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Abstract

The Euclidean minimum spanning tree (EMST) is a
fundamental and widely studied structure. In the
approximate version we are given an n-element point set
P in Rd and an error parameter ε > 0, and the objective
is to compute a spanning tree over P whose weight is at
most (1 + ε) times that of the true minimum spanning
tree. Assuming that d is a fixed constant, existing
algorithms have running times that (up to logarithmic
factors) grow as O

(
n/εΩ(d)

)
. We present an algorithm

whose running time is O
(
n log n+

(
ε−2 log2 1

ε

)
n
)
. Thus,

this is the first algorithm for approximate EMSTs that
eliminates the exponential ε dependence on dimension.
(Note that the O-notation conceals a constant factor of
the form O(1)d.) The algorithm is deterministic and
very simple.

Keywords: Euclidean minimum spanning trees,
well-separated pair decompositions, approximation al-
gorithms.

1 Introduction

Given a set P of n points in Rd, the Euclidean minimum
spanning tree (EMST) of P is the minimum spanning
tree of the complete graph on P where the weight of each
edge is the Euclidean distance between its two points.
This is a fundamental mathematical structure, which
has numerous applications. The problem of computing
EMSTs has been extensively studied. Throughout, we
assume that the dimension d is a fixed constant.

A straightforward solution involves constructing the
complete Euclidean graph on P and computing the
MST of this graph in O(n2) time. In one of the earliest
papers in the field of computational geometry, Shamos
and Hoey proved that the EMST is a subgraph of the
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Delaunay triangulation, which leads to an O(n log n)
time algorithm for d = 2 [12]. Yao showed that the
problem could be solved in subquadratic time in Rd for
any constant d [14], and the best known algorithm by
Agarwal et al. runs in time roughly O

(
n2−2/(dd/2e+1)

)
[1], which is little better than quadratic except in very
small dimensions.

This has led to consideration of approximation al-
gorithms. Given an approximation parameter ε > 0, an
ε-approximate EMST is any spanning tree on P whose
total weight is larger than the exact EMST by a factor
of at most 1 + ε. Vaidya’s results on spanner graphs
imply an O(ε−dn log n) time solution [13]. We refer
to quantity d in the ε−d term as the algorithm’s ex-
ponential ε dependence. In spaces of moderate dimen-
sion (say 5 ≤ d ≤ 20) this dependence is a significant
practical component of the algorithm’s running time.
Callahan and Kosaraju showed that the exponential de-
pendence on dimension could be reduced roughly by
one half. In [6] they introduced the important concept
of a well-separated pair decomposition (WSPD), and
in [5] they showed how to apply WSPDs together with
a more efficient approach to approximating bichromatic
closest pairs to obtain an algorithm with running time
O
(
n log n +

(
ε−d/2 log 1

ε

)
n
)
. Recently, through an im-

provement to the discrete Voronoi diagram data struc-
ture, Arya and Chan further reduced the dimensional
dependence, obtaining a randomized algorithm that
runs in expected time O

(
ε−(d/3+O(1))n log n

)
[3]. The

problem has also been considered in high-dimensional
spaces, where d is treated as an asymptotic quantity.
Har-Peled et al. [11] have shown that ε-approximate
EMSTs can be computed in timeO(dn2−O(ε)ε−1 log3 n).
(See also Borodin et al. [4].)

Another direction involves algorithms for approxi-
mating just the weight of the spanning tree. This origi-
nated with an algorithm due to Chazelle et al. for com-
puting an ε-approximation to the weight of the MST of
a graph [7]. Czumaj et al. adapted this to Euclidean
space, showing how to compute an ε-approximation to



the weight of the EMST in time Õ
(√
nε−(d/2+O(1))

