
Space-Time Tradeoffs for Approximate Spherical Range Counting

Sunil Arya∗ Theocharis Malamatos† David M. Mount‡

Abstract
We present space-time tradeoffs for approximate spherical
range counting queries. Given a set S of n data points in R

d

along with a positive approximation factor ε, the goal is to
preprocess the points so that, given any Euclidean ball B,
we can return the number of points of any subset of S that
contains all the points within a (1 − ε)-factor contraction of
B, but contains no points that lie outside a (1 + ε)-factor
expansion of B.

In many applications of range searching it is desirable
to offer a tradeoff between space and query time. We
present here the first such tradeoffs for approximate range
counting queries. Given 0 < ε ≤ 1/2 and a parameter
γ, where 2 ≤ γ ≤ 1/ε, we show how to construct a
data structure of space O(nγd log(1/ε)) that allows us to
answer ε-approximate spherical range counting queries in
time O(log(nγ) + 1/(εγ)d−1). The data structure can be
built in time O(nγd log(n/ε) log(1/ε)). Here n, ε, and γ are
asymptotic quantities, and the dimension d is assumed to be
a fixed constant.

At one extreme (low space), this yields a data structure
of space O(n log(1/ε)) that can answer approximate range
queries in time O(log n + (1/ε)d−1) which, up to a factor
of O(log 1/ε) in space, matches the best known result
for approximate spherical range counting queries. At the
other extreme (high space), it yields a data structure of
space O((n/εd) log(1/ε)) that can answer queries in time
O(log n + log 1/ε). This is the fastest known query time
for this problem.

We also show how to adapt these data structures to
the problem of computing an ε-approximation to the kth
nearest neighbor, where k is any integer from 1 to n given
at query time. The space bounds are identical to the range
searching results, and the query time is larger only by a
factor of O(1/(εγ)).

Our approach is broadly based on methods developed
for approximate Voronoi diagrams (AVDs), but it involves
a number of significant extensions from the context of
nearest neighbor searching to range searching. These include
generalizing AVD node-separation properties from leaves to
internal nodes of the tree and constructing efficient generator
sets through a radial decomposition of space. We have also
developed new arguments to analyze the time and space
requirements in this more general setting.

∗Department of Computer Science, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong. Supported by the Research Grants Council, Hong Kong,
China (HKUST6080/01E). Email: arya@cs.ust.hk.

†Max-Planck-Institut für Informatik, Im Stadtwald, D-66123
Saarbrücken, Germany. Email: tmalamat@mpi-sb.mpg.de.

‡Department of Computer Science and Institute for Advanced
Computer Studies, University of Maryland, College Park, Mary-
land 20742. Partially supported by the National Science Founda-
tion under grant CCR-0098151. Email: mount@cs.umd.edu.

1 Introduction

Answering range counting queries is among the most
fundamental problems in spatial information retrieval
and computational geometry. The objective is to store
a finite set of points so that it is possible to quickly count
the points lying inside a given query range. Examples
of ranges include rectangles, spheres, halfspaces, and
simplices. In this paper we consider the weighted,
counting version of the problem for spherical ranges.
More generally, we assume each point stores an element
of a semigroup, and the objective is to compute the
semigroup sum of points in the range.

Range searching is a well studied problem in com-
putational geometry, and nearly matching upper and
lower bounds exist for many formulations. The most
relevant case for us is that of halfspace range counting
queries. Matoušek [14] has shown that in dimension d,
with space O(m) it is possible to achieve a query time
of O(n/m1/d log(m/n)), where n ≤ m ≤ nd. Nearly
matching lower bounds have been given in the semi-
group arithmetic model, first for simplex range search-
ing by Chazelle [8] and later for halfspace range search-
ing by Brönnimann, Chazelle and Pach [6].

Spherical range searching involves ranges that are
(closed) Euclidean balls. It is well known that by
projecting the points onto an appropriate paraboloid,
spherical range searching can be reduced to halfspace
searching in R

d+1 [9]. Since a halfspace can be viewed
as a sphere of infinite radius, lower bounds on half-
space range queries apply to spherical range queries
as well. Unfortunately, the lower bounds on halfspace
range searching destroy any reasonable hope of achiev-
ing the ideal of answering multidimensional spherical
range queries in logarithmic query times using roughly
linear storage space. This suggests the importance of
pursuing approximation algorithms. Achieving speed-
ups through approximation is reasonable in many ap-
plications in engineering and science where the data or
ranges are imprecise [11, 13] and also in exact algorithms
where approximations are used to obtain density esti-
mates [15].

Let b(p, r) denote a Euclidean ball in R
d centered

at a point p and having radius r. Given ε > 0 and
the range b(p, r), a set S′ ⊆ S is an admissible solution
to an ε-approximate range query if it contains all the

Table 1: Summary of results for ε-approximate spherical range counting (Range) and kth nearest neighbor queries (NN(k)),
with low-space (γ = 2) and high-space (γ = 1/ε). O(log 1/ε) factors have been omitted.

Query Resource Tradeoff Low-Space High-Space
Range Space nγd n n/εd

Query Time log(nγ) + 1/(εγ)d−1 log n + 1/εd−1 log n
NN(k) Space nγd n n/εd

Query Time log(nγ) + 1/(εγ)d log n + 1/εd log n

points of a (1− ε)-factor contraction of b(p, r) and does
not contain any point that lies outside a (1 + ε)-factor
expansion of this ball, that is,

S ∩ b(p, r(1 − ε)) ⊆ S′ ⊆ S ∩ b(p, r(1 + ε)).

An ε-approximate range counting query returns the
exact number (or semigroup sum) of the points in
any such admissible solution. Note that the range is
approximated, not the count. Although the error is
two-sided, it is an easy matter to modify the values
of r and ε to generate only one-sided errors. Arya
and Mount [3] considered this problem and showed that
with O(n log n) preprocessing time and O(n) space, ε-
approximate range counting queries can be answered in
time O(log n + 1/εd−1).

