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ABSTRACT
Approximating convex bodies is a fundamental question in
geometry and has applications to a wide variety of optimiza-
tion problems. Given a convex body K in R

d for fixed d,
the objective is to minimize the number of vertices or facets
of an approximating polytope for a given Hausdorff error
ε. The best known uniform bound, due to Dudley (1974),

shows that O((diam(K)/ε)(d−1)/2) facets suffice. While this
bound is optimal in the case of a Euclidean ball, it is far
from optimal for skinny convex bodies.
We show that, under the assumption that the width of the

body in any direction is at least ε, it is possible to approx-
imate a convex body using O(

√

area(K)/ε(d−1)/2) facets,
where area(K) is the surface area of the body. This bound
is never worse than the previous bound and may be signifi-
cantly better for skinny bodies. This bound is provably op-
timal in the worst case and improves upon our earlier result
(which appeared in SODA 2012).
Our improved bound arises from a novel approach to sam-

pling points on the boundary of a convex body in order to
stab all (dual) caps of a given width. This approach in-
volves the application of an elegant concept from the theory
of convex bodies, called Macbeath regions. While Macbeath
regions are defined in terms of volume considerations, we
show that by applying them to both the original body and
its dual, and then combining this with known bounds on the
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Mahler volume, it is possible to achieve the desired width-
based sampling.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory
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1. INTRODUCTION
Approximating convex bodies by polytopes is a funda-

mental problem, which has been extensively studied in the
literature. (See Bronstein [13] for a recent survey.) At issue
is the minimum number of vertices (alternatively, the min-
imum number of facets) needed in an approximating poly-
tope for a given error ε > 0. Consider a convex body K
in Euclidean d-dimensional space. A polytope P is said to
ε-approximate K if the Hausdorff distance [13] between K
and P is at most ε. Throughout, we will restrict attention
to the Hausdorff metric, and we assume that the dimension
d is a constant.

Our interest is in establishing bounds on the combinato-
rial complexity of approximating general convex bodies. Ap-
proximation bounds are of two common types. In both cases,
it is shown that there exists ε0 > 0 such that the bounds
hold for all ε ≤ ε0. In the first type, which we call nonuni-
form bounds, the value of ε0 depends on K (for example,
on K’s maximum curvature). Such bounds are often stated
as holding “in the limit” as ε approaches zero, or equiva-
lently as the combinatorial complexity of the approximating
polytope approaches infinity. Examples include bounds by
Gruber [22], Clarkson [16], and others [9, 26,28,29].

In the second type, which we call uniform bounds, the
value of ε0 is independent of K. For example, these include
the results of Dudley [19] and Bronshteyn and Ivanov [12].
These bounds hold without any smoothness assumptions.
Dudley showed that, for ε ≤ 1, any convex body K can be ε-
approximated by a polytope P with O((diam(K)/ε)(d−1)/2)



facets. Bronshteyn and Ivanov showed the same bound holds
for the number of vertices. Constants hidden in the O-
notation depend only on d. These results have many ap-
plications, for example, in the construction of coresets [1].
The approximation bounds of both Dudley and Bron-

shteyn and Ivanov are tight up to constant factors (specif-
ically when K is a Euclidean ball). These bounds may be
significantly suboptimal if K is skinny, however. In an ear-
lier paper [3], we presented an upper bound that is based
not on diameter, but on surface area. In particular, let
area(K) denote the (d − 1)-dimensional Hausdorff measure
of ∂K. We showed that, under the assumption that the
width of the body in any direction is at least ε, there ex-
ists an ε-approximating polytope whose number of facets is
O(t log t), where t =

√

area(K)/ε(d−1)/2. For a given diam-
eter, the surface area of a convex body is maximized for a
Euclidean ball, implying that area(K) = O(diam(K)d−1).
Thus, this bound is tight in the worst case up to the log-
arithmic factor. The additional log factor is disconcerting
since it implies that the bound is suboptimal even for the
simple case of a Euclidean ball. In this paper we show that
the logarithmic factor can be eliminated. In particular, we
prove the following result, which is worst-case optimal, up
to constant factors.

Theorem 1.1. Consider real d-space, Rd. There exists a
positive ε0 and constant cd such that for any convex body
K ⊂ R

d and any ε, 0 < ε ≤ ε0, if the width of K in any
direction is at least ε, then there exists an ε-approximating
polytope P whose number of facets is at most

cd
√

area(K)/ε(d−1)/2.

Note that the width assumption seems to be a technical
necessity. For example, consider a (d− 2)-dimensional unit
ball B embedded within R

d, and let B′ denote its Minkowski
sum with a d-dimensional ball of radius δ ≪ ε. By the opti-
mality of Dudley’s bound for Euclidean balls, Ω(1/ε(d−3)/2))
facets are needed to approximate B and hence to approxi-
mate B′. But, the surface area of B′ can be made arbitrarily
small as a function of δ.
The width assumption is not a fundamental impediment,

however. If the body is of width less than ε in some direction,
then by projecting the body onto a hyperplane orthogonal
to this direction, it is possible to reduce the problem to a
convex approximation problem in one lower dimension. This
can be repeated until the body’s width is sufficiently large
in all remaining dimensions, and the stated bound can be
applied in this lower dimensional subspace.

1.1 Overview of Methods
It is well known (see, e.g., [11, 12, 15]) that computing a

Hausdorff approximation of a convex body K by a polytope
can be reduced to the problem of computing an economical
set cover or an economical hitting set in which the set sys-
tems involve appropriately defined surface patches on K’s
boundary. Depending on the nature of the approximation
(e.g., whether minimizing the number of vertices or facets
and whether an inner or outer approximation is desired) the
surface patches of interest are either caps or dual caps. For
our purposes, a cap is the portion of K’s boundary that
lies within a halfspace and a dual cap is the portion of K’s
boundary that is visible from an external point. (Formal
definitions are given in Section 2.4.) For both caps and dual

caps, we define a hyperplanar surface, which we call a base,
whose area is less than or equal to the associate cap or dual
cap, respectively. Of particular interest are caps and dual
caps whose defining width is ε. Depending on the formu-
lation, the approximation problem reduces to computing a
small set of points on the boundary of K such that every
cap of width ε contains one of these points or every dual
cap of width ε contains one of these points.

The source of slackness in the bound of [3] arises from a
sampling method that is based on a relatively heavy-handed
tool, namely ε-nets for halfspace ranges. In light of recent
lower bounds on the size of ε-nets for halfspace ranges [27],
it is clear that the elimination of the log factor requires a
sampling process that is specially tailored to caps or dual
caps. The principal contribution of this paper is such a
sampling method.

