Homogeneously 1-well separated boxes u and v.
Output: The maximum separation level of u and v, that

is, msl1(u, v).

1: function findMaxLevel(u, v)
2: p : the lower left corner of u
3: q : the lower left corner of v
4: m← arg maxi |pi − qi|
5: x1 ← max(pm, qm) y1 ← min(pm, qm)
6: j1 ← blg(x1 ⊕ y1)c
7: x2 ← x1 � j1 y2 ← y1 � j1
8: j2 ← blg(x2 ∨ ȳ2)c
9: return j1 + j2

The code implementing this is presented in Algorithm 1.
Let p and q denote the lower left corners of u and v, respec-
tively. The procedure first computes the largest absolute
coordinate m of p− q (1 ≤ m ≤ d). We let x1 and y1 be the
maximum and minimum of pm and qm, respectively. Recall-
ing that the points lie within the half-open unit hypercube
[0, 1)d,

⌊
x
2j

⌋
yields the first j bits in x’s bit representation.

We compare the leading j bits of x1 and y1 for increasing
values of j. Let j1 be the first position where x1 and y1
have different bit values (see Figure 7). Since x1 is greater
than y1, the j1th bits of x1 and y1 are 1 and 0, respectively.
Line 6 finds this position j1 by computing the index of the
most significant bit of x1 ⊕ y1. We then shift these match-
ing bits off the left end of the bit string. (We assume that
bits shifted to the left of the decimal point are discarded.)
We let x2 and y2 be the results shifting x1 and y1 by j1,
respectively (Line 7).

x1 : 1 0 1 · · ·
y1 : 0 1 0 · · ·

j1 j2

=

0
0

or 1
1

or

Figure 7: Find the maximum separation level of ho-
mogeneous 1-well separated pair

Next, we find the first position, j2 following this where
x2’s bit is not 0 and y2’s bit is not 1 (see Figure 7). This is
done by computing the index of the most significant bit of
x2∨y2 (Line 8). The result corresponds to the first position
where their difference is greater than 1. It follows that j1+j2
is the desired level.

In order to define our stronger notion of separation, let
s ≥ 1 denote the WSPD separation factor, which will be
fixed henceforth, and define

σ = max
(⌈

lg
s

2

⌉
, 0
)
.

We say that two boxes u and v are strongly s-well sepa-
rated if u↑σ and v↑σ are homogeneously 1-well separated.
As in homogeneous well separation, there exists a unique
maximum separation level ` at which two such boxes are
strongly s-well separated, which we denote by msl∗s(u, v).
Clearly, msl∗s(u, v) = msl1(u↑σ, v↑σ) − σ. Our next lemma
shows that this is indeed a stronger notion of separation.

Lemma 2. If two boxes u and v are strongly s-well sepa-
rated, then they are s-well separated.

Proof. If u and v are strongly s-well separated, then by
definition, u↑σ and v↑σ are homogeneously 1-well separated.
Note that if any two boxes of equal level are not adjacent,
they are separated from each other by an (L∞) distance of
at least their side length. Letting ` = max(lev(u), lev(v)),
we have

dist
(
u↑σ, v↑σ

)
≥ 2max(lev(u↑σ),lev(v↑σ))

= 2max(lev(u)+σ,lev(v)+σ)

= 2σ · 2` ≥ s

2
· 2`.

Note that since u↑σ and v↑σ contain u and v, respectively,
we have dist(u, v) ≥ dist

(
u↑σ, v↑σ

)
. Therefore, dist(u, v) ≥

s ·2`/2, which implies that u and v are s-well separated.

The notion of maximality can be generalized to this con-
text. Consider two nodes u and v that are strongly s-well
separated. Let u′ = node(u↑σ) and v′ = node(v↑σ). By def-
inition, u′ and v′ are homogeneously 1-well separated. We
say that the pair (u, v) is maximal if par(u′) and par(v′) are
not homogeneously 1-well separated. Our algorithms gener-
ate only maximally well-separated pairs.

If we modify the definition of s-WSPD by replacing the
standard notion of separatedness with this stronger notion,
we obtain a structure called a strong s-well separated pair de-
composition (strong s-WSPD). The following lemma shows
that by using this stronger notion of separation, we sacrifice
only a constant factor in the size of the WSPD, in compari-
son to any standard s-WSPD and in any Minkowski metric.