In range searching it is often desirable to offer a
tradeoff between space and query time. Unfortunately,
Arya and Mount’s results on approximate range search-
ing do not admit any such tradeoffs. In this paper we
remedy this situation by offering space-time tradeoffs
for approximate spherical range counting queries. Let
S be a set of n points in R

d, and let 0 < ε ≤ 1/2
be the approximation bound. We take n and ε to be
asymptotic quantities and assume that d is a constant.
Given a parameter γ, where 2 ≤ γ ≤ 1/ε, we show how
to construct a data structure of space O(nγd log(1/ε))
that can answer ε-approximate range queries in time
O(log(nγ)+1/(εγ)d−1). The data structure can be built
in time O(nγd log(n/ε) log(1/ε)). Note that the con-
struction time exceeds the space by a relatively modest
factor of O(log(n/ε)).

At one extreme (γ = 2) this yields a data structure
of space O(n log(1/ε)) that answers queries in time
O(log n + (1/ε)d−1), thus matching the results of Arya
and Mount [3] up to a factor of log(1/ε) in the space. At
the other extreme (γ = 1/ε) this yields a data structure
of space O(n/(εd) log(1/ε)) that can answer queries in
time O(log n + log 1/ε). To our knowledge, these are
the fastest query times for approximate spherical range
searching. These results are summarized in Table 1.

We also show how to adapt the data structure to
answer approximate kth nearest neighbor queries. For

1 ≤ k ≤ n and a real parameter ε > 0, we say that a
point p ∈ S is an ε-approximate kth nearest neighbor of
a point q ∈ R

d, if (1−ε)rk ≤ ‖pq‖ ≤ (1+ε)rk, where rk

denotes the true distance from q to its kth closest point
in S. As before, we provide a space-time tradeoff. Given
γ, where 2 ≤ γ ≤ 1/ε, we can construct a data structure
of space O(nγd log(1/ε)) that allows us to answer such
queries in O(log(nγ) + 1/(εγ)d) time. Note that the
value of k is not assumed to be a constant and can
be provided at query time. The data structure can
be constructed in time O(n(γ/ε)d/2 log(n/ε) log(1/ε)).
The space bounds are identical to the range searching
results, and the query time is larger only by a factor of
O(1/(εγ)). To our knowledge, these are the best known
results for approximate kth nearest neighbor searching.

Our earlier work on linear space structures for
approximate nearest neighbor queries [1] suggested the
problem of achieving space-time tradeoffs for spherical
range queries. Virtually all range searching structures
operate by precomputing a number of generators, each
of which is a subset of the point set. For counting queries
we require that the intersection of any range with the
point set can be expressed as a disjoint cover of an
(ideally small) set of generators. The number of points
(or generally the semigroup sum) for each generator is
precomputed along with a data structure for computing
the generators needed to answer a query.

The principal challenge in providing space-time
tradeoffs in our case is determining a good way of defin-
ing generators. A natural approach is to subdivide the
range space so that queries that are sufficiently similar
(in a metric sense, depending on ε) can take advantage
of this by using roughly the same generator sets. Our
approach is to subdivide space hierarchically into hy-
percube cells using a quadtree-like decomposition, and
each node is responsible for handling queries whose cen-
ter lies inside the corresponding cell and whose radius
is proportional to the cell size.

The most difficult aspect of this approach is achiev-
ing good bounds on the space required, particularly
for point sets that are not uniformly distributed and

may be highly clustered. Our approach is to adapt re-
cent techniques derived for approximate nearest neigh-
bor searching based on approximate Voronoi diagram
(AVDs). Har-Peled [12] introduced the AVD of a point
set S as a quadtree-like partition of space into cells, such
that all the points within each leaf cell have the same
approximate nearest neighbor. Later results by Arya et
al. [1, 2] generalized this by allowing each cell to store a
small number of representative points and showed how
this can lead to significant space improvements. An im-
portant element of their work is the notion of subdivid-
ing space hierarchically into hypercubes so that certain
separation properties hold with respect to the point set.
Such properties assert that the region surrounding each
leaf cell of the decomposition is simple enough that all
the information needed for answering queries can be en-
coded succinctly.

To achieve our results we have generalized a num-
ber of elements of the AVD construction. We show how
to extend the separation properties for nearest neighbor
searching (which is closely related to approximate range
emptiness queries) to apply to arbitrary range counting
queries. We have developed new arguments to analyze
the total space requirements. Another new element is
generator construction. Because ranges are spherical,
rather than using quadtree cells themselves to define
generators, we have developed a more efficient method
based on a radial generalization of a quadtree decompo-
sition of space. This uses a polar representation of the
points relative to the center of each cell. One of the ap-
pealing features of our overall approach to range search-
ing is that it is based largely on quadtree decompositions
and straightforward generalizations thereof. These data
structures are easy to implement, and are not subject
to numerical issues.

2 Preliminaries

Throughout we assume that the dimension d is a fixed
constant, and treat n, ε and γ as asymptotic quantities.
We assume that the set S of points has been scaled
and translated to lie within a ball of radius ε/2 placed
at the center of the unit hypercube [0, 1]d. Let x
and y denote any two points in R

d. We use ‖xy‖ to
denote the Euclidean distance between x and y and
xy to denote the segment joining x and y. We denote
by b(x, r) a closed ball of radius r centered at x, i.e,
b(x, r) = {y : ‖xy‖ ≤ r}. For a ball b and any positive
real γ, we use γb to denote the ball with the same center
as b and whose radius is γ times the radius of b, and b
to denote the set of points that are not in b.

We now briefly review the notion of box-
decomposition trees, as they play an important role
in our constructions and analyses. Intuitively, a box-

decomposition tree is an enhanced form of the well
known quadtree structure and its higher dimensional
generalizations. A (multidimensional) quadtree is a hi-
erarchical decomposition of space into hypercubes in R

d.
Starting with the unit hypercube U = [0, 1]d, a quadtree
box is any d-cube that can be obtained by a recursive
splitting process that starts with U and generally splits
an existing quadtree box by d axis-orthogonal hyper-
planes passing through its center into 2d identical sub-
cubes. Such a decomposition naturally defines a 2d-
ary tree, such that each node is associated with a cube,
called its cell. The size of a quadtree box is its side
length.