Our new approach makes use of a classical structure from
the theory of convexity, called Macbeath regions. Intuitively,
for any convex body K and a volume parameter v, there ex-
ists a collection of pairwise disjoint bodies, each of volume
Ω(v), such that for every halfspace H where the cap K ∩H
has volume v, one of these bodies will be completely con-
tained within this cap. (The formal statement is given in
Section 2.4.) Macbeath regions have found numerous uses in
the theory of convex sets and the geometry of numbers (see
Bárány [7]). To date, the application of Macbeath regions in
the field of computational geometry has been quite limited.
For example, they have been used as a technical device in
proving lower bounds for range searching (see, e.g., [4,5,10]).

Because their definition is based on volume, not width, the
use of Macbeath regions in the context of uniform bounds
for convex approximation has been limited to volume-based
notions of distance, such as the Nikodym metric (which is
based on the volume of the symmetric difference) [6,8]. The
difficulty in adapting Macbeath regions to width-based sam-
pling is that caps of a given volume may have widely vary-
ing widths. Our approach to dealing with this is through
the application of a two-pronged strategy, which combines
Macbeath-based sampling in both the original body and its
dual.

This strategy relies on a combination of two well known
dual transformations, the polar dual (which is based on dis-
tances to the origin) and the functional dual (which is the
dual transform most widely used in computational geome-
try and is based on vertical distances). The problem with
either form of dual is that distances are not generally pre-
served, and this makes it difficult to relate approximations
in the primal and dual settings. The principal feature of the
functional dual transform is that it does preserve vertical
distances between points and hyperplanes.

To exploit this, we decompose the approximation problem
into a constant number of subproblems, where each involves
approximating just a portion of the body in which the sur-
face normals have similar directions. After a suitable rota-
tion, within each subproblem, the distance from an external
point to the boundary can be approximated by its vertical
distance. In Lemma 4.1 in Section 4, we establish an in-
triguing relationship between the base of a dual cap in the
original body K and the base of the corresponding cap in
the functional dual set K∗. In particular, we show that the
base of a dual cap in K is essentially the polar of the base of
the corresponding cap in K∗. This polar relationship is an
essential ingredient in our construction, because it allows us



to apply the classical concept of the Mahler volume, to show
that small dual caps in K correspond to large caps in K∗.
Our two-pronged sampling works because dual caps that are
too small to be sampled in K will be sampled as caps in K∗.

2. PRELIMINARIES
Let K denote a convex body in R

d, that is, a compact
convex subset with nonempty interior. Let ∂K denote its
boundary. Throughout, we assume that the dimension d is
a constant. We say that a convex body is smooth, if at each
point q ∈ ∂K, there exists a ball of positive radius that lies
entirely within K and contains q on its boundary.
If K is smooth, there is a unique supporting hyperplane

at every point on its boundary. Since we do not assume
smoothness, we augment our representation of boundary
points. Given any convex body K, we define an augmented
point on ∂K to consist of a pair (q, u), where q is a point
on ∂K and u is an outward-directed unit vector that is or-
thogonal to some supporting hyperplane passing through q.
We call such a vector a surface normal. To keep our no-
tation simple, we will usually refer to an augmented point
simply as q, but it is understood throughout that every aug-
mented point is associated with a unique surface normal and
hence a unique supporting hyperplane, which we will denote
by h(q). Define H+(q) to be the closed halfspace bounded
by h(q) that contains K, and define H−(q) to be the other
closed halfspace bounded by h(q).
Given a convex body K in R

d, let vol(K) denote its d-
dimensional Hausdorff measure. Given a (d−1)-dimensional
manifold Ψ in R

d, for example, a surface patch on a convex
body, let area(Ψ) denote its (d − 1)-dimensional Hausdorff
measure. We use area(K) as a convenient shorthand for
area(∂K).
For ε > 0, we say that a polytope P is an ε-approximation

of K if the Hausdorff distance between K and P is at most ε.
Observe that simultaneously scaling K and ε by any positive
factor, does not alter the ratio

√

area(K)/ε(d−1)/2. There-
fore, for the sake of proving Theorem 1.1, we may assume
that K has been uniformly scaled to lie within the hyper-
cube [−(1− 2ε), (1− 2ε)]d. This means that the Minkowski
sum of K with a ball of radius 2ε (a shape that will be useful
to us later) lies entirely within [−1, 1]d.
To avoid specifying many real-valued constants that arise

in our analysis, we will often hide them using asymptotic no-
tation. For positive real x, we use the notation O(x) (resp.,
Ω(x)) to mean a quantity whose value is at most (resp.,
at least) cx for an appropriately chosen constant c. We
use Θ(x) to denote a quantity that lies within the interval
[cx, c′x] for appropriate constants c and c′. These constants
will generally be functions of d, but not of ε.

2.1 Nonuniform Area-Based Bounds
Before presenting our analysis, we note that a nonuniform

bound very similar to ours can be derived from Gruber’s
result [22]. (We thank Quentin Merigót for pointing this
out.) Gruber shows that if K is a strictly convex body
and ∂K is twice differentiable, then as ε approaches zero,
the number of bounding halfspaces needed to achieve an ε-
approximation of K is

O

(

(

1

ε

)(d−1)/2 ∫

∂K

κ(x)1/2dx

)

, (1)

where κ(x) denotes the Gaussian curvature ofK at x, and dx
is a differential surface element. (Böröczky showed that the
requirement that K be “strictly” convex can be eliminated
[9].) Because square root is concave and

∫

∂K
dx = area(K),

we may apply Jensen’s inequality to obtain

1

area(K)

∫

∂K

κ(x)1/2dx ≤
(

1

area(K)

∫

∂K

κ(x)dx

)1/2

.

By the Gauss-Bonnet theorem [18], the total Gaussian cur-
vature of K is bounded, from which we conclude that the
number of approximating halfspaces is

O

(

√

area(K)

ε(d−1)/2

)

,

which matches the bound of Theorem 1.1.
We hasten to add that this approach cannot be used to

produce a uniform bound, however. To show this, we will
present a two-dimensional counterexample (but the result
can be readily extended to any constant dimension). Con-

sider a fixed value of ε, and let 0 < δ ≤ ε. Let m = ⌊1/
√
δ⌋,

and define Kδ to be the Minkowski sum of a regular m-gon
inscribed in a unit circle and a Euclidean ball of radius δ.
Observe that Kδ consists of m flat edges, each of length
Θ(

√
ε), connected by m circular arcs, each of radius δ and

subtending an angle of 2π/m. Since δ ≤ ε, it is straightfor-
ward to show that any convex polygon that ε-approximates
Kδ requires Ω(1/

√
ε) sides. (This follows from the same ar-

gument that shows that Dudley’s bound is tight for circles.)
We also assert that

∫

∂Kδ

κ(x)1/2dx = Θ
(√

δ
)

.

