
A Computational Framework for Incremental Motion

David M. Mount∗ Nathan S. Netanyahu† Christine D. Piatko‡ Ruth Silverman§

Angela Y. Wu¶

ABSTRACT

We propose a generic computational framework for main-
taining a discrete geometric structure defined by a collection
of static and mobile objects. We assume that the mobile ob-
jects move incrementally, that is, in discrete time steps. We
assume that the structure to be maintained is a function of
the current locations of the mobile and static objects (in-
dependent of their prior motion). Unlike other models for
kinetic computation, we place no restrictions on the motion
nor on its predictability.

In order to handle unrestricted incremental motion, our
framework is based on the coordination of two computa-
tional entities. The first is the incremental motion algo-
rithm. It is responsible for maintaining the structure and a
set of certificates, or conditions, that prove the structure’s
correctness. The other entity, called the motion processor,
is responsible for handling all the low-level aspects of mo-
tion, including computing and/or tracking the motion of the
mobile objects, answering queries about their current posi-
tions and velocities, and validating that the object motions
satisfy simple motion estimates, which are generated by the
incremental motion algorithm. Computational efficiency is
measured in terms of the number of interactions between
these two entities.

∗Department of Computer Science, University of Maryland, Col-
lege Park, Maryland. Partially supported by grant CCR-0098151.
Email: mount@cs.umd.edu.
†Department of Mathematics and Computer Science, Bar-Ilan
University, Ramat-Gan 52900, Israel and Center for Automa-
tion Research, University of Maryland, College Park, Maryland.
Email: nathan@macs.biu.ac.il.
‡The Johns Hopkins University Applied Physics Laboratory, Lau-
rel, Maryland. The support of the Office of Naval Research under
grant N00014-01-1-0964 is gratefully acknowledged. Email: chris-
tine.piatko@jhuapl.edu.
§Center for Automation Research, University of Maryland, Col-
lege Park, Maryland. Email: ruth@cfar.umd.edu.
¶Department of Computer Science, American University, Wash-
ington, DC. Email: awu@american.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCG’04,June 8–11, 2004, Brooklyn, New York, USA
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

We present a simple online protocol, through which the
incremental motion algorithm generates motion estimates.
We show that, given a parameter ε > 0, the number of mo-
tion estimates generated by this protocol has a competitive
ratio of O(1/ε) relative to an optimal algorithm that has full
knowledge of the future motion of the points but is required
to maintain an additional ε-factor separation relative to the
certificate failure regions.

Categories and Subject Descriptors: F.2.2 [Analysis
of Algorithms and Problem Complexity]: Geometrical prob-
lems and computations

General Terms: Algorithms, Theory

Keywords: Incremental motion, kinetic data structures,
competitive analysis

1 Introduction

An important emerging direction in computational geome-
try research is development of algorithms for mobile data.
Problems of this variety arise in many areas of practice, in-
cluding physical simulations, motion tracking, protein fold-
ing in computational biology, computer animation, collision
detection, and geometric optimization. (See [1] for a sur-
vey.) Of particular relevance to computational geometry is
the problem of maintaining discrete geometric structures for
mobile objects.

In recent years there has been active research in algo-
rithms for maintaining discrete geometric structures for ob-
jects moving continuously over time. For many years stochas-
tic procedures, such as the Kalman filter [11, 19], have been
used in control theory and dynamic motion tracking. Early
work in computational geometry considered problems in an
offline setting [3]. Lin and Canny [18] and Lin and Manocha
[17] considered practical approaches for collision detection
for moving objects. The area of kinetic data structures
(KDS) has emerged as an important framework in which
to model and analyze discrete problems involving moving
objects. The maintenance of a wide variety of geometric
structures has been successfully addressed within this frame-
work, including convex hulls and closest pairs [5], binary
space partitions [2], pseudo-triangulations for intersection
detection [4, 16], and fixed-radius clustering [7, 8], to name
a few.

Although KDS has proven to be a very powerful method
for managing objects in motion, one of its principal short-
comings is the requirement that the future motion of each

mobile object be specified. In KDS this is done by having
each mobile object present a flight plan, which is a piecewise
algebraic function of time that describes the future motion
of the object. (We assume that the reader is familiar with
the basic elements of KDS. See [5] for an introduction.) Al-
though flight plans can change periodically, the KDS ap-
proach relies on the ability to accurately determine the times
of future events. There are many applications of mobile data
processing, however, where this assumption cannot be met.
For example, this happens in motion tracking systems, in
which a sensor tracks the locations of a set of moving agents.
This is also the case in many physical simulation systems,
where the motion is the result of the minimization of some
real-valued energy or potential function, or results as the
numerical solution of a system of differential equations. In
these cases, it may be possible to predict only the very near-
term motion of objects.

There has been relatively little theoretical work on uncon-
strained kinetic motion. Kahan [10] suggested such a model.
It makes use of an update function, which can be queried to
determine the exact locations of the objects. The objective
is to minimize the number of queries to the update function.
In order to obtain interesting bounds, Kahan had to assume
that objects have specified upper bounds on their veloci-
ties. Another approach by Czumaj and Sohler [6] is to use
randomized property testers to establish the approximate
correctness of a data structure.