Quadtrees suffer from two shortcomings, which
make them inappropriate for worst-case analysis. First,
if points are densely clustered in some very small region
of space, it is not possible to bound the number of
quadtree splits needed to decompose the cluster by
a function of n alone. The box-decomposition (BD)
tree [4] overcomes this by introducing an additional
decomposition operation called shrinking. Second, if the
point distribution is not uniform, the tree may not have
logarithmic depth. The balanced box-decomposition
(BBD) tree [5] extends the BD tree and remedies this
problem by employing a balanced shrinking operation.

More formally, a box-decomposition (BD) tree of
a set S of n points is a 2d-ary tree1 that compactly
represents a hierarchical decomposition of space [4]. A
BD-tree cell is either a quadtree box or the set theoretic
difference of two quadtree boxes, an outer box and
an inner box. Cells of the former type are called box
cells and cells of the latter type are called doughnut
cells. As with the quadtree, the root node is associated
with U . When a cell contains at most one point of
S it is declared a leaf. There are two ways that an
internal node can be decomposed. A splitting operation
decomposes space into 2d subcubes in exactly the same
way as the quadtree. A shrinking operation decomposes
a quadtree box u into two children. The inner child cell
is the smallest quadtree box u′ that contains S ∩u, and
outer child cell is doughnut cell u − u′, which contains
no points and hence is a leaf. The relevant properties of
the BD tree are given below. Properties (i) and (iii) are
proved in [4], and property (ii) is a simple generalization
of (i).

(i) The BD tree has O(n) nodes and can be con-
structed in time O(n log n).

(ii) A collection C of n quadtree boxes can be stored
in a BD tree with O(n) nodes such that the

1The tree defined in [4] is a binary version of this tree,
but the assumption that all cells are hypercubes simplifies our
presentation.

(i)

buγ bvγ

v

(ii.b)

bvγ

v
u uu

(ii.a)

b’u

8bu

b’u

b’uγb’u8γ

Fig. 1: The separation properties for cells of the BD tree.

subdivision induced by its leaves is a refinement
of the subdivision induced by the quadtree boxes
in C. This can be constructed in time O(n log n).

(iii) The number of cells of the BD tree with pairwise
disjoint interiors, each of size at least s, that
intersect a ball of radius r is at most O((1+r/s)d).

The balanced box-decomposition (BBD) tree has
many of the properties of a BD tree, but it has O(log n)
depth. As in the BD tree, a cell of a BBD tree is a
quadtree box or the difference of two quadtree boxes.
Let S be a set of n points in R

d, and let T denote its
BBD tree. A quadtree box (not necessarily in T) is
nonempty if it contains at least one point of S. We will
use the BBD tree for the following construction, called
an annulus cover. Given two concentric balls b1 and b2,
where b2 is contained within b1, and given s > 0 find
the set Q of nonempty quadtree boxes of side length s
that overlap the annulus b1 − b2.

The properties of the BBD tree that are relevant to
this paper are given below. Property (i) is proved in [5],
and property (ii) follows from the analysis in [3]. (The
straightforward proof is omitted.)

(i) T has O(n) nodes and O(log n) depth and can be
constructed in time O(n log n).

(ii) It is possible to compute an annulus cover as
described above in time O(log n+ t), where t is the
number of nonempty quadtree boxes of size s that
intersect the larger annulus 2b1−b2/2. In the same
time we can compute |S ∩ z| for each box z in the
cover. Since quadtree boxes exist only in discrete
sizes (powers of 2) it is understood that if s is not
of this form this construction is performed for the
next smaller power of 2.

For both BD trees and BBD trees, we define the size
of a cell to be the size of its outer box. Throughout, for
a cell u, we will use su to denote its size and bu to denote
the ball of radius sud/2 whose center coincides with the
center of u’s outer box (note that u ⊆ bu). For γ > 0,

we will make frequent use of the ball γbu, which we call
the γ-expansion of u.

3 Approximate Range Counting

Let S be a set of n points in R
d and let 0 < ε ≤ 1/2

and 2 ≤ γ ≤ 1/ε be two real parameters. In this
section we show how to answer ε-approximate spherical
range counting queries in time O(log(nγ) + 1/(εγ)d−1)
using a data structure of space O(nγd log(1/ε)). We will
show that the data structure can be constructed in time
O(nγd log(n/ε) log(1/ε)).

Recall that S has been scaled and translated to lie
within a ball of radius ε/2 placed at the center of the
unit hypercube U . It follows that queries whose center
lies outside of U can be answered trivially. If B contains
the center of U , then we can treat all the points of
S as lying in the approximate range and return n as
the answer; otherwise, we return 0. We turn to the
interesting case when the center of B lies within U .

During preprocessing, we first construct a BD tree
based on the following lemma, which states that it
is possible to construct a BD tree whose nodes enjoy
certain separation properties with respect to the points
of S. (See Fig. 1.) Intuitively, part (i) says that, for
a leaf cell, if there are many points close to it, they
are sufficiently well clustered relative to their distance
to the cell. As we will see, (i) is useful in answering
approximate range queries when a range is sufficiently
small. When a range is large, however, we need to
use information associated with nodes higher up in
the tree. Part (ii) describes the separation properties
that aid in this case, and this innovation is needed
for range searching (versus nearest neighbor searching).
The parameter γ controls the separation and is used to
control the space/time tradeoff. The proof of the lemma
is omitted due to space limitations.

Lemma 3.1. (Separation Properties) Let S be a set of
n points in R

d, and let γ ≥ 16 and 0 < f ≤ 1 be two real
parameters. It is possible to construct a BD tree T with

O(nfγd log γ) nodes satisfying the following properties.
Let u be a cell corresponding to a node of T .

(i) Suppose that u is a leaf cell. Then there exists a
ball b′u such that |S ∩ (γbu − b′u)| = O(1/f) and the
ball 8γb′u does not overlap u.

(ii) Suppose that u is a box cell obtained by a shrink
operation. Let v denote the parent cell of u. Then
either (a) |S ∩ (γbv − 8bu)| = O(1/f) or (b) there
exists a ball b′u such that |S ∩ (γbv − b′u)| = O(1/f)
and the ball γb′u does not overlap u.