To see this, observe that the flat sides of Kδ contribute zero
to the integral. Each circular arc has curvature 1/δ, and so

altogether they contribute a total of 2πδ/
√
δ = 2π

√
δ to the

integral.
Thus, Equation (1) provides a bound1 on the number of

sides of an ε-approximating polygon of O
(
√

δ/ε
)

, which is
clearly incorrect given our hypothesis that δ ≤ ε. Indeed,
this hypothesis is exactly the sort of assumption that the
nonuniform analysis forbids. In contrast, since Theorem 1.1
is a uniform bound, it can be applied to this type of example.

2.2 Support Sets
Our analysis makes use of a representation of the body K

as the intersection of 2d unbounded convex sets, based on
the orientations of surface normals. Let I denote the index
set {1, . . . , d}, and let I± denote the (2d)-element index set
consisting of {±1, . . . ,±d}. For i ∈ I±, if i > 0, let xi

denote the unit vector associated with the ith coordinate
axis, and if i < 0, let xi be its negation. Let Xi denote
the hyperplane passing through the origin and orthogonal
to xi. (For the sake of illustration, we will think of xi as

1Note that we cannot apply Gruber’s or Böröczky’s theo-
rems directly to Kδ, since its boundary is not twice differen-
tiable. In particular, the second derivative is discontinuous
at the joints where each edge meets a circular arc. We can
easily fix this by creating a sufficiently small gap at each
joint and introducing a smooth polynomial spline of con-
stant degree to fill the gap. Although the resulting body is
not strictly convex, Böröczky showed that this assumption
is not necessary for the bound to hold.



being directed vertically upwards andXi as horizontal.) The
vertical projection of a point onto Xi means setting its ith
coordinate to zero.
For a vector ~u = (u1, . . . , ud) ∈ R

d, let ‖~u‖∞ = maxi |ui|.
For i ∈ I± we say that i is a signed principal axis of ~u if
sign(i)·ui = ‖~u‖∞. (For example, the vector (−2, 1, 2,−2, 0)
has the signed principal axes −1, 3, and −4.) For each
i ∈ I±, let Ψi denote the subset of augmented points q ∈ ∂K
such that i is a signed principal axis of the inward-directed
surface normal at q. These subsets subdivide K’s boundary
into 2d (relatively closed) surface patches. For each i ∈ I±,
let Si =

⋂

q∈Ψi
H+(q) (see Figure 1(a)). We call this the ith

support set of K. Each Si is an unbounded convex set that
properly contains K. Clearly,

⋂

i∈I± Si = K.

Si

(a)

Ψi

(c)

Xi

Ψ

Ψ′

xi

K

K
(α)
i

(b) Φ
(α)
i

α α
Xi

xi

X
(0)
i

X
(α)
i

Figure 1: Support sets and projections.

It will be useful to further restrict each support set Si so
that its vertical projection covers only a bounded region of
Xi that is somewhat larger than the vertical projection ofK.
For a given α ≥ 0, take the Minkowski sum of K with a ball

of radius α and project this set vertically onto Xi. Let X
(α)
i

denote the resulting (d−1)-dimensional convex body on Xi.

Let Φ
(α)
i denote the infinite cylinder whose central axis is

aligned with xi and whose horizontal cross section is X
(α)
i

(see Figure 1(b)). Define K
(α)
i to be Si∩Φ

(α)
i , which we call

the α-restricted support set. As we shall see below, the body

K
(2ε)
i , will play an important role in our analysis. Indeed,

to simplify notation, henceforth we let Ki denote K
(2ε)
i . By

our initial scaling of K, it follows that the vertical projection
of Ki lies within the hypercube [−1, 1]d−1.
A closed convex set is U-shaped (with respect to a given

vertical direction) if for every point on the set’s boundary,
the vertical ray directed upwards from this point lies entirely
within the set. When dealing with U-shaped sets, such as
Ki, we will be most interested in the lower hull, not the
vertical sides. For this reason, given a U-shaped set U , we
define ∂U to consist of the augmented points of the bound-
ary of U such that the associated surface normal for each
point is not horizontal. In fact, we will impose the stronger
restriction that the absolute tangent of the angle between
the surface normal and the vertical axis is at most a con-
stant (whose exact value is implicit in the radius of the ball
B of Lemma 4.2 below). Define area(U) to be the surface
area of ∂U .
Given a parameter σ > 0, a U-shaped set U is σ-steep if

for every augmented point q ∈ ∂U , the absolute tangent of
the angle between the vertical axis and the surface normal
at q does not exceed σ. The halfspace above a horizontal

hyperplane is 0-steep, and Ki is easily seen to be O(1)-steep.
The following are straightforward consequences of the above
definitions.

Lemma 2.1.

(i) If the width of K in any direction is at least ε, then
for any i ∈ I±, area(Ki) = O(area(K)).

(ii) Consider a surface patch Ψ of an O(1)-steep U-shaped
set, and let Ψ′ denote its vertical projection. Then
area(Ψ′) = Θ(area(Ψ)) (see Figure 1(c)).

2.3 Dual Transforms
Our results are based on two commonly used dual trans-

forms in geometry. Such transforms map points to hyper-
planes and vice versa, while preserving point-hyperplane in-
cidences. The first transform is a generalization of the stan-
dard polar transform, and the second is a dual transform
frequently used in computational geometry, which we call
the functional dual.

Given a vector v ∈ R
d other than the origin and r > 0, de-

fine the generalized polar transform of v, denoted polarr(v),
to be the halfspace containing the origin, whose bounding
hyperplane is orthogonal to v and is at distance r2/‖v‖ from
the origin (see Figure 2(a)). More formally, polarr(v) =
{u ∈ R

d : u1v1 + · · ·+ udvd ≤ r2}. Given a convex body K
that contains the origin in its interior, define polarr(K) =
⋂

v∈K polarr(v) (see Figure 2(b)).

(b)(a)

r
v

r2/‖v‖

polarr(v)

polarr(K)

K

r

Figure 2: The generalized polar transform.