Lemma 3. Given a points set P in Rd and s ≥ 1, let Ψ be
a strong s-WSPD (in the L∞ metric) consisting of maximal
pairs. Let Ψ′ be any (standard) s-WSPD in the Lp metric
for any p ≥ 1. Then, there exists a constant c (depending
on d but independent of s and p) such that |Ψ| ≤ c · |Ψ′|.

Proof. Because Ψ consists only of maximal pairs, it suf-
fices to show that each well-separated pair {Ai, Bi} ∈ Ψ′

can be covered by at most a constant number of strong s-
well-separated pairs. By definition, Ai and Bi can each be
enclosed within an Lp ball of radius r such that the closest
Lp distance between these balls is at least sr. In Rd, if the
Lp distance between two points is z, then their L∞ distance
is at least z/d1/p ≥ z/d (since p ≥ 1). Therefore, the closest
L∞ distance between these balls is at least sr/d.

Let ` be the largest integer (possibly negative) such that
2` ≤ sr/(3d). Consider the grid of quadtree boxes of side
length 2`. The L∞ diameter of any box of the grid is 2`. Let
u′ and v′ be any boxes of this grid that have a nonempty
intersection with Ai and Bi, respectively. By the triangle
inequality, the closest L∞ distance between u′ and v′ is at
least

sr

d
− diam(u′)− diam(v′) =

sr

d
− 2 · 2`

≥ sr

d
− 2

sr

3d
=

sr

3d

≥ 2`.

It follows that u′ and v′ are homogeneously 1-well separated.
Let u and v be any quadtree boxes at level `−σ that have a

nonempty intersection with Ai and Bi, respectively. Clearly,
u↑σ and v↑σ intersect Ai and Bi, respectively, and so by the
above analysis, they are homogeneously 1-well separated.
Therefore u and v are strongly s-well separated. The side
length of these boxes is

2`−σ ≥ 2`

21+lg s
2

=
2`

s
.

By definition of `, we have 2` > sr/(6d), and therefore u
and v are both of side length at least r/(6d). It follows
from a standard packing argument, that the number of such
boxes that can have a nonempty intersection with an Lp ball
of radius r is a constant γ. (In general, γ depends on the
dimension but not on s or p. A more careful analysis reveals
that γ ≤ d1 + 6ded [1].)

Since at most γ quadtree boxes at level ` − σ suffice to
cover each of Ai and Bi, it follows that the number of strong
s-well-separated pairs that cover the pairs Ai×Bi is at most
γ2. In summary, each (standard) s-well-separated pair of Ψ′

can be covered by at most γ2 = O(1) strong s-well-separated
pairs of Ψ, which completes the proof.

Throughout the remainder of the paper, we will use the
term “s-well separated” to mean strongly s-well separated
and we use“s-WSPD”to mean strong s-WSPD. It is natural
to wonder whether the constant factor increase in the size
of the WSPD due to strong separation is large enough to
wipe out the performance gains obtained through the use of
output sensitivity. Of course, this depends the distribution
of the data set. However, in our experience with data from
our terrain clustering application, the increase in the size of
the WSPD due to strong-separation was typically an order
of magnitude smaller than increase in the number of WSPDs
due to failure to consider output sensitivity.

3. CONSTRUCTION AND UTILITIES
In this section, we present the basic construction algo-

rithm for computing an s-WSPD for any s ≥ 1. Our con-
struction algorithm employs the standard recursive process
for computing WSPDs (see Algorithm 2). Given a pair of
nodes u and v, it first dispenses with the trivial cases (either
node is empty or the two nodes are the same leaf). If the
nodes are homogeneously 1-well separated, then it computes
`1 = msl1(u, v) and calls a utility function, findDescendants,
that computes all the maximal descendants of u and v at
level `1 − σ, where σ is the value used in the definition of
strong separation (Section 2.1). It returns the cross prod-
uct of the resulting nodes. Otherwise (if u and v are not
homogeneously well-separated), it subdivides the node that
is at the higher level of the tree and applies the procedure
recursively to the children of this node.

Each well-separated pair is represented as ({x, y}, `), where
x and y are the nodes defining the well-separated pair, and
` = msl∗s(x, y) is their maximum separation level. The ini-
tial call is findWSPD(r, r, s), where r is the root of the com-
pressed quadtree, and s is the separation factor.