)
(with high probability) [8]. Their algorithm assumes
free access to an oracle for answering orthogonal range
emptiness queries and approximate nearest neighbor
queries. Czumaj and Sohler presented an algorithm that
operates in any metric space (assuming access to a dis-
tance oracle) that computes a weight approximation to

the MST in time Õ(n/ε7) [9].
In summary, after almost 25 years of study,

all known near-linear time algorithms for the ε-
approximate spanning tree problem have exponential
ε dependencies that grow linearly with dimension. In
this paper we show that these dimensional exponen-
tial ε dependencies can be eliminated altogether. Our
main result is an algorithm, which given a set of n
points in Rd, computes an ε-approximate EMST in time
O
(
n log n+

(
ε−2 log2 1

ε

)
n
)

and space O(n). (Recall that
we assume that d is a constant, and the O-notation con-
ceals exponential factors of the form O(1)d.) Our algo-
rithm is both simple and deterministic. In particular,
it relies on the same quadtree-based technology used in
Vaidya’s 1991 algorithm.

Our algorithm is based on a simple, almost trivial,
modification of a WSPD-based algorithm presented
by Callahan and Kosaraju [5]. First, the algorithm
computes a 2-WSPD for the point set (see Section 2.3
for definitions). The WSPD consists of O(n) pairs.
Their algorithm extracts an ε-approximate bichromatic
pair from each well-separated pair in roughly O

(
ε−d/2

)
time and then returns the MST of the resulting graph.
It is shown in [5] that the result is an ε-approximate
EMST. Our modification exploits the following insight.
If it takes longer than O(ε−2) time to compute the
approximate closest pair, we can infer that there is
considerable weight in the EMST in the vicinity of this
closest pair. If so, we allow for a larger approximation
error when computing this edge, and we charge the error
to EMST edges in the vicinity of the well-separated pair.
While the modification is very simple, our best analysis
of the algorithm’s running time is more involved. We
employ a quadtree-based charging argument that shows
that the charges assessed to each edge of the spanning
tree can be bounded by a geometric series that decays
as a function of the level of the node that assesses the
charge.

In Section 2, we present some preliminary defini-
tions and observations. In Section 3, we present our al-
gorithm and discuss its running time as a function of a
parameter γ. In Section 4, we present a simple (but sub-
optimal) analysis of the algorithm’s performance, which
results by setting γ = O(log n

ε ). In Section 5, we present
a more sophisticated analysis of the algorithm’s perfor-
mance, which results by setting γ = O(log 1

ε ).

2 Preliminaries

In this section we present a number of definitions and
preliminary observations, which will be useful later.
Recall that the input to our algorithm is an n-element
point set P in Rd and an approximation factor ε > 0.

2.1 Preconditioning

It will simplify the presentation of the algorithm to
begin by preconditioning the input set. First, we apply
a uniform scaling and translation so that P lies within
the unit hypercube [0, 1]d and diam(P ) ≥ 1. (This is
done by computing the smallest axis-parallel hypercube
containing P and then scaling and translating it to lie
within the unit hypercube. After computing the MST,
we can simply apply the inverse of this transformation.)

Our algorithm is based on a compressed quadtree
decomposition of P (described below). The basic
analysis of Section 4 is sensitive to the height of the
tree. A common way to control the height of a
quadtree tree is to perturb the points into a nice
configuration in a manner that does not significantly
alter the weight of the MST (see, e.g., [2]). For an
appropriate constant c, depending on the dimension,
we round each point of P to the closest point of a
quadtree-aligned grid of side length smin = cε/n. The
value of c may be chosen1 so that the weight of the
MST of the perturbed point set is larger by a factor
of at most 1 + ε/2. We can easily compensate for
this additional error by invoking our algorithm with
the approximation parameter decreased by a constant
factor. Since this will not affect our asymptotic time
complexity, we may assume henceforth that the point
set has been perturbed in this manner, and ε has been
appropriately modified. Clearly, this preconditioning
can be performed in O(n) time. Note that this rounding
process is merely a conceptual convenience, since our
full analysis of Section 5 does not make any assumptions
on the height of the quadtree.