Moreover, in time O(nγd log(nγ) log γ), we can con-
struct T with the following information stored at the
nodes. For each leaf cell u, we store the ball b′u and
S ∩ (γbu − b′u). For each box cell u, if it satisfies (ii.a)
we store S ∩ (γbv − 8bu) and |S ∩ 8bu|, and if it satisfies
(ii.b) we store the ball b′u and S ∩ (γbv − b′u).

Note that the cases in the lemma are neither
mutually exclusive nor do they apply to all nodes
(internal nodes obtained by splitting, in particular).
When both conditions apply to a node, both pieces of
auxiliary information are stored. In the lemma, the
points of size O(1/f) are called pollutants, since they
do not satisfy the separation properties. They result as
the leftovers of a sampling process and are needed to
achieve our strongest bounds. Since they are handled
by simple brute force in our query processing, the reader
may find it easier to simply ignore them on first reading.

We set f = (εγ)d−1, construct the BD tree T
described in Lemma 3.1, and compute all the quantities
mentioned in the last two sentences of the lemma. (If
γ < 16, we set γ to 16 before using the lemma.)
This takes time O(nγd log(nγ) log γ). We then associate
certain additional information with the nodes u of
T , which will help in answering the queries. Before
describing what information is stored with the nodes,
it helps to give a brief overview of how queries are
processed. Let LT denote the leaf cells of T . We
distinguish between two kinds of query ranges. Let
B be a query ball whose center lies inside a leaf cell
x ∈ LT . We say that B is a small range if it is contained
within γbx; otherwise we call it a large range. If B is
a small range, we answer it using information stored at
the leaf x. If B is a large range, we first check whether
it contains U . In this case, we return n as the answer
(recall S ⊆ U). Otherwise, let v be the first box cell on
the path from leaf x to the root, such that B ⊆ γbv, and
let u be v’s child on this path (note that u is a box cell).
We answer the query using information associated with
u.

Thus a leaf cell x is responsible for handling any
query ball B that is centered in x such that B ⊆ γbx.

A box cell u is responsible for handling B centered in
u that satisfies B 6⊆ γbu and B ⊆ γbv, where v denotes
the parent cell of u. We now present details on the
information stored with each type of cell and explain
how this information helps to answer queries efficiently.
To speed up the preprocessing, we assume that we have
also constructed the BBD tree Tb for the set S of points.

Leaf cells. Each leaf cell is responsible for han-
dling queries that lie entirely within its γ-expansion.
We handle the points in the cluster ball b′u, by subdi-
viding them into a grid of small disjoint generator sub-
sets, and we handle the relatively small number of pol-
lutants by brute force. During the preprocessing phase,
for each leaf cell u, we compute a set Q(u) of weighted
quadtree boxes as follows. Let b′u be the ball described
in Lemma 3.1(i). If b′u is the empty ball or does not over-
lap γbu, then we set Q(u) = ∅. Otherwise, we expand
the ball b′u such that 8γb′u just touches u. Henceforth,
we will use b′u to refer to this expanded ball and ru to de-
note its radius. (See Fig. 2.) We then find the set Q(u)
of nonempty quadtree boxes of diameter 2ε(8γ−1)ru/3
that overlap b′u. By a straightforward packing argu-
ment, |Q(u)| = O(1/(εγ)d). For each box z ∈ Q(u), we
assign it a weight equal to |S ∩ z|. By BBD property
(ii), we can compute Q(u) and assign weights to the
boxes in it in time O(log n+ tu), where tu is the number
of nonempty quadtree boxes of diameter 2ε(8γ−1)ru/3
that overlap the ball 2b′u.

1
Q(u)

2ε(8γ−1) u

u

3

2

52 r /3

b’

u

8γb’u

3

Fig. 2: Processing of leaf cells.

Next, we scan the list of O(1/f) = O(1/(εγ)d−1)
pollutants in S ∩ (γbu − b′u) and eliminate those points
that are contained in a box in Q(u); let P(u) denote the
set of points that remain. Assuming the floor function,
P(u) can be easily computed in time O(1/(εγ)d−1).

By storing P(u) and Q(u) with each leaf u, we can
answer queries as follows. Recall that u is responsible
for answering the query for a ball B centered in u
such that B ⊆ γbu. To answer this query, we do a
linear scan of the boxes in Q(u) and compute the total
weight of the boxes that overlap B. To this we add
the number of points of P(u) that lie inside B and
return it as the answer. The correctness of this approach
is obvious from Lemma 3.1(i) and the fact that if B
overlaps a box z in Q(u) then the diameter of z is

at most ε times the radius of B. The query time is
O(|Q(u)| + |P(u)|) = O(1/(εγ)d).

By using a slightly more sophisticated method, we
can reduce the query time by a factor of O(1/(εγ)). The
idea is to organize the quadtree boxes in Q(u) into a BD
tree during the preprocessing phase. By BD property
(ii), this can be done in time O(|Q(u)| log |Q(u)|). With
the help of this BD tree, using standard techniques [3],
we can find the total weight of the boxes z ∈ Q(u)
that overlap the query range B in time proportional
to the number of boxes of Q(u) that overlap ∂B. A
straightforward packing argument [3] shows that this
quantity is O(1/(εγ)d−1). Since the time to scan P(u)
is also O(1/(εγ)d−1), this quantity bounds the overall
query time.

We now estimate the space requirements for all the
leaves. By the bounds on |P(u)| and |Q(u)| given above,
the space used for a leaf u is O(1/(εγ)d). Recall that the
number of leaves is O(nfγd log γ), where f = (εγ)d−1.
Thus, the total space used by all the leaves together
is O((nγd−1 log γ)/ε). However, this simple bound is
based on the assumption that, for every leaf cell, |Q(u)|
achieves its worst case space bound. Lemma 3.2 shows
that this cannot happen and improves this bound by a
factor of nearly O(1/(εγ)) using a charging argument
(similar to that used in [2]). Our proof of this lemma
makes use of the concept of a well-separated pair
decomposition of a point set [7], so we first briefly review
this notion.