The standard geometric polar transform [20] arises as a
special case when r = 1. In particular, polarr(K) is a scaled
copy of polar1(K) by a factor of r2.

Later, we will make use of an important result from the
theory of convex sets, which states that, given a convex body
K, the product vol(K) · vol(polar1(K)), which is called K’s
Mahler volume, is bounded below by a constant (see, e.g.,
[24]).

Next, let us define the functional dual transform [14]. Let
x1, . . . , xd−1 denote the first d − 1 coordinates of a point,
and let y denote the d-th coordinate. Any nonvertical hy-
perplane y =

∑d−1
j=1 ajxj−ad can be represented by a d-tuple

(a1, . . . , ad). Given a point p = (p1, . . . , pd) ∈ R
d, define its

functional dual, denoted p∗, to be the non-vertical hyper-
plane:

p∗ : y =

d−1
∑

j=1

pjxj − pd.

(The term “functional” comes from the fact that y is ex-
pressed as a function of the xj ’s.) The dual of a nonvertical
hyperplane is defined so that p∗∗ = p. When applying this



transform in the context of support sets, such as Ki, the ith
coordinate axis will take on the role of the dth (vertical) axis
in the above definitions.
It is easily verified that the functional dual transform

negates vertical distances, in the sense that the signed verti-
cal distance from a point p to a hyperplane h is equal to the
negation of the signed vertical distance from p∗ to h∗ [17].
(The fact that point-hyperplane incidences are preserved is
a direct consequence.) Given any U-shaped convex set U ,
define its dual U∗ to be the intersection of the upper half-
spaces of q∗ for all q ∈ ∂U . It is easily verified that the
dual is also U-shaped. Further, if U ’s vertical projection lies
within a ball of constant radius centered at the origin, then
U∗ is O(1)-steep.
Let U be a U-shaped convex body and let U∗ be its

dual. There exists a natural correspondence between the
augmented points on ∂U and augmented points on ∂U∗.
Given an augmented point (q, u) on ∂U , let h be the support-
ing plane at q that is orthogonal to u. Let p = h∗. Clearly,
p lies on ∂U∗, and the dual hyperplane q∗ is a supporting
hyperplane at p. Letting v denote the outward-directed unit
vector orthogonal to q∗, we define the augmented point on
∂U∗ corresponding to (q, u) to be (p, v). By the involutory
nature of the dual, the augmented point on ∂U correspond-
ing to (p, v) is (q, u).

2.4 Caps, Dual Caps, and Macbeath Regions
Bronshteyn and Ivanov [12] and Dudley [19] demonstrated

the relevance of caps and dual-caps (defined below) to con-
vex approximation. Let U be a U-shaped convex set, and let
ε > 0. For any augmented point q ∈ ∂U , recall that h(q) is
the supporting hyperplane at this point, and let h(q)+ε de-
note its translate vertically upwards by ε. The intersection
of ∂U and the lower halfspace of h(q) + ε is called the ε-cap
induced by q, which we denote by Cq(U) (see Figure 3(a)).
(In contrast to standard usage, where a cap consists of the
subset of the body lying in the halfspace, for us a cap is
a subset of the nonvertical boundary.) The intersection of
h(q)+ ε with U is called the base of the cap, and is denoted
by Γq(U). When U is clear from context, we simply write
Cq and Γq.

ε
q

h(q)

h(q) + ε

ε

q

q − ε

Γq

(a) (b)

Cq ∆q

Dq

U U

h(q)

Figure 3: Caps and dual caps.

For any augmented point q ∈ ∂U , let q− ε be the vertical
translate of q downwards by distance ε. Define the ε-dual
cap, denoted Dq(U), to be the portion of ∂U that is visible
from q−ε (see Figure 3(b)). The intersection of the bounding
halfspaces of U that contain q − ε defines an infinite cone.
The intersection of this cone with h(q) is called the dual
cap’s base, and is denoted ∆q(U). Again, when U is clear,
we simply write Dq and ∆q.
Given an augmented point q ∈ ∂U , consider cap Cq(U)

and dual cap Dq(U). We say that an augmented point
p ∈ ∂U stabs Cq(U) if p ∈ Cq(U), and we say that p stabs
Dq(U) if the hyperplane h(p) passing through p separates U
from the point q − ε. The importance of ε-dual caps to ap-
proximation is established in the following lemma. We say
that an ε-dual cap of Ki is useful, if its inducing point q lies

on ∂K
(ε)
i . Recall that Ki = K

(2ε)
i , so the inducing point is

at horizontal distance at least ε from the vertical portion of
Ki.

Lemma 2.2. Let K be a convex body in R
d. For any ε > 0

and i ∈ I±, let Qi be a set of augmented points on ∂Ki that
stab all useful ε-dual caps of Ki. Let Pi =

⋂

q∈Qi
H+(q),

and P =
⋂

i∈I± Pi. Then P is an ε-approximation to K.
The number of facets in P is at most

∑

i∈I± |Qi|.
Proof. Observe that P is the intersection of supporting

halfspaces for K, and hence K ⊆ P . Thus, every point of
K is within distance 0 of P . To show that every point of P
is within distance ε of K, we will prove the contrapositive.
In particular, we will show that any point p ∈ R

d whose
distance from ∂K exceeds ε cannot be in P .

Let q be the closest point of ∂K to p. Let p′ be a point
along the segment pq whose distance from q is exactly ε
(see Figure 4). Let i be any signed principal axis for the
inward surface normal for K at q. Clearly, the horizontal
component of the distance between p′ and q is at most ε.

Ki

Xi

p′
q

≤ ε

εp

q′

≥ ε

q′′

Figure 4: Proof of Lemma 2.2.

The vertical projection of q lies within X
(0)
i . Therefore

the vertical projection of p′ lies within X
(ε)
i , which is subset

of X
(2ε)
i , above which Ki lies. This implies that that there

exists a point q′ ∈ ∂K
(ε)
i ⊂ ∂Ki that is vertically above

p′ (see Figure 4). Augment q′ by associating it with any
valid surface normal for which i is a signed principal axis.
It follows that any ε-dual cap induced by q′ is useful. By
local minimality considerations, it is easy to see that q is the
closest point to p′ on ∂Ki. Therefore, the distance from p′ to
q′ is at least ε. By hypothesis, the ε-dual cap induced by q′

is stabbed by the supporting hyperplane of some augmented
point q′′ ∈ Qi. This implies that p′ lies outside this bounding
hyperplane, and hence is external to Pi. It follows directly
that p is also external to Pi, and hence it is external to P .
This completes the proof.