Algorithm 2 Construction of WSPD

Input: Two nodes u and v and a separation factor s ≥ 1
Output: All s-well separated pairs between the subtrees of

u and v

1: function findWSPD(u, v, s)
2: if u = v and lev(u) = −∞ then return ∅
3: if u and v are homogeneously 1-w.s. then
4: `1 ← msl1(u, v)
5: . See findMaxLevel in Algorithm 1
6: σ ← max

(⌈
lg s

2

⌉
, 0
)

7: X ← findDescendants(u, `1 − σ)
8: Y ← findDescendants(v, `1 − σ)
9: return

⋃
x∈X,y∈Y ({x, y}, `1 − σ)

10: if lev(u) ≥ lev(v) then
11: return

⋃
i findWSPD(ui, v, s)

12: else return
⋃
i findWSPD(u, vj , s)

13: function findDescendants(u, `)
14: if lev(u) ≤ ` then return {u}
15: return

⋃
i findDescendants(ui, `)

We test whether two nodes u and v are homogeneously
1-well separated as follows. Let `′ = max(lev(u), lev(v)).
Let u′ and v′ denote the respective containing boxes at this
level. Then u and v are 1-well separated if and only if u′ and
v′ are not adjacent. This can be determined in O(1) time,
using the same bit manipulations given in Lemma 1. Recall
that each leaf is associated with a point, which we treat as a
box at level −∞. Therefore, two distinct leaves are always
homogeneously 1-well separated.

We observe the following properties of the well-separated
pairs generated by Algorithm 2. Recall that par(u) denotes
the parent of node u in the compressed quadtree.

Lemma 4. Consider any nodes r1 and r2 of the com-
pressed quadtree (possibly r1 = r2). Consider any pair {x, y}
generated by the call findWSPD(r1, r2, s). Let {u, v} be the
pair of homogeneously 1-well separated nodes that resulted

in the generation of the pair (x, y) at Line 9 of Algorithm 2.
Then

(i) lev(u) ≤ msl1(u, v), and
if u 6= r1, then msl1(u, v) < lev(par(u))

(ii) lev(x) ≤ msl∗s (x, y), and
if x 6= r1, then msl∗s (x, y) < lev(par(x))

(Symmetrical bounds hold for v and y.)

Proof. First, consider (i). By the definition of homoge-
neous well separation, there exist u′ and v′ on level msl1(u, v)
such that u ⊆ u′ and v ⊆ v′, and u′ and v′ are homoge-
neously 1-well separated. Therefore, lev(u) is not greater
than msl1(u, v), which establishes the first inequality. To
prove the second inequality, suppose to the contrary that
u 6= r1 and msl1(u, v) ≥ lev(par(u)). This would imply that
par(u) ⊆ u′, and so par(u) and v would be homogeneously
1-well separated. By the nature of findWSPD, par(u) would
never have been recursively subdivided, which yields the de-
sired contradiction.

To prove (ii) observe that, by the definition of findDescen-
dants, x and y are maximal nodes on a level not more than
msl∗s(x, y). Therefore, lev(x) ≤ msl∗s(x, y) < lev(par(x)).
The analogous bounds for v and y hold by symmetry.

The following lemma establishes the correctness of the
algorithm.

Lemma 5. Consider a point set P , a separation factor
s ≥ 1, and a compressed quadtree T storing P . Letting
r denote T ’s root, the call findWSPD(r, r, s) returns an s-
WSPD for P . In particular, for any pair {x, y} returned,
resulting x and y are maximally s-well separated.

Proof. Consider any pair {x, y} generated by the algo-
rithm, and let {u, v} be the pair of homogeneously 1-well
separated nodes that resulted in the generation of this pair
on Line 9. We have msl∗s(x, y) = msl1(u, v)− σ.

We first show that two boxes, x↑σ and y↑σ are homoge-
neously 1-well separated, and in particular, msl1(x↑σ, y↑σ) =
msl1(u, v). Let u′ and v′ be the boxes at level msl1(u, v) con-
taining u and v, respectively. Note that lev(x) ≤ msl∗s(x, y)
and lev(y) ≤ msl∗s(x, y), and x ⊆ u ⊆ u′ and y ⊆ v ⊆ v′.
Therefore

lev
(
x↑σ
)

= lev(x) + σ

≤ msl∗s(x, y) + σ = msl1(u, v) = lev(u′),

lev
(
y↑σ
)

= lev(y) + σ

≤ msl∗s(x, y) + σ = msl1(u, v) = lev(v′).

Clearly, x↑σ and y↑σ are contained within u′ and v′, respec-
tively. Since x↑σ ⊆ u′, y↑σ ⊆ v′, and u′ and v′ are homo-
geneously 1-well separated, it follows that x↑σ and y↑σ are
homogeneously 1-well separated. The maximum separation
level of x↑σ and y↑σ is msl1(u, v).