2.2 Compressed Quadtrees and Grid
Hierarchies

Our next step is to store the n-element point set P in
a compressed quadtree. For the sake of completeness,
let us recall the basic definitions here. Starting with
the unit hypercube, a quadtree box is defined recur-
sively as any hypercube that can be formed by bisect-

1To see this, observe that as a result of rounding, the distance

between each pair of points undergoes an additive change of
O(cε/n). Thus, rounding increases the weight of the MST by
an additive term of O(cε). Since wt(MST(P )) ≥ diam(P ) ≥ 1,

it is possible to choose c so that the perturbed weight is at most
(1 + ε/2) · wt(MST(P )).
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Figure 1: (a) The space partition defined by the compressed quadtree Q(P ) of P , (b) a set U of generalized nodes
of level 2 that cover P , and (c) the result of expand(U).

ing an existing quadtree box into 2d hypercubes, each
of half the side length. Repeating such splitting opera-
tions results in a rooted 2d-ary partition tree, called a
quadtree, where each node is associated with a quadtree
box, called its cell. We can store P in a quadtree by
applying splitting operations until each cell contains at
most one point of P . We also assume that each node
u whose cell contains at least one point of P is asso-
ciated with an arbitrary one of these points, called its
representative.

Unfortunately, (even after preconditioning) the size
of the quadtree may not be O(n). This is because
many repeated splitting operations would be needed to
separate two points that are very close to each other. In
such cases we may have long trivial paths, where all the
points of P lie within the same child cell. To remedy
this we compress each maximal trivial path into a single
edge, and store a single pointer to the first descendant
node where a nontrivial split of P occurs. This is called
a compressed quadtree. It is possible to build such a
structure with O(n) nodes in time O(n log n) [10]. We
denote this tree by Q(P ) (Fig. 1(a)). Because the cell
associated with each child is at most half the side length
of its parent, if preconditioning is applied then Q(P ) is
of height O(log n

ε ). If not, the height can be as large as
O(n).

For k ≥ 0, the quadtree boxes of side length 1/2k

partition the unit hypercube into a grid. The boxes of
this grid that contain at least one point of P are said
to be nonempty (see Fig. 1(b)). We would like to think
of the compressed quadtree as providing efficient access
to all the nonempty boxes of an infinite hierarchy of
such grids. In particular, we would like to associate
each nonempty quadtree box b with a corresponding
node of Q(P ) whose cell is b. Unfortunately, this is not
generally possible. This is either because a point lies

within a leaf cell of strictly larger side length or because
of a compression from a strictly larger parent cell to a
strictly smaller child cell. Nonetheless, with a minor
enhancement it is possible to achieve this impression.
We define a generalized node to be a pair consisting of
a node u of Q(P ) and an integer k, where either u is
a leaf whose cell is of side length at least 1/2k or u is
an internal node whose cell’s side length is at least 1/2k

and whose children have side lengths that are strictly
smaller than 1/2k. The cell associated with generalized
node (u, k) is a quadtree box of size 1/2k that contains
all the points of P that lie within u’s cell. A generalized
node (u, k) is said to reside at level k. It is easy to
see that for any k > 0, there exists a set of generalized
nodes of level k that cover P (see Fig. 1(b) and (c)).

Given a set U of generalized nodes at level k, define
the operation expand(U) to return a minimal set of
generalized nodes at level k + 1 that covers the same
points of P as does U . Given Q(P ), this operation can
easily be performed in time O(|U |). In particular, for
each (u, k) ∈ U , if u is a leaf, we replace (u, k) with
(u, k + 1) (thus contracting the cell about this point).
If u is a standard internal node, we replace (u, k) with
the set (u′, k + 1), for each nonempty child u′ of u. If
u is a compressed internal node there are two cases. If
u’s child cell is of size smaller than 1/2k+1, we replace
(u, k) with (u, k + 1) (again, contracting the cell about
the child’s cell). Otherwise, we replace it with (u′, k+1),
where u′ is u’s child.