In order to prove the results of the next two sections, we
will make use of the following result. It demonstrates the
existence of a collection of convex bodies, such that all caps
of sufficiently large volume contain at least one such body.
These bodies are closely related to the concept of Macbeath
regions (also calledM-regions). This concept was introduced
by Macbeath [25], and its relevance to cap coverings was ex-
plored by Ewald, Larman, and Rogers [21]. Applications
of Macbeath regions have appeared in numerous works, in-
clude Bárány and Larman [8], Bárány [7], and Brönnimann



et al. [10]. The following lemma follows directly from these
earlier works.

Lemma 2.3. Given a convex body K ⊂ R
d and a param-

eter 0 < v ≤ vol(K), there exist two collections of convex
bodies, M and M′, such that the bodies of M are contained
within K and are pairwise disjoint. Each M ∈ M is asso-
ciated with a corresponding body in M′, denoted M ′, such
that M ⊆ M ′. M ′ is called M ’s expanded body. These sets
satisfy the following:

(i) For all M ∈ M, vol(M) and vol(M ′) are both Θ(v).

(ii) For any halfspace H, if vol(K ∩ H) = v, then there
exists M ∈ M such that M ⊆ K ∩H ⊆ M ′, where M ′

is M ’s expanded body.

3. STABBING DUAL CAPS IN THE PRIMAL
The purpose of this section is to establish bounds on

the size of stabbing sets for ε-dual caps. Our approach
will involve the use of the Macbeath region machinery from
Lemma 2.3. We begin with the following utility lemma,
which establishes a relationship between the areas of the
bases of the cap and dual cap induced by the same point.
Recall that, given an augmented point q on the boundary
of a U-shaped set, Dq denotes the ε-dual cap induced by q,
and ∆q is its base. Also, Cq denotes the ε-cap induced by
q, and Γq denotes its base.

Lemma 3.1. Let U be any O(1)-steep U-shaped convex set
in R

d, and let ε > 0. Consider any augmented point q ∈
∂U such that the vertical projection of Cq is bounded. Let
h be the supporting hyperplane at q, and let h + ε denote
the hyperplane containing Γq. Let H be the lower halfspace
bounded by h + ε. Then U ∩ H contains a (generalized)
cone whose base is a vertical translate of ∆q onto h+ ε, and
whose apex is at vertical distance ε from the base. Further,
vol(U ∩H) = Θ(ε · area(∆q)).

Proof. Recall that q− ε denotes the point at distance ε
vertically below q, which forms the apex ofDq (see Figure 5).

h

h + ε
q

q − ε

U

∆q

Γq

Figure 5: Proof of Lemma 3.1.

Consider the cone T bounded by the supporting hyper-
planes of the dual cap and h. The apex of this cone is q− ε,
and its base is ∆q. Let T

′ denote the vertical translate of T
upwards by distance ε. It is easy to see that T ′ lies entirely
within U ∩H, which establishes the first claim.
Next, consider the cone T ′′ bounded by the same support-

ing hyperplanes as T , but whose base is h+ ε. Because T ′′

is bounded by the supporting hyperplanes for U , it follows
that Γq is contained within the base of this cone. Clearly, T ′′

is just a factor-2 scaling of T . Therefore, their volumes are

related to one another by a constant factor. Since U is O(1)-
steep, it follows that vol(T ′) = vol(T ) = Θ(ε · area(∆q)).
It is easy to see that T ′ ⊆ U ∩ H ⊆ T ′′, and therefore
vol(U ∩H) = Θ(ε · area(∆q)), which establishes the second
claim.

Our next lemma is the main result of this section. It states
that there exists a small set of points that stab all sufficiently
large ε-dual caps of Ki. The notion of “large” is based on
the area of the dual cap’s base and a threshold parameter t.

Lemma 3.2. Let K be a convex body in R
d, and consider

any ε > 0 and i ∈ I±. Given any t > 0, there exists a set
of O(area(K)/t) augmented points Qi ⊂ ∂Ki such that, for

any useful ε-dual cap Dq induced by a point q ∈ ∂K
(ε)
i , if

area(∆q) ≥ t, there exists a point in Qi that stabs Dq.

Proof. Apply Lemma 2.3 to Ki with v = c · ε · t, for a
suitable constant c, and let M and M′ denote the resulting
collections of bodies. (Note that Ki is not bounded, but for
our purposes it suffices to bound it crudely, say by intersec-
tion with the lower halfspace of a horizontal hyperplane that
is high enough to contain every point at vertical distance ε
above ∂Ki.)

For each M ∈ M, if M does not lie entirely within vertical
distance ε of ∂Ki, then discard M from further considera-
tion. (Such a body cannot lie within any useful ε-cap, and
hence will be of no value to us.) Otherwise, let M ′ ∈ M′

denote M ’s expanded body as described in Lemma 2.3(ii).
Let N be a net [2] chosen so that, for a suitable constant

c′, any ellipsoid contained within M ′ of volume at least c′v
contains at least one point of the net. By Lemma 2.3(i),
vol(M ′) = Θ(v), so any ellipsoid of volume Ω(v) covers a
constant fraction of the volume of M ′. Since the range space
of ellipsoids is known to have constant VC-dimension, it
follows that the size of the resulting net is O(1). For each
point of the net that lies within Ki, project it vertically
downward onto ∂Ki, and augment it by associating it with
any valid surface normal whose signed principal axis is i.
Add the resulting augmented point to Qi. Repeating this
process for all M ∈ M yields the desired set Qi.

To establish the correctness of this construction, consider
any augmented point q ∈ ∂Ki whose ε-dual cap (Dq) has
base (∆q) of area at least t. Let h denote the supporting hy-
perplane at q, and let H denote the lower halfspace bounded
by h+ε, which contains the base of q’s cap, Cq. Clearly, the
vertical projection of Cq is bounded, and so by Lemma 3.1,
vol(Ki ∩ H) = Ω(ε · area(∆q)) = Ω(εt). By choosing c
suitably, we can ensure that vol(Ki ∩ H) ≥ v. In order to
apply Lemma 2.3, observe that vol(Ki ∩H) is a continuous
monotonic function of ε, which decreases to 0 when ε = 0.
Therefore, if vol(Ki ∩ H) > v, there exists a value ε′ < ε
such that vol(Ki ∩ H) = v. The resulting ε′-dual cap and
ε′-cap are subsets of the original dual cap and cap, respec-
tively, and therefore there is no loss of generality in using
these reduced objects throughout the rest of the analysis in
place of the originals.