We say that two sets of points X and Y are well-
separated if they can be enclosed within two disjoint
d-dimensional balls of radius r, such that the distance
between the centers of these balls is at least αr, where
α ≥ 2 is a real parameter called the separation factor.
If we consider joining the centers of these two balls
by a line segment, the resulting shape resembles a
dumbbell. The balls are the heads of the dumbbell. A
well-separated pair decomposition of S is a set PS,α =
{(X1, Y1), · · · , (Xm, Ym)} of pairs of subsets of S such
that (i) for 1 ≤ i ≤ m, Xi and Yi are well-separated
and (ii) for any distinct points x, y ∈ S, there exists a
unique pair (Xi, Yi) such that either x ∈ Xi and y ∈ Yi

or x ∈ Yi and y ∈ Xi. (We say that the pair (Xi, Yi)
separates x and y.) Callahan and Kosaraju [7] have
shown that, for any set S of n points, there exists a well-
separated pair decomposition containing O(αdn) pairs.

Lemma 3.2. Let T be the BD tree described in
Lemma 3.1 for any value of f , 0 < f ≤ 1. Let LT

denote the leaf cells of T . For any leaf cell u ∈ LT ,
let Q(u) be as defined above. Then

∑
u∈LT

|Q(u)| =
O(nγd log(1/ε)).

Proof :(sketch) Let D be the set of dumbbells corre-

sponding to the well-separated pair decomposition of S,
using separation factor 8. Each dumbbell P ∈ D al-
locates a unit charge to the leaf cells in T satisfying
certain conditions. Let a and b denote the centers of
two heads of P , ` = ‖ab‖, and o denote the center of
the segment ab. Let BP denote the set of balls, centered
at o, having radius 2i`, where log(c1γ) ≤ i ≤ log(c2d/ε)
for suitable constants c1 and c2. For a ball b ∈ BP , let
Cb be the set of leaf cells in T overlapping b that have
size at least c3rb/(γd), where rb denotes the radius of b
and c3 is a suitable constant. The dumbbell P allocates
a unit charge to each leaf cell in CP = ∪b∈BP

Cb. By
BD property (iii), |Cb| = O(γd). Since the number of
balls in BP is O(log(1/(εγ))), it follows that P allocates
a unit charge to O(γd log(1/(εγ))) leaf cells. Thus, the
total charge allocated by all the dumbbells together is
O(nγd log(1/(εγ))).

Next we show that each leaf cell u receives a charge
from at least Ω(|Q(u)|−1) dumbbells. Recall that ru is
the radius of the ball b′u such that the ball 8γb′u just
touches u. We now show that there exists a subset
Q′(u) ⊆ Q(u) such that |Q′(u)| = Ω(|Q(u)|) and the
distance between any pair of boxes in Q′(u) is at least
Ω(εγru/d). We can find Q′(u) as follows. Initially, we
set Q′(u) = ∅. We then consider the boxes in Q(u) one
by one. Two boxes in Q(u) are said to be neighbors if
they share a (d−1)-facet. At each step, we add a box in
Q(u) to Q′(u) and then eliminate it and all its neighbors
in Q(u) from further consideration. We continue in this
manner until all the boxes in Q(u) have been pruned.
Clearly this process finds a set Q′(u) with the desired
properties.

Let X (u) be the set of points obtained by picking
one point of S from each box in Q′(u). The distance be-
tween any two points in X (u) is Ω(εγru/d) and at most
O(ru). It is easy to show that there exist |X (u)| − 1
distinct dumbbells in D that separate pairs of points in
X (u) (we omit the details). Noting that su = Ω(ru/d),
one can now verify that each of these dumbbells allo-
cates a charge to cell u, for a suitable choice of the
constants c1, c2 and c3. Thus we have shown that each
leaf cell u receives a charge of Ω(|Q(u)| − 1).

Since the total charge allocated by all the dumbbells
together is O(nγd log(1/(εγ))) and the number of leaf
cells is O(nfγd log γ), it follows that

∑
u∈LT

|Q(u)| =
O(nγd log(1/(εγ))+nfγd log γ) = O(nγd log(1/ε). This
completes the proof. ut

Using this lemma and the bound on |P(u)| given
above, it follows that the space used by all the leaves
is O(nγd log(1/ε)). We conjecture that the log(1/ε))
factor is an artifact and can be eliminated.

We now estimate the preprocessing time for all
the leaves. Recall that for each leaf u, P(u) can

be computed in time O(1/(εγ)d−1) and Q(u) can be
computed in time O(tu + log n). Here tu is the number
of nonempty quadtree boxes of diameter 2ε(8γ−1)ru/3
that overlap the ball 2b′u. Applying a similar charging
argument as used above to bound

∑
u∈LT

|Q(u)|, it
follows that

∑
u∈LT

tu = O(nγd log(1/ε)). Thus, in time
O((fγd log γ)n log n + (γd log(1/ε))n), we can compute
P(u) and Q(u) for all leaves u. Also, recall that it
takes O(|Q(u)| log |Q(u)|) time to organize the boxes
in Q(u) into a BD tree. Since |Q(u)| = O((1/εγ)d) and∑

u∈LT
|Q(u)| = O(nγd log(1/ε)), it follows that

∑

u∈LT

|Q(u)| log |Q(u)| = O(nγd log2(1/ε)).

Thus, the total preprocessing time for all the
leaves is O((fγd log γ)n log n + (γd log2(1/ε))n) =
O(nγd log(n/ε) log(1/ε)).

Box cells obtained by shrinking. If u satisfies
(ii.b) of Lemma 3.1 then, in view of the similarity of
this property with (i), it is clear that we can use the
same approach as described above for leaf cells. So
suppose that u satisfies property (ii.a). Recall that u
is responsible for a query range B centered in u that
satisfies B 6⊆ γbu and B ⊆ γbv, where v is u’s parent
cell. Since γ ≥ 16 and B 6⊆ γbu, it is easy to show that
B ⊇ 8bu. Thus the exact answer to such a query can
be computed as the sum of |S ∩ 8bu| and the number of
points of S∩(γbv−8bu) that lie within B. Both |S∩8bu|
and S ∩ (γbv − 8bu) are precomputed and stored with
u, so the query can be answered in time O(1/(εγ)d−1).
The total space and preprocessing time for all the box
cells obtained by shrinking is the same as for all the
leaves.