Our particular interest in this problems stems from an ap-
plication in geometric optimization. The problem involves
the simulation of a simple descent procedure that arises in
a variant of Lloyd’s k-means algorithm [12, 13, 14]. This
is among the most widely used clustering methods in prac-
tice [9, 15]. We are given a large set of n data points and
a smaller set of k cluster centers. In each iteration each of
the data points computes its closest center, and each cen-
ter moves toward the centroid of points associated with it.
(Fig. 1(a) illustrates the process. Fig 1(b) shows the motion
of a single center.)

Our objective is to develop a system, which like KDS,
avoids unneeded computations whenever the results of these
computations can be inferred due to the continuity of mo-
tion, but does not impose the strong restrictions that KDS
does on the predictability of the future motion. In this paper
we present a computational framework for maintaining dis-
crete geometric structures under these assumptions. Rather
than considering a specific application, we present a generic
computational framework and a means for reasoning about
the efficiency of algorithms running under this framework.
In order to simplify the presentation, we assume henceforth
that the mobile objects are modeled as moving points in real
d-dimensional space R

d, for some fixed constant d. For ap-
plications involving more complex objects, this can often be
achieved by mapping the objects to points in an appropriate
configuration space.

Our approach can be viewed as an extension to the general
KDS concept, in the sense that the computation is organized
around the maintenance of a set of boolean assertions, called
certificates, which serve to prove the validity of the struc-
ture [5]. Our framework differs from KDS in that it involves
the coordination of two computational units, the incremen-
tal motion algorithm (IM) and the motion processor (MP).
The IM algorithm performs all the complex processing in-
volved in maintaining certificates and the discrete structure.

In contrast, the MP handles the low-level issues of tracking
and/or computing point motions. The IM algorithm in-
teracts with the MP by issuing queries as to the current
locations and velocities of the moving points. Otherwise,
all processing is performed in an event-driven manner. The
IM algorithm specifies, or registers, estimates on the mo-
tions of the points to the MP and goes to sleep. The MP
monitors the point motion and verifies that the points are
indeed moving as expected, all without the involvement of
the IM algorithm. Whenever a significant event occurs (e.g.,
the violation of a certificate or a point motion that deviates
from the given motion estimate) the MP awakens the IM
algorithm. The IM algorithm then ascertains the nature of
the exception, updates the geometric structure and motion
estimates as needed, and then goes back to sleep.

(a)

(b)

Figure 1. An illustration of the motion of center points in k-means
search.

Computational efficiency is determined by the number of
interactions between the IM algorithm and the MP. Rather
than present a particular application problem, we present a
simple online protocol, through which the incremental mo-
tion algorithm generates motion estimates. We show that,
given a parameter ε > 0, the number of motion estimates
generated by this protocol has a competitive ratio of O(1/ε)
relative to an optimal algorithm that has full knowledge of
the future motion of the points but is required to maintain
an additional ε-factor separation relative to the certificate
failure regions.

The paper is organized as follows. In the next section
we present a more detailed description of our computational

framework. In Section 3 we present the simple online proto-
col for maintaining motion estimates, assuming single-point
certificates. In Section 4 we present present the analysis of
the competitive ratio of this online protocol. In Section 5
we discuss the generalization to multiple-point certificates.

2 The Computational Framework

In this section we present a detailed description of our com-
putational framework. The motion M of a single point is a
finite sequence of point positions in R

d sampled at discrete
time instances:

M = 〈p(t0),p(t1), . . . ,p(tN)〉,
where ti−1 < ti. The interval between two consecutive in-
stances is a time step. The durations of the time steps need
not be uniform, and in fact we place no lower bounds on their
size. (Thus our framework could even be applied to differ-
ential motion.) A time interval is a closed interval bounded
by time instances T = [ti, tj] for i ≤ j. The duration of an
interval, tj − ti, is denoted by |T |.

We assume that the state of the geometric structure is
purely a function of the current point positions and is in-
dependent of the prior motion. We will ignore a number of
application-specific issues, such as how the sampling rate is
determined and dealing with “missed events” due to finite
time sampling. We also ignore issues related to real-time
computation (in case the point locations are measured in
real time).

As mentioned above, our framework involves the coordi-
nation between two computational units, the motion pro-
cessor (MP) and the incremental motion algorithm (IM).
The former is responsible for low-level details of motion and
the latter for maintaining the structure. Before discussing
their specific roles, we begin with some definitions regard-
ing motion estimates. Consider a time step [ti−1, ti], and let
s = ti − ti−1 denote its duration. Let v denote an estimate
of the point’s current velocity. The estimated displacement
of the object over this step is sv, and its actual displacement
is given by the vector u = p(ti)−p(ti−1). Let |u| denote the
Euclidean length of vector u. We define the drift1 of this
point at time ti to be the relative error between the actual
and estimated displacements,

|u− sv|
|sv| .