Let P (u) denote the points of P contained within
u’s cell. Given a generalized node (u, k), we define its
neighborhood to be the up to 3d nonempty generalized
nodes (including u if it is nonempty) at level k whose
boundaries intersect u’s cell. Each such node is said
to be a neighbor of (u, k). To avoid overburdening the
terminology, henceforth all references to the “quadtree”
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Figure 2: (a) A σ-well-separated pair and (b) the quadtree-based representation.

will refer to the compressed quadtree Q(P ). When k is
clear from context, we will refer to the generalized node
(u, k) simply as u. We let `(u) = k denote its level, and
s(u) = 1/2k denote its side length.

2.3 Well-Separated Pair Decomposition

Our algorithm will make use of a well-separated pair
decomposition (WSPD) for P . Given a parameter σ ≥
1, called the separation factor, two sets A and B are σ-
well separated if they can each be enclosed within balls
of some radius r such that the closest distance between
these balls is greater2 than σr (see Fig. 2(a)). Given an
n-element point set P in Rd and σ > 0, define a σ-well-
separated pair decomposition of P (σ-WSPD) to be a
collection of pairs Ψ(P ) = {{A1, B1}, . . . , {Ak, Bk}} of
nonempty subsets of P such that

(1) for any {A,B} ∈ Ψ(P ), A and B are σ-well
separated, and

(2) for any two distinct points p, q ∈ P , there exists
exactly one pair {A,B} ∈ Ψ(P ) such that p lies in
one of these sets, and q lies in the other.

Callahan and Kosaraju introduced WSPDs, pre-
sented an efficient construction algorithm, and discussed
a number of applications [6]. The following lemma sum-
marizes the properties of the WSPD that will be rele-
vant here. The proof follows by a straightforward mod-
ification of the construction and analysis given by Har-
Peled [10].

Lemma 2.1. Given an n-element point set P in Rd and
any σ ≥ 1, it is possible to build a σ-WSPD Ψ(P ) of
size O(σdn) in time O(n log n+ nσd), such that:

2In contrast to standard definitions, we require that the

separation distance be strictly larger than σ times the enclosing
radii.

(i) Each well-separated pair of Ψ(P ) is represented by
a pair of (generalized) quadtree nodes (u, v) of the
same level. The associated pair is (P (u), P (v)),
and the separating balls are the minimum balls
enclosing u and v’s cells (see Fig. 2(b)).

(ii) Each (generalized) node u of the quadtree occurs in
O(σd) distinct pairs of Ψ(P ).

For our purposes, it suffices to use a WSPD with
separation factor 2. Such a WSPD will have size O(n),
it can be computed in O(n log n) time, and each node
occurs in O(1) pairs. In light of this lemma, we will
abuse notation by identifying each well-separated pair
as a pair (u, v) of quadtree nodes. The cells of u and
v are called the dumbbell heads of the well-separated
pair. WSPDs have a number of useful properties with
respect to MSTs and approximate MSTs, as shown in
the following lemma due to Callahan and Kosaraju.

Lemma 2.2. (Callahan and Kosaraju [5]) Given
a point set P and a σ-well-separated pair decomposition
Ψ(P ) for any σ ≥ 2:

(i) For each pair (u, v) ∈ Ψ(P ), there is at most one
edge of P (u)× P (v) in MST(P ).

(ii) For each pair (u, v) ∈ Ψ(P ) that contributes an
edge to MST(P ), let (p, q) be any pair of points
from P (u) × P (v). Then these edges form a
spanning tree of P .

(iii) If p and q from (ii) are chosen so that ‖pq‖ ≤
(1 + ε) · dist(P (u), P (v)), then this spanning tree
is an ε-approximate MST of P .