Next, we show that {x, y} is maximal. By Lemma 4(ii),
par(x)↑σ is on a level higher than msl∗s(x, y)+σ = msl1(u, v),
and therefore it is not homogeneously 1-well separated with
any node containing y. The same applies to par(y)↑σ. There-
fore the pair {x, y} is maximal, as desired.

The following lemma is implied by Lemmas 3 and 5.

Lemma 6. Given a separation factor s ≥ 1, the number
of pairs generated by findWSPD is O(sdn).

The following lemma shows that, after constructing the
compressed quadtree, the algorithm’s running time is linear
in the number of pairs generated.

Lemma 7. Given an n-element point set P in Rd stored
in a compressed quadtree and s ≥ 1, findWSPD computes
an s-WSPD in time linear in the number of pairs.

Proof. Consider the computation tree whose nodes cor-
respond the calls findWSPD. We say that a call is terminal
if it makes no recursive calls to findWSPD, and we say that
a terminal call is effective if it returns on Line 9. We will
show that the total number of nodes in the resulting com-
putation tree can be bounded by the number of effective
terminal calls. To do this, we charge each noneffective ter-
minal to the nonterminal call that generated it, that is, its
parent in the computation tree. Recalling that each internal
node in the compressed quadtree has at least two children,
it follows that each nonterminal call generates at least two
calls, neither of which is a noneffective terminal. In other
words, if we prune all noneffective terminals from the com-
putation tree, each internal node has at least two children.
Thus, the total number of nodes in the computation tree is
linear in the number of effective terminals.

Now consider the running time of effective terminal call.
For a 1-well separated pair, {u, v} on Line 3, it finds all de-
scendants of u and v of level less than or equal to msl1(u, v)−
σ, where σ = max(

⌈
lg s

2

⌉
, 0), by descending the tree (using

recursive calls to findDescendants). It generates s-well sepa-
rated pairs consisting of the cross product of these two sets of
descendants. Clearly, the total running time of all the recur-
sive calls to findDescendants is bounded by the total number
of pairs it outputs. Thus, each effective terminal call runs in
time linear in the resulting number of s-well-separated pairs.
Therefore, the total running time to construct the WSPD is
proportional to the final output size.

4. UPDATES
In this section, we present the algorithms for inserting

and deleting points into the WSPD. We first consider inser-
tion in Section 4.1, deletion in Section 4.2, and we discuss
maintenance of an internal data structure in Section 4.3.

4.1 Insertion
Consider the insertion of a new point p into the com-

pressed quadtree. We first locate the node whose box con-
tains the newly inserted point. By storing the compressed
quadtree using an auxiliary structure, such as a topology
tree [5], this can be done in O(logn) time. As observed by
Fischer and Har-Peled [4], there are two cases depending on
the location where the new point is inserted.

Case 1: (no new internal node) The new point p is stored
in a leaf, denoted by x, that is hung directly beneath
its parent (see Figure 8(a)).

Case 2: (between the cells of the compressed node w and
its parent) We create new leaf, x containing p, and a
new node z, which has w and x among its children (see
Figure 8(b)).

After the insertion of p, we need to update the well-
separated pairs. Our objective is that updated pairs will
be the same as would result by running the static construc-
tion algorithm findWSPD on the updated point set. The
insertion procedure is given in Algorithm 3.

w

z

p

w

z
p

w

insert p

w x

p

w

x

(b)

(a)

zinsert p

x
p

w2

z
w1

p

w2

z
w1

p

w2

z

x
w1

w1 w2

z

w1 w2

Figure 8: Inserting a point into the compressed
quadtree.

First, let us consider Case 2 (Figure 8(b)) where the in-
sertion resulted in the creation of node z. Note that z’s cell
contains the cell of x’s sibling node w, which existed prior
to the insertion. Recall that each well-separated pair is rep-
resented by a triple ({x, y}, `), where x and y are the two
nodes defining the pair, and ` is the maximum separation
level. Consider any well-separated pair ({w, v}, `) that ex-
isted prior to the insertion, where ` ≥ lev(z). If findWSPD
were to be run on the quadtree containing p, then because
z will be encountered before w, and so it follows that (after
insertion) this pair involves z rather than w. We replace
each such pair with the new pair ({z, v}, `). Note that since
` ≥ lev(z), and ` is not affected by the insertion, ` is not
changed.