We define a motion estimate to be a triple (T,v, δ), consist-
ing of a time interval T , velocity estimate v, and drift bound
δ. We say that a motion M satisfies this motion estimate if
for all time steps in T the drift of M relative to the velocity
estimate v is at most δ.

An equivalent way to describe the drift bound is in terms
of a bound on the possible locations of p(ti). Given the
velocity estimate v and given any time t, the estimated lo-
cation of the point after an elapsed time of s is defined to

1Our definition of drift has the nice feature of being a dimension-
less quantity. One negative aspect of this is that if the motion
estimate v is the zero vector, then the drift is either undefined
or infinite. An alternative definition involves replacing |sv| in
the denominator with s. In this way, drift is the absolute rate of
deviation from the estimate. If zero motion estimates are to be
considered, then this alternative definition may be better. Our
results can be adapted to apply with this alternative definition.

be p̂(t, s) = p(t) + sv. Thus, the estimated location of the
point after the time step [ti−1, ti] of duration s is p̂(ti−1, s).
(See Fig. 2(a).) Let B(p, r) denote a Euclidean ball of ra-
dius r centered at point p. From the above definition it is
easy to verify that

p(ti) ∈ B(p̂(ti−1, s), sδ|v|).

(a) (b)

p(t)

u

v
i−1p(t)

sv
v sv

p(t+s)

Elapsed time: s

p(t,s)

ip(t)

δs |v|

s |v|δ

i−1p(t ,s)

Figure 2. Drift and the motion bound.

If a motion satisfies a given motion estimate, then the
following lemma specifies the constraints on its position at
any time. It follows by a straightforward application of the
triangle inequality.

Lemma 2.1. Let T be a time interval of duration s start-
ing at time t. If a motion M satisfies a motion estimate
E = (T,v, δ), then for each time instance t + s′ ∈ T , for
0 ≤ s′ ≤ s, the point p(t + s′) lies within a ball of radius
δs′|v| centered at p̂(t, s′).

An immediate consequence is that motion lies entirely
within a cone-shaped region (see Fig. 2(b)) formed by the
union of all these balls, called the motion bound for E:

MB(E) =
⋃

0≤s′≤s

B(p̂(t, s′), δs′|v|).

We can now present more formally the manner in which
an IM algorithm interacts with the motion processor. First,
the algorithm can query the current or recent state of each
moving point. In particular, for each moving point and for
the current time instance ti, the MP can answer the follow-
ing queries:

Position Query: Report the current position of this point,
denoted p(ti).

Velocity Query: Report the current velocity of this point,2

denoted v(ti).

Maximum Drift Query: Report the maximum drift for
this point, relative to its current motion estimate, that
has been observed since this point’s last event. (Events
and motion estimates will be discussed below.)

Observe that for each mobile point, these queries can be
maintained and computed in constant time and space.

2In the simplest case, the velocity query may return incremental
rate of change, p(ti)−p(ti−1)/(ti−ti−1). However, depending on
the application, the MP is free to provide a more accurate value.
This may be possible, for example, in certain physical simulations.
For the sake of our analysis, we only require that, if the motion
satisfies a motion estimate generated by the IM algorithm, then
the velocities returned from the MP should satisfy the associated
drift bounds as well.

The second form of interaction with the MP involves the
validation of motions with respect to a given motion esti-
mate. First, we need to discuss certificates. Recall that a
certificate is a boolean condition on the current point lo-
cations. An IM algorithm maintains a set of certificates,
which as a group provides a “kinetic proof” of the valid-
ity of the current structure [5]. We assume that certificates
are testable in constant time. Generally, certificates involve
some bounded number of moving points. We discuss the case
of single-point certificates for now. (Such certificates would
arise, for example, in tracking the motions of some num-
ber of independent points through a static environment.)
This simplifies the presentation and is sufficient to capture
the principal elements of motion estimation. We discuss
multiple-point certificates in Section 5.

Each single-point certificate subdivides R
d implicitly de-

fines a region of space, called a failure region, where it fails to
hold. Given a motion estimate E, we say that a certificate
encroaches on E if its failure region intersects the motion
bound MB(E). Clearly, it is important for the MP to know
which of the current certificates encroach on the current mo-
tion bounds, since the discrete structure may change if the
point crosses into such a region.

It is tempting to require that no certificate failure region
be allowed to encroach on the current motion bound, for
then we can be assured that the discrete structure does not
change provided that the motion satisfies this motion esti-
mate. However, this is too strong a restriction. The point
is always surrounded by its motion bounds, and so, as it
comes closer and closer to a boundary of the failure region,
we would be forced to replace its current motion bounds
with successively tighter and tighter motion bounds cover-
ing successively smaller time intervals. The resulting effect
is somewhat the infinite regression of Zeno’s paradox, and
would only be resolved by the assumption that there is some
minimum time step size. (This effect has been observed in
incremental collision avoidance systems [17]. See Fig. 3.)