By Lemma 2.3(ii), there exists M ∈ M such that M ⊆
Ki ∩H ⊆ M ′. (Note that M could not have been discarded
in the construction process.) By Lemma 3.1, Ki∩H contains
a cone T whose base is a translate of ∆q and whose vertical
height is ε. This cone is a convex body, and thus by John’s
Theorem [23], it contains an ellipsoid E such that

vol(E) = Ω(vol(T )) = Ω(ε · area(∆q)) = Ω(v).



Therefore, by choosing the constant c′ in the net construc-
tion appropriately, there exists a point of the net that lies
within T , and hence the vertical projection of this point will
be included in Qi. It is easy to see that the horizontal ex-
tents of a dual cap’s base lie entirely within the horizontal
extents of the dual cap itself. Therefore, this point of Qi

stabs the dual cap, as desired.
Finally, we bound the number of points in Qi. To do this,

consider the set of points of Ki that lie within vertical dis-
tance ε of its boundary. The volume of this region is clearly
O(ε · area(Ki)), which by Lemma 2.1(i) is O(ε · area(K)).
By Lemma 2.3(i), each body M is of volume Ω(v) = Ω(εt).
These bodies are pairwise disjoint, and (after discarding)
each of them lies within vertical distance ε of ∂Ki. There-
fore, by a simple packing argument, the number of such
bodies is

O

(

ε · area(Ki)

v

)

= O

(

ε · area(K)

ε · t

)

= O

(

area(K)

t

)

,

as desired.

4. STABBING CAPS IN THE DUAL
In this section we will consider the problem of stabbing

caps of the (functional) dual of the convex body (recall Sec-
tion 2.3). Consider a U-shaped set U and let U∗ be its
dual. The following lemma establishes a polar relationship
between the bases of the ε-dual caps of U and the bases of
the ε-caps in the dual U∗.
Consider any augmented point q ∈ ∂U and let p be the

corresponding augmented point on ∂U∗ (recall the definition
from the end of Section 2.3). The lemma shows that the base
of q’s dual cap and the base of p’s cap, if viewed as convex
bodies in R

d−1, are general polar duals of each other. Given
a convex bodyK and a point p, letK−p denote the translate
of K so that p coincides with the origin.

Lemma 4.1. Let q be an augmented point of ∂U , and let
p be the corresponding augmented point on ∂U∗. Let q′ and
p′ be the respective vertical projections of q and p. Let ∆q be
the base of q’s ε-dual cap in U , and let Γp be the base of p’s
ε-cap in U∗. Let ∆′

q and Γ′
p denote the respective vertical

projections of these bases. Then, ∆′
q − q′ = polarr(Γ

′
p − p′),

for r =
√
ε.

Proof. We begin by showing that ∆q consists of the set
of points v ∈ h(q) such that, for all u ∈ Γp,

d−1
∑

j=1

(uj − pj)(vj − qj) ≤ ε.

By the incidence-preserving property of the dual transform,
the supporting hyperplane passing through p is q∗. From ba-
sic properties of the dual transform, the hyperplane contain-
ing Γp is the vertical translate of q∗ upwards by a distance
of ε, which is just (q − ε)∗ (see Figure 6).
The base ∆q of the ε-dual cap induced by q is the intersec-

tion of the supporting hyperplane h(q) with conv({q − ε} ∪
U). Another way to express this set is to define an infinite
cone C formed by the intersection all the upper halfspaces
of the hyperplanes that pass through q − ε such that U lies
within each upper halfspace. Clearly, ∆q = C ∩ h(q) =
C ∩ p∗. By the incidence-preserving property of the dual
transform, these hyperplanes are the duals of points u ly-
ing on (q − ε)∗. By the order-reversing property of the

ε

q

q − ε

(a) (b)

∆q

q∗

(q − ε)∗

ε

h(q) = p∗

p = h(q)∗

Γp

u∗

u
v

Figure 6: Proof of Lemma 4.1.

dual, each such point u lies within U∗ (since it lies above all
the supporting hyperplanes of U∗). But, the set of points
u ∈ (q − ε)∗ ∩ U∗ is easily seen to be Γp (see the point
u in Figure 6(b) and hyperplane u∗ in Figure 6(a)). Let-
ting (u∗)+ denote the upper halfspace of u’s dual, we have

∆q =
(

⋂

u∈Γp
(u∗)+

)

∩ p∗.

The equations of the hyperplanes q∗ and (q − ε)∗ are

q∗ : y =

d−1
∑

j=1

qjxj − qd

(q − ε)∗ : y =

d−1
∑

j=1

qjxj − qd + ε.

Since p lies on q∗, we have pd =
∑d−1

j=1 qjpj −qd. Any u ∈ Γp

lies on (q − ε)∗, and so we have ud =
∑d−1

j=1 qjuj − qd + ε.
From the remarks made earlier, a point v is in ∆q if and

only if: (1) it lies on p∗, and (2) it lies in the upper halfspace
(u∗)+ for each u ∈ Γp. From condition (1) we have

vd =

d−1
∑

j=1

pjvj − pd =

d−1
∑

j=1

pjvj −
(

d−1
∑

j=1

qjpj − qd

)

=

d−1
∑

j=1

pj(vj − qj) + qd.

From condition (2) we have

vd ≥
d−1
∑

j=1

ujvj − ud =

d−1
∑

j=1

ujvj −
(

d−1
∑

j=1

qjuj − qd + ε

)

=

d−1
∑

j=1

uj(vj − qj) + qd − ε.

Combining these observations, we have v ∈ ∆q if and only
if v ∈ p∗ and for all u ∈ Γp,

d−1
∑

j=1

pj(vj − qj) + qd ≥
d−1
∑

j=1

uj(vj − qj) + qd − ε,

or equivalently,
∑d−1

j=1 (uj − pj)(vj − qj) ≤ ε, as desired.

Recall that ∆′
q and Γ′

p are the respective vertical projec-
tions of ∆q and Γp. Recall that p′ and q′ are the respective
vertical projections of p and q. Then, we have shown that
v ∈ ∆′

q if and only if, for all u ∈ Γ′
p,
∑d−1

j=1 (uj−pj)(vj−qj) ≤
ε. If we translate ∆′

q and Γ′
p so that q′ and p′ each co-

incide with the origin, then these bodies are generalized
polars of each other, for r =

√
ε. That is, ∆′

q − q′ =
polarr(Γ

′
p − p′).