Next, consider Case 1 (Figure 8(a)), where x denotes the
leaf containing the new point. Consider any s-well sepa-
rated pair {x, y} generated by findWSPD on the updated
point set. Since z and y are not strongly s-well separated
(since otherwise the algorithm would have generated the pair
{z, y}), we have z↑σ and y↑σ are not homogeneously 1-well
separated. Let B denote the set of boxes at level lev

(
z↑σ
)

that are not homogeneously 1-well separated with respect to
z↑σ. Clearly, y↑σ is contained within some box of B.

To compute these new pairs, for each b ∈ B, we find the
corresponding node in the compressed quadtree by invoking
node(b). Recall that this returns the largest node in the
compressed tree that is contained within b. (If the result is
null, we simply ignore the result.) We determine the well-
separated pairs involving the new leaf as follows. For each
b ∈ B, we invoke findWSPD(x,node(b), s). We take the
union of all the resulting pairs and add them to the WSPD.

Algorithm 3 Insertion of a point p for output sensitive
WSPD
Input: A point, p and a separation factor, s ≥ 1
Output: All s-well separated pairs related to new leaf in-

cluding p

1: function insert(p, s)
2: Insert p
3: x : a new leaf including p
4: z : parent of x
5: if z is new then
6: w : x’s sibling
7: ∀ s-WSPs ({w, v}, `) with ` ≥ lev(z)),
8: change ({w, v}, `) to ({z, v}, `).
9: σ ← max(

⌈
lg s

2

⌉
, 0)

10: B : set of boxes adjacent to z↑σ including z↑σ

11: return
⋃
b∈B findWSPD(x,node(b), s)

The following lemma establishes the correctness this pro-
cedure. (We will present the running time later.)

Lemma 8. Function insert of Algorithm 3 correctly up-
dates the s-WSPD.

Proof. Let T denote the compressed quadtree before p’s
insertion, and let T ′ denote the compressed quadtree after
p’s insertion. Let W be the set of well-separated pairs gener-
ated by findWSPD when run on T , and W ′ be the analogous
set on T ′. We will show that Algorithm 3 converts W into
W ′. We consider the same two cases mentioned above, and
we use x, z, and w as defined above. There are only two
types of pairs that would be affected by the insertion, those
involving x itself and those involving the newly added inter-
nal node z.

First, let us consider the pairs involving z (Case 2). Con-
sider any well-separated pair, ({z, y}, `) in W ′, where ` ≥
lev(z). Since w is contained within z, w is also well-separated
with y. Therefore, ({w, y}, `) exists in W . Conversely, con-
sider ({w, y}, `) in W , where ` ≥ lev(z). If there exists a
node whose level is less than or equal to `, but higher than
w, then findWSPD would have generated a well-separated
pair involving it instead of w. Therefore, ({w, y}, `) belongs
as ({z, y}, `) in W ′. Line 8 in Algorithm 3 changes each
such pair to ({z, y}, `). (Note that the other well-separated
pairs related to w whose maximum separation level is less
than lev(z) are related only with w, and they are included
in both W and W ′.)

Second, consider any well-separated pair, ({x, y}, `) in-
volving x in W ′ (Case 1). Such x and y were generated by
invoking findDescendants (Line 7 and 8 of Algorithm 2) on
nodes u and v of T ′ that are 1-well separated, respectively.
By the nature of the algorithm, u and v are maximally homo-
geneously 1-well separated. Recall that B is the set of boxes
adjacent to z↑σ including z↑σ in Line 10 of Algorithm 3. We
will show that v is contained in some box b ∈ B (see Fig-
ure 9). Assumming this for now, if we let v′ be the largest
node containing v at level not more than lev(z↑σ), for such
a b, node(b) in Line 11 of Algorithm 3 will return v′. In the
same line, findWSPD(x, v′, s) will first find homogeneous 1-
well separated pairs involving x and descendants of v′, and
then invoke findDescendants on each. We are interested in
these calls involving ancestors of v. By the maximality of u

and v, we assert that no proper ancestor of v will be homo-
geneously 1-well separated with respect to x. To see this,
suppose that there existed a proper ancestor v, denoted by
v′′ that was homogeneously 1-well separated with x. By
definition, a box x′ on the same level as v′′, containing x is
1-well separated with v′′. Since v′′ is an ancestor of v, by
Lemma 4(i), lev(u) ≤ msl1(u, v) < lev(par(v)) ≤ lev(v′′).
This implies that lev(u) < lev(x′), and therefore, u is con-
tained in x′. This yields that u and v′′ are also homoge-
neously 1-well separated. This would contradict the fact
that u and v are maximally well-separated. Therefore, x
is not homogeneously 1-well separated with any proper an-
cestor of v. Thus, findWSPD(x, v′, s) will find the 1-well
separated pair {x, v}, and will generate the desired s-well
separated pair {x, y} by invoking findDescendants.