Figure 3. Allowing a constant number of certificate failure bound-
aries to encroach on motion bounds.

Instead, our approach is to allow a constant number of
certificate failure boundaries to encroach on each motion
bound. We allow a constant number, rather than just one,
since depending upon the application, there may be multiple
certificate boundaries in close proximity to some point of
space through which the motion passes.

The combination of a motion estimate E and a (constant-
sized) set of certificates C is called a motion unit. The IM
algorithm is required to specify, or register, a motion unit
for each moving point. This is done in an online manner.
Given a motion unit for some point, it is the job of the
MP to validate that the point’s motion satisfies the motion
estimate over the specified time interval. If not, the MP
generates an exception for one of the following three events:

Drift violation: The point’s actual drift exceeds the drift
bound of the current motion estimate.

Safeness violation: The time interval associated with the
motion estimate has elapsed.

Certificate violation: One of the the certificates of C no
longer holds.

Drift and safeness violations are related, since in both
cases we cannot guarantee that the point lies within its mo-
tion bounds. We distinguish between them because they
provide different information to the IM algorithm. A drift
violation suggests that either the drift bound was set too
small or the velocity estimate is incorrect. A safeness vio-
lation suggests that the velocity estimate is good, but the
drift may be too large. The safeness violation is so named
because the motion is deemed to be safe from undetected
certificate violations as long as it remains within its motion
bounds. When the time interval expires this is no longer the
case. Note that for each motion unit, these events can be
detected in O(1) time per time step given O(1) space.

An IM algorithm operates in an event-driven manner. For
each moving point, it registers a motion unit for this point
to the MP, based on its estimate of the point’s future motion
and drift and its knowledge of the certificates that involve
this point. It then goes to sleep. The MP passively monitors
the motions of points, without involving the IM algorithm.
If one of the above events occurs, the MP wakes up the
IM algorithm, which then performs whatever actions are
needed to restore the proper state of the system and motion
estimates.

A generic IM algorithm operates as follows. It first queries
the MP to determine the initial positions of moving points
and constructs the initial structure. It computes and reg-
isters the initial motion units for the moving points. (Of
course, since there is no motion history at this point, these
initial estimates are likely to fail very soon.) The IM algo-
rithm then repeats the following steps until the end of the
motion simulation. It sleeps until the next event is generated
by the MP. Note that many events may generally occur at
the same time instance. Since we assume that the geometric
structure to be maintained is independent of the point mo-
tion, determining a plausible ordering of these events is not
an issue. On being awakened, the IM algorithm queries the
MP for the positions and velocities of the points involved. If
a certificate violation occurred, the IM algorithm needs to
update some subset of the certificates and perhaps the geo-
metric structure as well. Finally, it computes and registers
to the MP the new motion units for the involved points.
The exact processing depends upon the particulars of the
discrete structure and choice of certificates.

Observe that the IM algorithm follows much the same
structure as a KDS algorithm with two major differences.
First, the IM algorithm needs to use the MP to determine
object locations (rather than the flight plans) and needs to
generate motion estimates. Second, the IM algorithm relies
on signals from the MP to know when kinetic events have
occurred, whereas in KDS this is done with a kinetic heap.
The basic elements of good KDS design, namely efficiency,
locality, compactness, and responsiveness [5] still apply to
the design of good IM algorithms. Thus, our framework is
not a replacement for KDS, but rather a way of extending
the KDS concept to incremental motion.

3 The Online Protocol

Beyond the common elements shared with KDS, the essen-
tially new problem in the design of an IM algorithm is the
determination of the motion units. At first, this might to
be an impossible task in the absence of either a statistical
model of motion or bounds on object’s maximum accelera-
tion. Nonetheless, we will present a simple online protocol
for generating motion estimates, and we will show in the
next section that this protocol is competitive with respect
to an algorithm that has full knowledge of the future motion.

The intuition behind our protocol is very simple. We
query the MP for the point’s current velocity, which be-
comes the new velocity estimate. The new drift bound is
a function of the type of event. If this is a drift event, we
double the drift bound. If it is a safeness violation, we halve
the drift bound provided that the maximum observed drift
is sufficiently small.

Here, we consider the processing for a single-point certifi-
cate. (Multiple-point certificates will be discussed in Sec-
tion 5.) The initial motion estimate can be arbitrary. Oth-
erwise, we are responding to an event that has just occurred.
Let t denote the current time, and let δ denote the drift
bound from the most recent motion estimate for the vio-
lating point. We query the MP to determine the point’s
current velocity, v, and the maximum drift since the last
event, denoted δ+.

Drift Violation: Set δ ← 2δ.

Safeness Violation: If (δ+ < δ/2) then set δ ← δ/2.

Certificate Violation: Leave δ unchanged.