We will apply the above result to Ki to convert the prob-
lem of stabbing ε-dual caps to the problem of stabbing ε-
caps in K∗

i . Although we have restricted Ki so that the
nonvertical elements of its boundary are bounded, the same
cannot be said for its dual K∗

i , which (due to the vertical
sides of Ki) has a vertical projection that covers the entire
horizontal coordinate hyperplane Xi. Therefore, it would
be meaningless to apply the Macbeath region approach that
was used in the previous section. What rescues us is the
observation that we are only interested in ε-caps of K∗

i that
arise from the application of the previous lemma to useful
ε-dual caps of Ki.

Recall that each augmented point q ∈ ∂K
(ε)
i induces a

useful ε-dual cap. We say that a cap of K∗
i is useful if

its inducing augmented point corresponds to an augmented

point of ∂K
(ε)
i . The next lemma shows that each such cap

is of constant horizontal extents.

Lemma 4.2. Let Cp be any useful ε-cap induced by an
augmented point p ∈ ∂K∗

i . Then, the vertical projection of
Cp lies entirely within a ball B of radius O(1) centered at
the origin.

Proof. Recall that Γp denotes the base of p’s cap in K∗
i ,

and let Γ′
p be its vertical projection. Let q be p’s correspond-

ing point. Since p is useful, we have q ∈ ∂K
(ε)
i . Also, recall

that ∆q denotes the base of q’s ε-dual cap, and let ∆′
q be its

vertical projection. By Lemma 4.1, ∆′
q−q′ = polarr(Γ

′
p−p′),

for r =
√
ε, which by the involutory nature of the polar

transform implies that Γ′
p − p′ = polarr(∆

′
q − q′).

We assert that there exists a positive constant c such that
∆′

q contains a Euclidean ball centered at q′ of radius cε
(see Figure 7(a)). Assuming this assertion for now, observe
that, by basic properties of the generalized polar transform,
polarr(∆

′
q − q′) is contained within a ball of radius r2/cε =

1/c centered at the origin. Since Γ′
p − p′ = polarr(∆

′
q − q′),

it follows that Γ′
p is contained within a ball of radius 1/c

centered at the p′ (see Figure 7(b)). Since Ki is O(1)-steep,
the coordinates of p′ (which are all slopes) are of constant
absolute values. Therefore, p′ is within constant distance of
the origin, and hence so are all the points of Γ′

p.

(b)(a)

Γp
′

∆q
′

cε

q
′

r
2

cε
= 1

c

p
′

Figure 7: Proof of Lemma 4.2.

To complete the proof, it suffices to establish the above
assertion. We begin by showing that the cone with apex
q − ε that defines Dq contains a cone Ψ(q) whose apex is
at q − ε and whose central angle is Ω(1) (see Figure 8(a)).
To see this, consider any augmented point u ∈ ∂Ki that lies
on the boundary of ∆q. This means that, the supporting
hyperplane at u passes through q − ε. It suffices to show
that the acute angle between the ray from q − ε to u and
the vertical axis is Ω(1).
If u is a point in the relative interior of Ki (such as u′ in

Figure 8(a)), then, by the slope constraints of the associated

Ki

u′′

q − ε

x

bx

ε X
(ε)
i

X
(2ε)
i

Ψ(q)

X
(ε)
i

q
u′

(a)

Ki

q − ε

Ψ(q)

q

(b)

h(q)Ω(ε)

Figure 8: Proof of Lemma 4.2 (continued).

support set, the angle of the ray from q − ε to u and the
vertical axis is Ω(1). On the other hand, suppose that u
is a point on the relative boundary of Ki (such as u′′ in
Figure 8(a)). Since Cp is useful, it follows that Dq is useful,

which implies that q ∈ ∂K
(ε)
i .

Recall that Ki is the intersection of Si with the infinite
cylinder Φ

(2ε)
i whose cross section is X

(2ε)
i . By definition,

X
(2ε)
i contains a region of distance at least ε around the

vertical projection of any q ∈ ∂K
(ε)
i . If we let x denote the

horizontal component of the distance from q to u, we have
x ≥ ε. By the constraint on the slopes of Ki’s support set,
since both q and u lie on ∂Ki, the vertical component of the
distance between q and u is at most bx, for some positive
constant b. Since q− ε lies directly below q by a distance of
ε, the horizontal component of the distance between q − ε
and u is x, and the vertical component of the distance is
at most bx + ε ≤ (b + 1)x. Therefore, the tangent of angle
between the ray from q − ε to u and the vertical axis is
at least x/(b + 1)x = 1/(b + 1) = Ω(1). Therefore, for a
suitably chosen (constant) central angle, the cone Ψ(q) lies
within the cone defining Dq.

Next, consider the supporting hyperplane h(q) that passes

through the augmented point q. Because q ∈ ∂K
(ε)
i , this

hyperplane satisfies the slope constraints of the associated
support set. Because q is located at distance ε above Ψ(q)’s
apex and h(q) is of constant slope, it follows that h(q)∩Ψ(q)
is an ellipse whose smallest radius is Ω(ε) (see Figure 8(b)).
Therefore, the vertical projection of this ellipse contains a
ball of radius Ω(ε). Because Ψ(q) lies within the cone defin-
ing Dq, it follows that this ball lies entirely within the verti-
cal projection ∆′

q. This establishes the assertion, and com-
pletes the proof.

The following lemma establishes a cap-based variant of
the sampling process of Lemma 3.2. The proof is a straight-
forward adaptation of the proof of Lemma 3.2 to the case
of caps. Caps are actually easier to deal with because the
Macbeath-region machinery can be applied directly.

Lemma 4.3. Let K be a convex body in R
d, and consider

any ε > 0 and i ∈ I±. Given any t > 0, there exists a set
of O(1/t) augmented points Pi ⊂ ∂K∗

i such that, for any
useful ε-cap Cp induced by an augmented point p ∈ ∂K∗

i , if
area(Γp) ≥ t, there exists a point in Pi that stabs Cp.