u

v

msl1(u, v) = 2k+σ

v′
z
x

msl1(u, v)y

z(σ)

quadtree boxes

including z(σ)
adjacent to z(σ)

Figure 9: A well-separated pair of new leaf x

To complete the proof, it remains to show that v is con-
tained in some box b ∈ B. To do this, it suffices to show
that v is not homogeneously 1-well separated with z↑σ, and
lev(v) ≤ lev(z↑σ). By Lemma 4(ii), ` < lev(z). Thus,

lev(u) ≤ msl1(u, v) = `+ σ < lev(z) + σ = lev(z↑σ).

By the maximality of u and v, v is not homogeneously 1-well
separated with any box containing u on a higher level than
msl1(u, v). Clearly, z↑σ is such a box. Also, we have lev(v) ≤
msl1(u, v) < lev(z↑σ). This completes the proof.

4.2 Deletion
Deletion essentially is the reverse of the insertion proce-

dure, and is presented in Algorithm 4. Let x be the leaf
containing the deleted point, p. If its parent, z has only
two nodes, x and w, the node z will be deleted from the
compressed quadtree. Thus, in a symmetrical manner with
insertion, we associate the well-separated pairs with w, in-
stead of z (see Line 5). Also, all well-separated pairs associ-
ated with x are deleted (see Line 7). The correctness proof
is symmetrical with the proof for insertion and is omitted.

4.3 Maintenance of the WSPD for Updates
In order to analyze the running time of our update algo-

rithms, we need to show how to maintain the s-well sep-
arated pairs and the maximum separation level associated
with each. We store all the well-separated pairs in a hash
table, denoted by H. Given a box u′, let W (u′) denote the

Algorithm 4 Deletion of a point p for output sensitive
WSPD
Input: A point, p and a separation factor, s ≥ 1

1: function delete(p, s)
2: Find a leaf x including p
3: z : parent of x
4: if z has two nodes, x and x’s sibling, w then
5: Change ({z, v}, `) to ({w, v}, `).
6: Delete z
7: Delete all well-separated pairs related to x
8: Delete x

set of all well-separated pairs (u, v) such that u′ is the box
at level msl∗s(u, v) containing u. Note that a box may be
uniquely identified by the Morton code (see [15]) of its lower
left corner and its depth. We combine these to form the
box’s associated key for the hash table. For a box u′, let
H(u′) denote the hash table entry associated with u′. The
entry, H(u′) stores a linked list of the elements of W (u′).
The element of this linked list associated with (u, v) stores
a cross reference to an element of the list in H(v′), where
v′ is the box at level msl∗s(u, v) containing v. Note that a
well-separated pair (u, v) is stored as the pair (u′, v′). In
addition, we store a bit for each entry in the hash, which we
call the dirty bit. If H(u′) is empty, this bit is set. This will
be used for lazy deletion, which will be described below. In
this way, the space of the hash table is proportional to the
number of well-separated pairs.

For each node u, let Lu denote the set of levels `, such that
there exists a well-separated pair (u, v) so that msl∗s(u, v) =
`. We assume that Lu is stored as a bit vector indexed by
levels. If there exists a well-separated pair involving u at
level `, bit ` of Lu is set. Through this bit vector, we can
compute boxes u′ associated with u in the manner presented
above. Note that given u and such a level number `, it is
possible to compute u′ and its associated hash key in O(1)
time. This key is then used to access the hash table. Recall
that each point’s coordinates are stored as fixed-point binary
numbers, and bitwise operations can be performed on them
in O(1) time. We assume that each coordinate can be stored
in a constant number of words, and hence the total space
required for the coordinates is proportional to the number
of nodes in the tree.

Lemma 9. Assume we have a model of computation that
supports in O(1) time the bitwise operations boolean-and
(“∧”), boolean-or (“∨”), complement (“x”), left shift (“�”),
and integer base-2 logarithm (that is, the index of the most
significant bit) on point coordinates. Through the bitwise
operations, the following operations for bit vectors can be
performed in O(1) time.

• add(Lu, `): Add bit ` to Lu.

• remove(Lu, `): Remove bit ` from Lu.

• isMember(Lu, `): Return true if Lu has bit ` set. Oth-
erwise, return false.