Next, the IM algorithm performs whatever processing is
needed to update the structure and the associated certifi-
cates. Given the sampled velocity v and the updated drift
bound δ, we compute the time interval T = [t, t + s] with
maximum duration s subject to the constraint that the re-
sulting motion bound is encroached on by no more certifi-
cates than the MP allows. This computation involves sweep-
ing the motion bound forward in time and computing its
intersection with the existing certificate failure regions. We
ignore the computation time required, since this depends
on the particular application. Let C denote the resulting
set of certificates. We generate the new motion estimate
E = (T,v, δ) and register the new motion unit (E, C) with
the MP.

4 Competitive Analysis

In this section we present a competitive analysis to justify
the efficiency of our online IM protocol. As before, we con-
sider single-point certificates. The obvious point of compar-
ison would be an optimal offline algorithm, which has full
knowledge of the point’s future motion. This appears to be
too demanding, however. The problem is that, in the worst
case, there may be virtually no separation between optimum
motion bound and an arbitrarily large number of certificates.
If our velocity estimate is not absolutely perfect, the online
protocol may either suffer an unbounded number safeness
events or an unbounded number of drift events, depending
on whether the drift is too large or too small.

Our approach instead is to force a small “safety-zone”
between the certificates and each of the optimum motion

bounds. This is analogous to ε-safety requirements that were
introduced in the ray shooting algorithm of Mitchell, et al.
[20], based on the notion of simple cover complexity. In ap-
plications where the positions of objects are subject to small
measurement errors, such a requirement is quite reasonable.

Given a motion estimate E = (T,v, δ), and for ε > 0, we
define its ε-expanded motion bound, denoted MBε(E) to be
the expansion of MB(E) by the distance εδs|v|, where s =
|T | is the duration of T . Equivalently, it is the Minkowski
sum of MB(E) and a ball of radius εδs|v|. We say that E
is ε-safe if the number of certificates encroaching on MB(E)
is bounded by a constant. (See Fig. 4 right.) Finally, given
a motion M , we define Optε(M) to be the motion units
generated by an optimal offline algorithm for M , in which
the motion estimates generated by M are required to be ε-
safe. We will drop the reference to M when it is clear. We
will also abuse notation and let Optε refer to the number of
MP events generated by this algorithm.

MB(E)
time ε−safe0−safet

svδ
v

t+s
s

εδs|v|

εMB (E)

Figure 4. MB(E) (center) and MBε(E) (right).

As with simple cover complexity, one nice feature of ε-
safeness is that small increases in ε result in small variations
in the number of motion bounds. We omit the proof, but it
follows by observing that the part of the motion that is cov-
ered by some ε-safe motion bound MBε(E) can be covered
by two 2ε-safe motion bounds, each of half the duration but
with the same velocity and drift bound.

Lemma 4.1. For ε > 0, Opt2ε ≤ 2Optε.

The main result of this section is given below, and the
remainder of this section is devoted to its proof.

Theorem 4.1. For any ε > 0, the number of MP events
generated by our online IM protocol is larger than Optε by
at most a factor of

lg ρ +
16

(1− δmax)ε
+ O(1),

where δmin and δmax < 1 are the minimum and maximum
drift bounds for Optε, respectively, and ρ = δmax/δmin.

Before giving the proof, we need to establish a couple of
technical lemmas. The first states that, given two motion
estimates with sufficiently similar velocities if a motion satis-
fies one of the estimates, then for all sufficiently large drifts,
it satisfies the other as well.

Lemma 4.2. Let E∗ = (T ∗,v∗, δ∗) and E = (T,v, δ) be
two motion estimates, where T ⊆ T ∗. Let α = |v−v∗|/|v∗|.
If some motion M satisfies E∗, and α < 1, and δ ≥ (δ∗ +
α)/(1− α), then M also satisfies E.

Proof : By the triangle inequality we have |v∗| − |v| ≤
|v− v∗|, and so |v∗| − |v| ≤ α|v∗|, which implies that |v| ≥

(1 − α)|v∗|. Consider any time step [t0, t1] ∈ T , and let
s = t1− t0 denote its duration. Since T ⊆ T ∗, this step also
occurs in T ∗. The position of the point predicted by E∗ is
p∗(t0, s) = p(t0) + sv∗, and the position predicted by E is
p̂(t0, s) = p(t0) + sv. In order to satisfy the estimate E, it
suffices to show that the point’s actual position at time t1
is within a ball of radius δs|v| centered at p̂(t0, s).

The distance between the two estimates p∗(t0, s) and p̂(t0, s)
is s|v−v∗| ≤ sα|v∗|. That is, p̂(t0, s) lies in a ball of radius
sα|v∗| centered at p∗(t0, s). Also, because the motion satis-
fies E∗, the actual point position p(t1) lies in a ball of radius
sδ∗|v∗| centered at the same point. Thus, the point p(t1) is
at distance at most s(δ∗ + α)|v∗| from p̂(t0, s). Given our
prior bound on |v|, this distance is bounded above by

s
(δ∗ + α)

1− α
|v|,

which completes the proof. ut
The next technical lemma states that if one motion esti-

mate (from Optε) has a drift bound that is less than 1 and
is ε-safe, then another motion estimate (from the online pro-
tocol) that was constructed within this same time interval,
and whose velocity is sampled from the interval, whose drift
is not too high, and which is 0-safe, will be guaranteed to
be able make a certain degree of progress provided that no
drift violations interrupt its progress.