Proof. Apply Lemma 2.3 to K∗
i with v = c · ε · t, for

a suitable constant c, and let M denote the resulting col-
lection of disjoint bodies of volume Ω(v). (Note that K∗

i

is not bounded, but it suffices to bound it crudely, say by



a ball of suitably large radius.) Let B denote the (d − 1)-
dimensional ball of radius O(1) that lies on Xi, as described
in Lemma 4.2.
As in the proof of Lemma 3.2, for each M ∈ M, if M does

not lie entirely within vertical distance ε of ∂K∗
i or if its ver-

tical projection does not lie entirely within B, then discard
M from further consideration. For each remaining body M ,
select an arbitrary point from it, project this point vertically
downward onto ∂K∗

i . Augment the point by associating it
with any valid surface normal. Add the resulting augmented
point to Pi. Repeating this process for all M ∈ M yields
the desired set Pi.
To establish the correctness of this construction, consider

any useful ε-cap Cp induced by an augmented point p ∈ ∂K∗
i

whose base Γp is of area at least t. Let h denote the sup-
porting hyperplane at p, and let H denote the lower half-
space bounded by h + ε, which contains Γp. Recall that
K∗

i is U-shaped and O(1) steep. By Lemma 4.2 the verti-
cal projection of Cp is bounded, and thus, by Lemma 3.1,
vol(K∗

i ∩ H) = Ω(ε · area(Γp)) = Ω(εt). By choosing c
suitably, we can ensure that vol(K∗

i ∩ H) ≥ v. As ob-
served in Lemma 3.2, it is possible to reduce the volume
of this region by translating the halfspace downwards until
the volume equals v. By Lemma 2.3(ii), there exists M ∈ M
such that M is contained within the reduced region, and so
M ⊆ K∗

i ∩H. (Note that M could not have been discarded
in the construction process because, by Lemma 4.2, any use-
ful ε-cap is contained within ball B.) It is easy to see that
the point of Pi associated with M stabs Cp, as desired.
In order to bound the number of points in Pi, consider

the set of points of K∗
i that lie within vertical distance ε of

its boundary and whose vertical projection lies in B. The
volume of this region is clearly O(ε). By Lemma 2.3(i),
each body M is of volume Ω(v) = Ω(εt). These bodies are
pairwise disjoint, and (after discarding) each of them lies
within the considered region. Therefore, by a simple packing
argument, the number of such bodies is O(ε/v) = O(1/t),
as desired.

5. PUTTING THE PIECES TOGETHER
Lemma 4.3 provides a set of augmented points Pi ⊂ ∂K∗

i

that stab all useful caps of K∗
i for which area(Γp) exceeds

a given parameter t. Let’s consider how to exploit this for
stabbing dual caps in Ki. For each p′ ∈ Pi, augment it by
associating it with any valid surface normal, and let q′ be the
corresponding augmented point on ∂Ki. By basic properties
of the dual transform, p′ stabs a useful ε-cap Cp(K

∗
i ) if and

only if q′ stabs the corresponding useful ε-dual cap Dq(Ki).
We can therefore map Pi to a set Q′

i ⊂ ∂Ki in order to stab
all the useful ε-dual caps of Ki that correspond to the ε-caps
of K∗

i that are stabbed by Pi.
What area properties do these dual caps satisfy? Let

Dq(Ki) be any useful ε-dual cap and Cp(K
∗
i ) be the cor-

responding useful cap. Let ∆′
q and Γ′

p denote the respective
projections of the bases of Dq(Ki) and Cp(K

∗
i ). We claim

that if area(∆′
q) < cεd−1/t, where c is a suitable constant,

then Dq will be stabbed by some point in Q′
i. We will show

that area(Γ′
p) > t, which will imply this claim since area(Γp)

is clearly more than area(Γ′
p).

By Lemma 4.1, ∆′
q = polarr(Γ

′
p), for r =

√
ε. Recall that

polarr(K) is a scaled copy of polar1(K) by r2 = ε. Since

these are (d− 1)-dimensional sets, we have

area(∆′
q) = area(ε ·polar1(Γ′

p)) = εd−1 ·area(polar1(Γ′
p)).

Thus, in order to bound area(Γ′
p) in terms of area(∆′

q),
we need to establish a relationship between area(Γ′

p) and
area(polar1(Γ

′
p)). To do this, we make use of results on the

Mahler volume. Recall that the Mahler volume of a con-
vex body K is vol(K) · vol(polar1(K)). It is known that
the Mahler volume is bounded below by a constant [24].
Applying this to the (d − 1)-dimensional set Γ′

p, we have
area(Γ′

p) = Ω(1/area(polar1(Γ
′
p))). Therefore, area(Γ′

p) =

Ω(εd−1/area(∆′
q)). Since area(∆′

q) < cεd−1/t, for a suitable
c, it follows that area(Γ′

p) > t. Thus, adjusting for the con-
stant factors, we have established the following analog to
Lemma 3.2, but for small dual caps.

Lemma 5.1. Let K be a convex body in R
d, and consider

any ε > 0 and i ∈ I±. Given any t > 0, there exists a set of
O(1/t) augmented points Q′

i ⊂ ∂Ki such that, for any useful

ε-dual cap Dq induced by an augmented point q ∈ ∂K
(ε)
i , if

area(∆q) ≤ εd−1/t, there exists a point in Q′
i that stabs Dq.

We are now ready to provide the proof of Theorem 1.1.

Recall that Ki = K
(2ε)
i . By Lemma 2.2, it suffices to stab

all the useful ε-dual caps of each of the Ki’s, for i ∈ I±.
Fix any i ∈ I±, and let t =

√

area(K) · ε(d−1)/2. For any

augmented point q ∈ ∂K
(ε)
i , we say that the associated ε-

dual cap is large if area(∆q) ≥ t, and otherwise it is small.
We use two different strategies for stabbing the two types of
dual caps.

For large dual caps, we apply Lemma 3.2 with the value
of t defined above. This yields a set Qi ⊂ ∂Ki of size
O(area(K)/t) = O

(
√

area(K)/ε(d−1)/2
)

, such that every
useful large ε-dual cap is stabbed by one of these points.

In order to handle small dual caps, we apply Lemma 5.1
with the value of t set to t′ = c′ε(d−1)/2/

√

area(K), for a
suitably chosen constant c′. This yields a set Q′

i ⊂ ∂Ki

of size O(1/t′) = O
(
√

area(K)/ε(d−1)/2
)

, such that every

useful ε-dual cap whose base is of area at most εd−1/t′ =

O
(
√

area(K) · ε(d−1)/2
)

is stabbed. By choosing c′ suitably,
every useful small ε-dual cap is stabbed.

In summary, Qi∪Q′
i is a set of size O

(
√

area(K)/ε(d−1)/2
)

that stabs all useful ε-dual caps. By repeating this for all
i ∈ I± and taking the union of all these sets, by Lemma 2.2,
the resulting set provides the desired ε-approximation to K.
This completes the proof of Theorem 1.1.
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