• split(Lu, `, Lv): Split the bit vector Lu into two bit vec-
tors, such that one contains bits whose positions are
greater than or equal to `, and the other contains those
that are less than `. The higher bits are stored in a new
bit vector Lv, and the lower entries remain in Lu.

• merge(Lu, Lv): Merge the bits of Lu to Lv.

• getMembers(Lu): Enumerate all the bits of Lu.

Proof.

• add(Lu, `): Set the bit at position ` by taking the
bitwise-or of Lu and a bit string whose only set bit
is at position `.

• remove(Lu, `): This is equivalent to setting bit ` of the
complement of Lu, and returning the complement of
the result.

• isMember(Lu, `): Return true if the bitwise-and of Lu
and a bit string whose only set bit is at position ` is
not zero. Otherwise, return false.

• split(Lu, `, Lv): We do this by first copying Lu to Lv.
We then mask out all bits below level ` from Lv and
mask out all bits at or above ` from Lu.

• merge(Lu, Lv): Merge two bit vectors Lu to Lv by
taking their bitwise-or.

• getMembers(Lu): First copy Lu to the temporary bit
string x. Output the integer base-2 logarithm of x,
which is the index of x’s most significant bit. Then
mask this bit out. Repeat this until x has no more set
bits.

The above operations, except the operation getMembers,
can be performed in O(1) time. The operation getMembers
takes O(|Lu|) time. Letting p denote the representative
point of u, the size of a bit vector, Lu is less than the size
of p’s coordinates, and hence O(|Lu|) = O(1). Thus, all of
above operations can be performed in O(1).

Let us consider how to implement point insertion, deletion,
and node queries.

Point Insertion:.
As mentioned above, the first step is to insert the new

point p into the compressed quadtree. Following Fischer
and Har-Peled [4] this can be performed in O(logn) time by
representing the (possibly unbalanced) compressed quadtree
as a topology tree [5].

To bound the time needed to update the WSPD, recall
nodes x, z, and w from Algorithm 3. If x’s parent, z, is
new (Case 2), we update the well-separated pairs involving
x’s sibling, w. That is, each well-separated pair ({w, v}, `),
where ` ≥ lev(z) is changed to ({z, v}, `). We do this by
performing split(Lw, lev(z), Lz). This can be done in O(1)
time.

Next, we find all the new well-separated pairs involving
the leaf x. We first find the set B of boxes at level lev(z↑σ)
that are not homogeneously 1-well separated with respect
to z↑σ (see Line 10 of Algorithm 3). Observe that be-
cause we assume the L∞ metric, B consists of boxes of side
length equal to the side length of z↑σ. There are at most
3d such boxes, and they can be computed in O(1) time.
For each b ∈ B, we invoke node(b) to compute the high-
est level node of the compressed quadtree contained within
b (see Line 11). This query can be performed in O(logn)
time through the use of the topology tree. Then, we in-
voke findWSPD(x,node(b), s). For each newly generated

pair {x, y} resulting from findWSPD, we first update both
Lx and Ly by add(Lx,msl∗s(x, y)), and add(Ly,msl∗s(x, y)).
These take O(1) time. Let x′ and y′ be boxes on level
msl∗s(x, y) containing x and y, respectively. We add ele-
ments referencing this well-separated pair into both H(x′)
and H(y′). The dirty bits of both H(x′) and H(y′) are then
reset. This can also be performed in O(1) time. Thus, in-
cluding the O(logn) time to insert the point, the addition
of all new well-separated pairs involving x can be performed
in worst-case time O(logn+m), where m is the number of
newly generated pairs.

Point Deletion:.
Next, let us consider the deletion of a point p. We first

find the leaf x containing p (see Line 2 of Algorithm 4). This
can be performed in O(logn) time, again using the topology
tree. Recall z and w from the algorithm. If z would have
only one child w after the deletion of x, z will be also deleted.
We then merge all the well-separated pairs involving z to w
by merge(Lz, Lw) in O(1) time.