Lemma 4.3. Let M be a motion that satisfies the ε-safe
motion unit (E∗, C), where E∗ = (T ∗,v∗, δ∗) and δ∗ < 1.
Consider another motion unit (E, C) where E = (T,v, δ)
and T ⊆ T ∗ and v is sampled from M during T ∗. If (E, C)
is free of any drift violations and |T | ≤ (εδ∗/(2δ))|T ∗| then
(E, C) is 0-safe.

Proof : Let s∗ = |T ∗| denote the duration of T ∗. Let t0 and
t1 denote the starting times of T ∗ and T , and let t2 denote
the ending time of T . Let s1 = t1 − t0 and s2 = t2 − t0, and
observe that s = t2 − t1. It suffices to show that as long as
s ≤ (εδ∗/(2δ))s∗, the motion bound ball at time t1 + s = t2
for E is encroached only by the certificates of C, since this
implies that entire motion bound for E starting at time t1
is encroached on only by the certificates of C.

Let p̂(t1, s) = p(t1) + sv and p∗(t0, s2) = p(t0) + s2v
∗

denote the estimated positions of the point at time t2 based
on E and E∗, respectively. The starting point p(t1) and the
velocity vector v were both taken from M within T ∗, and
so following v for any distance will result in a motion that
satisfies E∗. It follows that the distance from p∗(t0, s2) to
p̂(t1, s) is bounded above by E∗’s accumulated drift bound
of x1 = s2δ

∗|v∗|. Another consequence of the fact that v
was sampled within T ∗ is that |v − v∗|/|v∗| ≤ δ∗, from
which we obtain |v| ≤ (1 + δ∗)|v∗| ≤ 2|v∗| (using the fact
that δ∗ < 1).

Applying instead E’s motion bound from time t1, the mo-
tion bound at time t2 = t1 + s is a ball centered at p̂(t1, s)
of radius sδ|v|. By our bound on |v|, this is at most 2sδ|v∗|.
By combining the distance x1 between the estimated posi-
tions with this radius, it follows that the motion bound for
E at time t2 lies within distance

y1 = x1 + 2sδ|v∗| ≤ s2δ
∗|v∗|+ 2sδ|v∗|

of p∗(t0, s2).

Now, using the fact that E∗ is ε-safe we know that no
certificates other than those of C can encroach on the ex-
pansion of E∗’s motion bound by εs∗δ∗|v∗|. Thus, other
than C, no certificates lie within distance

y2 = s2δ
∗|v∗|+ εs∗δ∗|v∗|

of p∗(t0, s2).

It follows that, other than C, no certificates can encroach
on E’s motion bounds at time t1 + s provided that y1 (the
maximum distance from p∗(t0, s2) to E’s motion bound)
does not exceed y2 (the minimum distance from p∗(t0, s2)
to its any certificate that is not in C). This holds if

2sδ|v∗| ≤ εs∗δ∗|v∗|.
It is easy to see that this holds under our hypothesis that
s ≤ (εδ∗/(2δ))s∗, which completes the proof. ut

We now present the proof of Theorem 4.1. Consider the
execution of Optε on any motion sequence M . Let E∗ =
(T ∗,v∗, δ∗) be any motion estimate of any motion unit of
Optε. We shall show that the number of motion events gen-
erated by our online protocol during the time interval T ∗ is
at most lg ρ+16/((1− δmax)ε)+O(1). We begin by observ-
ing that since both algorithms are tracking the same motion,
both algorithms generate the same certificate events, and so
it suffices to consider just the drift and safeness events.

The proof is based on an amortized analysis. Here is an
overview of how the analysis works. We define a potential
function below. For the ith event (either drift or safeness),
let Φi denote the value of this function at the time of this
event. The actual cost ci of this event is 1, thus

∑
i ci is

the total number of events during this time interval. The
amortized cost ai of the event is defined to be the sum of the
actual cost and the change in potential, that is, ai = ci +∆i,
where ∆i = Φi−Φi−1. If we let Φ0 and Φf denote the initial
and final potentials then we use the fact that the sum of the
∆i’s telescope, yielding∑

i

ci =
∑

i

(ai −∆i) =

(∑
i

ai

)
− Φf + Φ0.

We shall show that ai ≤ 0 for all i, and since our potential
function will be nonnegative, it will follow that the total
number of events is at most Φ0.