Box cells obtained by splitting. By definition,
u is one of the 2d quadtree boxes of equal size into which
u’s parent cell v is split. Recall that u is responsible for
handling query balls B centered within u such that B
is not contained within its γ-expansion but is contained
within the γ-expansion of its parent, that is B 6⊆ γbu

and B ⊆ γbv. Using the triangle inequality, an easy
calculation shows that γ′bu ⊆ B ⊆ γ′′bu, where γ′ =
γ − 2 and γ′′ = 3γ.

Such a cell does not generally enjoy any separation
properties with respect to the point set S. Our approach
is to compute a cover of the annulus γ′′bu − γ′bu by a
set of disjoint regions such that the subset of points
lying within these regions can be used as generators for
the query. We describe two approaches for constructing
these regions. The first is a simple method based on a
grid decomposition of the annulus. The second achieves
better query performance and can the thought of as
a radial version of a quadtree decomposition taking
place in the space of polar coordinates. We provide

both because the space analysis of the second method
depends on the space analysis of the first.

During the preprocessing phase, we compute an
annulus cover Q(u) by boxes of size εγ′su/4 for the
annulus γ′′bu − γ′bu. For each box z ∈ Q(u), we assign
it a weight equal to |S ∩ z|. (See Fig. 3(a).) By BBD
property (ii) this can be done in time O(log n + tu),
where tu is the number of nonempty quadtree boxes
of size εγ′su/4 overlapping the larger annulus 2γ′′bu −
(γ′/2)bu. In the same time, using standard techniques
[3], we compute the number of points in S ∩ γ′bu that
are not contained in any box of Q(u), and store this
information with u.

By a straightforward packing argument, |Q(u)| =
O(1/εd). Let AT denote the set of box cells obtained
by a split operation. Since T has O(nfγd log γ) nodes,
where f = (εγ)d−1, it follows that

∑
u∈AT

|Q(u)| =
O((nγ2d−1 log γ)/ε). This bound can be significantly
improved by using a charging argument similar to that
used earlier for leaf cells. Applying this argument yields∑

u∈AT
|Q(u)| = O(nγd log(1/ε)). (We omit the details

for lack of space.) Similarly, we obtain
∑

u∈AT
tu =

O(nγd log(1/ε)). Thus, the time to compute Q(u)
for all the cells u ∈ AT is O((fγd log γ)n log n +
(γd log(1/ε))n).

It is possible to answer a query by computing the
total weight of the boxes in Q(u) that overlap the range
B. However, since |Q(u)| can be as large as Ω(1/εd),
this would lead to a high query time. We now discuss
how this can be reduced to O(1/(εγ)d−1) by using a
more efficient decomposition of the annulus based on a
radial decomposition of space.

First we need to introduce some notation. Let o
denote the center of the quadtree box u. Let H denote
the axis-parallel hypercube of size γ′sud centered at o.
Consider a regular grid of side length ε(γ′)2su/(16π) on
each of the 2d faces of dimension (d−1) of ∂H. Let C be
the set of cones that have their apex at o and whose base
is a cell in the grid placed on the faces of ∂H. Extend
each cone through this base to infinity. It is easy to see
that the angular diameter of each cone in C is at most
εγ′/16 and |C| = O(1/(εγ)d−1). Let B be a set of O(1/ε)
spheres between γ′bu and γ′′bu, such that the radii of
any two successive spheres differs by at most εγ′sud/16.
The boundaries of both γ′bu and γ′′bu are included in B.
(See Fig. 3(b).) We refer to a cell in the arrangement of
C∪B as a fragment. Note that γ′′bu−γ′bu is partitioned
into O(1/(εγ)d−1(1/ε)) fragments; let F(u) denote this
set of fragments.

During the preprocessing phase, for each quadtree
box z ∈ Q(u), we determine a fragment in F(u) that
it overlaps (assuming the floor function, this takes
constant time), and add the weight of z to the weight of

1

uu

3

’s /4uεγ

o

1

32

5

(a) (b)

γ u’b

su

2

3

5

γ ’’bu

su

εγ ’/16

γ u’b
γ ’’bu

1

3

2

5

3

εγ u’s d/16

1

2
3

Fig. 3: Processing of cells obtained by splitting: (a) the annulus cover Q(u) and (b) the nonempty radial fragments F ′(u).

the fragment. Initially we assume that the weight of all
the fragments is zero. (The reason for assigning weights
from quadtree boxes of the annulus cover, rather than
from the point set S directly, is that quadtree boxes
share a common coordinate system, which allows us to
construct and analyze them globally for all nodes. In
contrast, the radial fragments are based on coordinate
systems that are local to each node.) At the end of
this process, the weight of a fragment is the sum of the
weights of all the quadtree boxes in Q(u) that transfer
their weight to it. Let F ′(u) denote the set of fragments
that finally have a non-zero weight. (See Fig. 3(b).)
Since F ′(u) typically has fewer fragments than F(u),
we use hashing [10, 17] to compute only the fragments
of F ′(u) along with their associated weights. This can
be done in time O(|Q(u)|). The total space used to
store F ′(u) over all box cells obtained by splitting is∑

u∈AT
|F ′(u)| ≤ ∑

u∈AT
|Q(u)| = O(nγd log(1/ε)).

We answer a query by scanning the fragments of
F ′(u) and determining the total weight of the fragments
that overlap the range B. To this we add the precom-
puted number of the points of S ∩ γ′bu that are not
included in any box of Q(u). The correctness of this
method follows from Lemma 3.4. Intuitively, the lemma
shows that the algorithm makes errors only with respect
to points of S that lie close to the boundary of B. An
important ingredient in its proof is Lemma 3.3, which
implies that all points in a fragment are at nearly the
same distance from any point in cell u. Define the ab-
solute ratio between two positive numbers x and y to
be the maximum of x/y and y/x. (The proofs of both
these lemmas involve a straightforward geometric anal-
ysis, and are omitted due to space limitations.)