Next, we remove all well-separated pairs involving x. First,
we get all bits of Lx that are set by getMembers(Lx). This
takes O(1) time. For each bit ` of Lx that is set, let x′ de-
note the box of level ` containing x. We access the linked
list in H(x′). If the dirty bit of H(x′) is not set, that is,
H(x′) has a nonempty list, we remove all the elements of
the list. For each associated pair (x′, y′), we also remove the
corresponding element from H(y′). If H(y′) is now empty,
we set its dirty bit. If we attempt to access H(y′) as part
of a future operation, it is because the corresponding bit of
Ly was set, for some node y. Thus, whenever we access any
entry H(y′), if its dirty bit is set, we reset the correspond-
ing bit of Ly as well as the dirty bit. By charging this to
the earlier deletion that set the dirty bit, we can easily see
that this takes the O(1) amortized time. After removing all
the elements of the list in H(x′), we remove ` from Lx by
remove(Lx, `) in O(1) time. If the dirty bit of H(x′) is set,
we remove the correponding bit ` from Lx, and reset the
dirty bit like above in O(1) amortized time. Combining this
with the initial O(logn) time to remove the point, deletion
can be performed in amortized time O(logn+m), where m
is the number of deleted pairs. Combining these results, we
have Theorem 1.

5. CONCLUSIONS
Well-separated pair decompositions have a number of ap-

plications in the processing of spatial data. Efficient mainte-
nance of WSPDs under point insertions and deletions is an
algorithmic problem of fundamental importance. Because
the number of pairs can be significantly lower than worse-
case bounds (especially when points are well clustered), it is
desirable to consider an output sensitive approach. We have
presented the first output-sensitive algorithm for maintain-
ing the WSPD in Euclidean space. Except for an overhead
of O(logn), our algorithms are linear in the number of cre-
ated/removed pairs. The focus of this work is on establishing
the correctness and efficiency of our algorithms theoretically.
In future work, we will develop an implementation in order
to establish the algorithms’ practical efficiency.

6. REFERENCES
[1] S. Arya and D. M. Mount. Approximate range

searching. Comput. Geom. Theory Appl., 17:135–163,
2001.

[2] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. J.
Assoc. Comput. Mach., 42:67–90, 1995.

[3] K. L. Clarkson. Fast algorithms for the all nearest
neighbors problem. In Proc. 24th Annu. IEEE
Sympos. Found. Comput. Sci., pages 226–232, 1983.

[4] J. Fischer and S. Har-Peled. Dynamic well-separated
pair decomposition made easy. Proc. 17th Canad.
Conf. Comput. Geom., pages 235–238, 2005.

[5] G. N. Frederickson. A data structure for dynamically
maintaining rooted trees. Journal of Algorithms,
24:37–65, 1997.

[6] J. Gao, L. Guibas, and A. Nguyen. Deformable
spanners and applications. Comput. Geom. Theory
Appl., 35(1):2–19, 2006.

[7] L.-A. Gottlieb and L. Roditty. An optimal dynamic
spanner for doubling metric spaces. In Proc. 16th
Annu. European Sympos. Algorithms, volume
5193/2008, pages 478–489. Springer, 2008.

[8] L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. J. Comput. Phys., 73:325–̈ı£¡348,
1987.

[9] S. Har-Peled. Geometric Approximation Algorithms.
American Mathematical Society, Providence, Rhode
Island, 2011.

[10] S. Har-Peled and M. Mendel. Fast construction of nets
in low dimensional metrics and their applications.
SIAM J. Comput., 35:1148–̈ı£¡1184, 2006.

[11] D. M. Mount and E. Park. A dynamic data structure
for approximate range searching. In Proc. 26th Annu.
Sympos. Comput. Geom., pages 247–256, 2010.

[12] G. Narasimhan and M. Smid. Geometric Spanner
Networks. Cambridge University Press, 2007.

[13] G. Narasimhan and M. Zachariasen. Geometric
minimum spanning trees via well-separated pair
decompositions. J. Exper. Algorithmics, 6, 2001.

[14] L. Roditty. Fully dynamic geometric spanners.
Algorithmica, 62:1073–1087, 2012.

[15] H. Samet. Foundations of Multidimensional and
Metric Data Structures. Morgan-Kaufmann, 2006.

[16] J. Sankaranarayanan and H. Samet. Query processing
using distance oracles for spatial networks. IEEE
Trans. on Knowledge and Data Engr., 22:1158–1175,
2010.

[17] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Comput. Sys. Sci., 26:362–391, 1983.

[18] M. Smid. Closest point problems in computational
geometry. In J.-R. Sack and J. Urrutia, editors,
Handbook on Computational Geometry, pages
877–935. Elsevier Science, Amsterdam, 2000.

[19] M. Smid. The well-separated pair decomposition and
its applications. In T. Gonzalez, editor, Handbook of
Approximation Algorithms and Metaheuristics, pages
53–1–53–12. Chapman & Hall/CRC, Boca Raton,
2007.