We now define the potential function. Let t∗ denote the
starting time of T ∗, and let s∗ denote its total duration.
Suppose that some event for the online protocol occurs at
time t∗ + s, for 0 ≤ s ≤ s∗. The remainder of s is defined
to be r(s) = (s∗ − s)/s∗, which ranges from 1 to 0 as time
advances through T ∗. When a drift or safeness event is
generated, let δ denote the value of the drift bound of the
most recent motion estimate. Let δT = 2δ∗/(1 − δ∗). We
define the potential of an event occurring at time t∗ +s with
prior drift bound δ to be

Φ(s, δ) =

⌊
lg max

(
2δT

δ
,

δ

δT

)⌋
+ 2

⌊
8 · r(s)

(1− δmax)ε

⌋
(where lg denote the base-2 logarithm). We call the two
terms of this function the drift term and the remainder term.
Observe that the function is nonnegative. (It is 0 if δT < δ <
2δT and r(s) is sufficiently small.) Intuitively, the first term
captures the amount by which the online algorithm’s drift
bound differs from the optimum and the remainder term

captures the time progress made. Also observe that, since
r(s) is a decreasing function of time, the remainder term
cannot increase. Ignoring a small additive constant term,
the initial potential Φ0 cannot be larger than⌊

lg
δmax

δmin

⌋
+ 2

⌊
8

(1− δmax)ε

⌋
≤ lg ρ +

16

(1− δmax)ε
.

All that remains to be proven is that ai ≤ 0 for all i. We
consider cases, depending on the type of the current event.
First, suppose that the event is a drift event. In this case,
because the motion satisfies E∗, we know from Lemma 4.2
(with α = δ∗) that δ < δT (since otherwise the motion would
also satisfy E and no drift violation would occur). Since this
is a drift event, the online protocol doubles the value of δ
in generating the next motion estimate. Since 2δ < 2δT ,
it follows that (after taking the floor) the first term of the
max is dominant, both before and after this drift change.
Thus, the potential decreases by at least 1 (and possibly
more if a significant amount of time has elapsed). Thus,
ai = ci + ∆i ≤ 1− 1 = 0.

Second, suppose that the event had been a safeness event.
We consider two subcases. First, if δ > 2δT , then be-
cause Optε did not encounter a drift event, we know from
Lemma 4.2 (with α = δ∗) that the maximum drift with re-
spect to E occurring in the motion over this last time period
(denoted δ+ in the protocol) is at most δT ≤ δ/2. By our
protocol, the value of δ will be halved by the online protocol.
Because δ ≥ 2δT , it follows that (after taking the floor) the
second term of the max is dominant, both before and after
this drift change. Thus, the potential decreases by at least
1 (and again, possibly more if a significant amount of time
has elapsed). Thus, ai = ci + ∆i ≤ 1− 1 = 0.

Finally, in the second subcase, we have a safeness violation
and δ ≤ 2δT . If this is the first event of the time interval,
then we ignore it (and absorb its cost into the O(1) term).
Otherwise, we know that the velocity v generating the most
recent motion estimate for the online protocol was sampled
from within T ∗, and no drift violations have occurred, which
means we can apply Lemma 4.3. It states that the motion
bound for v and δ is safe for a duration of at least

εδ∗

2δ
s∗ ≥ εδ∗

4δT
s∗ ≥ ε(1− δ∗)

8
s∗ ≥ ε(1− δmax)

8
s∗.

Since the online protocol selects its motion bound to be of
maximum length, subject to the restriction of safeness, we
know that the duration of the last protocol interval, si−si−1,
is greater than or equal to (ε(1 − δmax)/8)s∗. Now, let us
consider the change of potential from the remainder term.
We have

8r(si)

(1− δmax)ε
− 8r(si−1)

(1− δmax)ε

=
8(s∗ − si)

s∗(1− δmax)ε
− 8(s∗ − si−1)

s∗(1− δmax)ε

=
8(si−1 − si)

s∗ε(1− δmax)

≤ −8s∗ε(1− δmax)

8s∗ε(1− δmax)
= − 1.

Since the difference is at most −1, it follows that the differ-
ence of their floors is at most −1, and hence the remainder
term of the potential decreases by at least 2. It is possible
that the maximum observed drift δ+ is arbitrarily small, and

hence we may have decreased the value of δ by half. Unlike
the previous case, the drift term of the potential may in-
crease by 1 as a result. Thus the net change in the potential
is at most −2 + 1 = −1. Thus, ai = ci + ∆i ≤ 1− 1 = 0.

Thus for drift and safeness events the amortized cost can
only decrease. As we explained earlier, the certificate events
are common to both algorithms. Thus, the total cost is
bounded by the initial potential, which is at most lg ρ +
16/((1− δmax)ε) + O(1). This completes the proof.

Corollary 4.1. Let δmin and δmax be the minimum and
maximum drift bounds for Optε, respectively. If δmax is
bounded away from 1, and the ratio δmax/δmin is bounded
above by a constant, then the competitive ratio of our online
IM protocol relative to Optε is O(1/ε).

5 Multiple-Point Certificates
So far we have concentrated on single-point certificates. Most
interesting geometric structures involve certificates that in-
volve a constant number of points (assuming fixed dimen-
sion). With single-point certificates it is natural to bundle
motion estimates together with certificates because they are
both associated with the same point. This is no longer the
case with multiple-point certificates. Nonetheless, there is
a straightforward way to map our framework to this more
general setting.