Lemma 3.3. Let 0 < ε ≤ 1/2 and γ̂ ≥ 2. Let u
be a hypercube of side length s centered at o. Let x1

and x2 be two points such that ‖ox1‖ ≥ ‖ox2‖ ≥ γ̂sd,
‖ox1‖ − ‖ox2‖ ≤ εγ̂sd/8, and ∠x1ox2 ≤ εγ̂/8. Then
for any point o′ in u, the absolute ratio of ‖o′x1‖ and
‖o′x2‖ is at most 1 + ε/3.

Lemma 3.4. Let u be a box cell obtained by splitting a
cell v. Let B be a query ball centered at a point in u such
that B 6⊆ γbu and B ⊆ γbv. Let r denote the radius of
B. Let p be a point in S whose distance from ∂B is
at least rε, and let z ∈ Q(u) be the quadtree box that
contains p.

(i) If p ∈ B, then any fragment in F ′(u) that overlaps
z must also overlap B.

(ii) If p /∈ B, then no fragment in F ′(u) overlaps both
z and B.

The query time of this method is
O((1/εγ)d−1(1/ε)), since it is proportional to the
number of fragments in F ′(u). While this is already a
significant improvement over the query time obtained
by searching all the boxes in Q(u), we can speed it up
still further through the use of BD trees. The idea is
to organize the fragments of F ′(u) into 2d BD trees,
one for each of the faces of H. Since the fragments
of F(u) are pieces of a d-dimensional annuli, they are
certainly not quadtree boxes. Nonetheless, by applying
an appropriate transformation to polar coordinates, it
is possible to map the fragments to a d-dimensional
grid of hypercubes, from which we can then apply
any standard algorithm for constructing a BD tree
from a set of quadtree boxes [3]. To see how a point
in this “fragment space” can be described as d polar
coordinates, the first d − 1 polar coordinates arise by
shooting a ray from o through this point until it hits a
(d − 1)-dimensional face of the hypercube H, and then
representing the resulting point using a local coordinate
system for this face. Based on these coordinates alone,
the fragments form a (d − 1)-dimensional grid of
hypercubes of side length h = ε(γ′)2su/(16π). The
last coordinate of the polar representation arises from
the distance of the point from the center of H. Along
this axis, each fragment has a length of r = εγ′sud/16.
By scaling this last coordinate by the amount h/r, in
polar space the fragments are now mapped to a grid of

d-dimensional hypercubes, as desired.
Now, by applying standard techniques to the re-

sulting BD tree [3], we can determine the total weight
of the fragments of F ′(u) that overlap B in time pro-
portional to the number of fragments that intersect ∂B
(transformed into polar space). Applying Lemma 3.3, it
is not hard to show that ∂B intersects O(1) fragments
in each cone of C, which implies that the query time is
O(1/(εγ)d−1).

It takes O(|F ′(u)| log |F ′(u)|) time to construct
the BD trees for the fragments in F ′(u). Noting
that

∑
u∈AT

|F ′(u)| = O(nγd log(1/ε)) and |F ′(u)| =
O((1/εγ)d−1(1/ε)), it follows that

∑

u∈AT

|F ′(u)| log |F ′(u)| = O(nγd log2(1/ε)).

Thus, the preprocessing time for all the box cells
in AT is O((fγd log γ)n log n + (γd log2(1/ε))n) =
O(nγd log(n/ε) log(1/ε)).

Balancing the tree. The only problem with the
approach as described above is that the BD tree may
not be balanced. Thus the time to find the node that
stores the information needed for answering a query can
be very large. To remedy this we can transform the BD
tree T into a BBD tree T ′. This can be performed in
time O(m log m), where m denotes the number of nodes
in T . This does not increase the space asymptotically,
but has the desirable effect of reducing the time for tree
descent to logarithmic in the total number of nodes,
that is, O(log(nγ)). (For lack of space we omit further
details of these standard ideas.) Thus, the total query
time is O(log(nγ) + 1/(εγ)d−1). Putting it all together,
we have shown the following theorem.

Theorem 3.1. Let S be a set of n points in R
d, and

let 0 < ε ≤ 1/2 and 2 ≤ γ ≤ 1/ε be two real
parameters. Then we can construct a data struc-
ture of O(nγd log(1/ε)) space that allows us to an-
swer ε-approximate range queries in time O(log(nγ) +
1/(εγ)d−1). The time to construct the data structure is
O(nγd log(n/ε) log(1/ε)).

Remark: There is an interesting parallel here with
exact range queries. In approximate nearest neighbor
searching (analogous to halfspace emptiness) ignoring
the log terms, the exponent in the query time as a
function of d grows roughly as (d − 1)/2 [2], whereas
we have just shown that for general counting queries it
grows roughly as d − 1. In the exact case, there is a
corresponding gap between the exponent on n of d/2
for halfspace emptiness [16] and d for halfspace range
queries [14]. This suggests that our complexity bounds
are close to what would be expected. Nonetheless, our

recent research shows that for idempotent semigroups
(for example, min and max queries), where it suffices to
cover the range by generators rather than partition it, it
is possible to achieve significantly better dependencies
on dimension and similar lower bounds can be derived.
Interestingly, there is no such distinction in the com-
plexity of idempotent and non-idempotent semigroup
range queries in the exact case. These results will be
reported in a future paper.

4 Approximate kth Nearest Neighbor Queries

In this section we describe how we can enhance the data
structure for approximate range counting to answer
approximate kth nearest neighbor queries. The role
played by the query point q is analogous to that played
earlier by the center of the query range, but now the
radius of the range is unknown. Here is a simple
approach, which we will improve upon later. Recall that
a box cell u in the BD tree that contains q is responsible
for handling ranges centered at q such that B 6⊆ γbu

and B ⊆ γbv, where v is the parent of u. To answer
a query, for each node along the search path of the
query point we can apply the results of the last section
to count the number of points in the approximations
of the smallest and largest of these ranges, and then
use this information to determine the appropriate node.
From the results of the last section this computation
takes time O(1/(εγ)d−1) for each node visited. There
can be Ω(n) nodes on a path in the BD tree, but, as
mentioned above, we can perform this search efficiently
in a BBD tree, whose depth is O(log(nγ)). Overall it
takes O(log(nγ) · (1/(εγ)d−1)) time to find a node that
can handle a range corresponding to an approximate
kth nearest neighbor. After finding such a node,
we can perform a final search for the desired radius
approximately. The exact nature of the search depends
on the type of node, but it easy to show that O(log(1/ε)·
(1/(εγ)d−1) time suffices. Thus, the total query time for
this approach is O(log(n/ε) · (1/(εγ)d−1)). The space
and preprocessing time for this data structure are the
same as given in Theorem 3.1.