Recall that the points reside in real d-dimensional space,
R

d. A certificate that involves, say k, moving points can
be viewed as certificate that involves one moving point in
dimension kd, by simply concatenating the coordinates of
the position vectors. A certificate involving k points im-
plicitly defines a region of R

kd where the certificate fails to
hold. Thus, it is straightforward to generalize motion esti-
mates, motion bounds, and certificate encroachment to this
kd-dimensional setting.

We modify the motion bounds for each of the moving
points individually. At each time, the motion bound for one
of the points is a ball in d-space. The motion bound for
the associated k-point certificate is the cartesian product of
these k balls. Unlike the single-point certificate case, where
we maintain only one motion estimate per point, here we
maintain as many different motion estimates per point as
the number of certificates in which the point is involved.
Thus, the motion estimates for the points belonging to the
same certificate all start at the same time. If the IM algo-
rithm has been designed to satisfy the KDS locality prop-
erty, then each point is only involved in a constant number
of certificates at any time, and so it is still the case that the
MP can process each point in O(1) time and space.

In order to generalize the online protocol, we deal with
points individually. For example, even though a certificate
may involve k points, if the ith point undergoes a drift viola-
tion, only the drift bound for the ith point is doubled. The
competitive analysis is now applied individually to each of
the k points. That is, there are k potential functions, one
for each point. The various elements of the proof are applied
individually to each of the k points. It follows that the final
competitive ratio is higher by a factor of k.

References
[1] P. K. Agarwal, L. J. Guibas, et al. Algorithmic issues

in modeling motion. ACM Computing Surveys, 34:550–
572, 2002.

[2] Pankaj K. Agarwal, Jeff Erickson, and Leonidas J.
Guibas. Kinetic BSPs for intersecting segments and dis-
joint triangles. In Proc. 9th ACM-SIAM Sympos. Dis-
crete Algorithms, pages 107–116, 1998.

[3] M. J. Atallah. Some dynamic computational geome-
try problems. Comput. Math. Appl., 11(12):1171–1181,
1985.

[4] J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and
L. Zhang. Kinetic collision detection between two sim-
ple polygons. In Proc. 10th ACM-SIAM Sympos. Dis-
crete Algorithms, pages 102–111, 1999.

[5] J. Basch, L. J. Guibas, and J. Hershberger. Data struc-
tures for mobile data. In Proc. 8th ACM-SIAM Sympos.
Discrete Algorithms, pages 747–756, 1997.

[6] A. Czumaj and C. Sohler. Soft kinetic data structures.
In Proceedings of the 12th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 865–872, 2001.

[7] Leonidas Guibas, John Hershberger, Subash Suri, and
Li Zhang. Kinetic connectivity for unit disks. In Proc.
16th Annu. ACM Sympos. Comput. Geom., pages 331–
340, 2000.

[8] J. Hershberger. Smooth kinetic maintenance of clusters.
In Proc. 19th Annu. ACM Sympos. Comput. Geom.,
pages 48–57, 2003.

[9] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall, Englewood Cliffs, NJ, 1988.

[10] S. Kahan. A model for data in motion. In Proc. 23th
Annu. ACM Sympos. Theory Comput., pages 267–277,
1991.

[11] R. E. Kalman. A new approach to linear filtering and
prediction problems. Trans. of the ASME–Journal of
Basic Engineering, 82(Series D):35–45, 1960.

[12] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Pi-
atko, R. Silverman, and A. Y. Wu. Computing nearest
neighbors for moving points and applications to clus-
tering. In Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages S931–S932,
Balitimore, MD, January 1999.

[13] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko,
R. Silverman, and A. Y. Wu. The analysis of a sim-
ple k-means clustering algorithm. In Proceedings of the
Sixteenth Annual ACM Symposium on Computational
Geometry, pages 100–109, Hong Kong, June 2000.

[14] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko,
R. Silverman, and A. Y. Wu. An efficient k-means clus-
tering algorithm: Analysis and implementation. IEEE
Trans. Patt. Anal. Mach. Intell., 24, 2002. 881–892.

[15] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis. John Wiley
& Sons, New York, NY, 1990.

[16] D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Ki-
netic collision detection for simple polygons. Interna-
tional Journal of Computational Geometry and Appli-
cations, 12:3–27, 2002.

[17] M. Lin and D. Manocha. Efficient contact determina-
tion in dynamic environments. Internat. J. Comput.
Geom. Appl., 7:123–151, 1997.

[18] M. C. Lin and J. F. Canny. Efficient algorithms for in-
cremental distance computation. In Proc. IEEE Inter-
nat. Conf. Robot. Autom., volume 2, pages 1008–1014,
1991.

[19] P. S. Maybeck. Stochastic Models, Estimation, and
Control, volume 1. Academic Press, New York, 1979.

[20] J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-
sensitive ray shooting. International Journal of Compu-
tational Geometry and Applications, 7:317–347, August
1997.