Let us consider how to improve this simple ap-
proach. Determining the numbers of points in the
largest and smallest ranges at each node depends on
the location of q, and so cannot be precomputed. How-
ever, for the purposes of driving the search it suffices
to compute these quantities for any point that is suffi-
ciently close to q. We will partition each node u into
small hypercubes, and precompute counts for a point in
each hypercube.

Let u be a box cell in the BD tree T . During the
preprocessing phase, we partition u into a regular grid
of O(1/(εγ)d) hypercubes of size εγsu/c, where c is a

suitable constant. For each hypercube z, we precompute
the answer to an ε/4 approximate range query for the
smallest and largest balls handled by u that are centered
at a point inside z. Since the radius of these balls
exceeds (γ − 1)sud/2, one can easily show that the
answers stored with z are valid for any point q ∈ z (only
the approximation error for the range query increases
slightly from ε/4 to ε/2). At query time, we determine
the hypercube z containing q (which takes O(1) time
assuming the floor function and O(log(1/(εγ))) time
otherwise) and use the counts stored with z to determine
if u is responsible for a range corresponding to the
approximate kth nearest neighbor.

The above modification implies that each box cell
uses space O(1/(εγ)d), which increases the space re-
quirements by a factor of nearly 1/(εγ). To remedy
this, we reduce the value of parameter f used in the con-
struction of the BD tree T described in Lemma 3.1 from
(εγ)d−1 to (εγ)d. An inspection of the analysis in Sec-
tion 3 shows that with this change the total space used
by the data structure remains O(nγd log(1/ε)). (We de-
fer details to the full version.)

We now discuss the time it takes to process the
last node u visited when answering a query. If u is a
leaf cell, then |P(u)| = O(1/f) = O(1/(εγ)d). Recall
that |Q(u)| = O(1/(εγ)d) and each box z ∈ Q(u)
is associated with a weight |S ∩ z|. We associate a
weight of one with each point in P(u). By standard
results on weighted selection, we can determine the
approximate distance to the kth nearest neighbor in
time O(|P(u)|+ |Q(u)|) = O(1/(εγ)d). As was the case
for range count, a similar approach works for box cells
obtained by shrinking, because they satisfy essentially
the same separation properties as leaves.

So suppose next that u is a box cell obtained by
splitting. Recall that if u is responsible for handling
a query range B, then (γ − 2)bu ⊆ B ⊆ 3γbu. We
use binary search on the radius of the ball to determine
the approximate distance to the kth nearest neighbor.
Since we need to test O(log(1/ε)) different radii and
it takes O(1/(εγ)d−1) time to determine the count
for a given radius, the time for the binary search is
O((1/(εγ)d−1) log(1/ε)), which is dominated by the leaf
query time. Summarizing the discussion of this section
we have:

Theorem 4.1. Let S be a set of n points in R
d, and let

0 < ε ≤ 1/2 and 2 ≤ γ ≤ 1/ε be two real parameters.
We can construct a data structure of O(nγd log(1/ε))
space that allows us to answer ε-approximate kth nearest
neighbor queries in time O(log(nγ) + 1/(εγ)d). Here k
is an integer between 1 and n that is specified at query
time. The data structure can be constructed in time
O(n(γ/ε)d/2 log(n/ε) log(1/ε)).

References

[1] S. Arya and T. Malamatos. Linear-size approximate
Voronoi diagrams. In Proc. 13th ACM-SIAM Sympos.
Discrete Algorithms, pages 147–155, 2002.

[2] S. Arya, T. Malamatos, and D. M. Mount. Space-
efficient approximate Voronoi diagrams. In Proc. 34th
Annual ACM Sympos. Theory Comput., pages 721–
730, 2002.

[3] S. Arya and D. M. Mount. Approximate range search-
ing. Computational Geometry: Theory and Applica-
tions, 17:135–152, 2000.

[4] S. Arya, D. M. Mount, N. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. In
Proc. 5th ACM-SIAM Sympos. Discrete Algorithms,
pages 573–582, 1994.

[5] S. Arya, D. M. Mount, N. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. J.
ACM, 45:891–923, 1998.

[6] H. Brönnimann, B. Chazelle, and J. Pach. How hard
is halfspace range searching. Discrete Comput. Geom.,
10:143–155, 1993.

[7] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. J.
ACM, 42:67–90, 1995.

[8] B. Chazelle. Lower bounds on the complexity of
polytope range searching. J. Amer. Math. Soc., 2:637–
666, 1989.

[9] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, Germany,
2nd edition, 2000.

[10] M. L. Fredman, J. Komlos, and E. Szemeredi. Storing
a sparse table with O(1) worst case access time. J.
ACM, 31(3):538–544, 1984.

[11] S. Funke and E. A. Ramos. Smooth-surface reconstruc-
tion in near-linear time. In Proc. 12th ACM-SIAM
Symp. Discrete Algorithms, pages 781–790, 2002.

[12] S. Har-Peled. A replacement for Voronoi diagrams of
near linear size. In Proc. 42 Annu. IEEE Sympos.
Found. Comput. Sci., pages 94–103, 2001.

[13] J. Majhi, R. Janardan, M. Smid, and P. Gupta.
On some geometric optimization problems in layered
manufacturing. Comput. Geom. Theory Appl., 12:219–
239, 1999.

[14] J. Matoušek. Range searching with efficient hierarchi-
cal cuttings. Discrete Comput. Geom., 10(2):157–182,
1993.

[15] J. Matoušek. On approximate geometric k-clustering.
Discrete and Comput. Geometry, 24:61–84, 2000.

[16] J. Matoušek and O. Schwarzkopf. On ray shoot-
ing in convex polytopes. Discrete Comput. Geom.,
10(2):215–232, 1993.

[17] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, New York, NY, 1995.