3 The Algorithm

Recall that we are given a set P of n points in Rd and
an approximation parameter ε > 0. Our objective is to
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Figure 3: Computing an ε-approximate closest pair.

compute a spanning tree T of P such that

wt(T ) ≤ (1 + ε) · wt(MST(P )),

where MST(P ) denotes the Euclidean minimum span-
ning tree of P , and wt(T ) denotes T ’s total edge weight.
Our algorithm follows the general approach of earlier
algorithms [5, 13]. Given P , we first construct a 2-well-
separated pair decomposition Ψ(P ) and then construct
a sparse graph G by judiciously selecting a pair of points
from each well-separated pair. Given the low separation
factor, some care is needed in how the point pair is cho-
sen from each well-separated pair. Our algorithm dif-
fers in only this one detail. In prior algorithms the time
needed to compute the point pair is O

(
1/εΩ(d)

)
. We

show that by relaxing the criteria for selecting edges,
it is possible to find a suitable pair of points without
incurring the exponential dependence on d.

3.1 A Simple (but Slower) Solution

To motivate our algorithm it will be illustrative to
consider a simple approach, which can be seen as a
recasting of Vaidya’s original algorithm in the context
of WSPDs. Let Ψ(P ) be the aforementioned well-
separated pair decomposition. For each well-separated
pair (u, v) ∈ Ψ(P ) (see Fig. 3(a)), repeatedly subdivide
the dumbbell heads associated with u and v, keeping
only the nonempty nodes, until the resulting cells have
side length at most ε · s(u)/2 (see Fig. 3(b)). Let U
and V denote the resulting sets of cells, which we call
mini-cells. From among all the representatives of U and
V , let p and q be the closest pair. Add the edge (p, q)
to G. After doing this for all the well-separated pairs,
compute and return MST(G).

To see why this is correct, consider the well-
separated pair (u, v), and let (p∗, q∗) be the actual clos-
est pair of points from P (u)× P (v) (see Fig. 3(c)). By
our choice of the separation factor, ‖p∗q∗‖ >

√
d · s(u).

Because each mini-cell’s side length is at most ε ·s(u)/2,
its diameter is at most ε

√
d · s(u)/2. The absolute error

between the closest representative pair ‖pq‖ and ‖p∗q∗‖
is at most twice this diameter, one for each dumbbell
head. Therefore

‖pq‖ ≤ ‖p∗q∗‖+ ε
√
d · s(u)(3.1)

< ‖p∗q∗‖+ ε · ‖p∗q∗‖
= (1 + ε) · dist(P (u), P (v)).

By Lemma 2.2(iii), MST(G) ≤ (1 + ε) ·MST(P ).
The number of mini-cells generated for each well-

separated pair can be as large as Ω(1/εd), and hence
the time to construct G is Ω(n/εd).

3.2 Improved Algorithm

As mentioned in the introduction, our improved algo-
rithm involves a minor twist to the simple solution. Ob-
serve that the cases of well-separated pairs that take
the greatest time to process are those in which there
are many mini-cells. Intuitively, if there are many mini-
cells within one of the dumbbell heads, then we can in-
fer that the weight of the minimum spanning tree in the
neighborhood of this dumbbell head must be large. (We
will make this intuition precise in Lemma 4.3 below.)
Rather than charging the error to the MST edge going
between this pair, we can instead charge the error to the
edges of the MST lying in the vicinity of this dumbbell
head. By keeping track of the number of mini-cells be-
ing generated, we can terminate the expansion process
as soon as the local weight of the spanning tree is large
enough to pay for the approximation error. We shall
show that the number of mini-cells needed to achieve
an ε-approximation grows as O(1/ε), not O

(
1/εO(d)

)
.

To implement this we introduce a second stopping
criterion to the decomposition process. Let γ ≥ 1
denote a parameter whose value will be fixed later in
the analysis. (For our best bound, γ = O(log 1

ε ).)



Algorithm 1: Approx-MST(P, ε)

1 Q(P )← a quadtree for P ;
2 Ψ(P )← a 2-WSPD of P ;
3 G← (P, ∅); B initialize G to an empty graph over P
4 foreach ((u, v) ∈ Ψ(P )) do B each WSP contributes an edge to G
5 U ← {u}; V ← {v} B start with the pair’s dumbbell heads

6 k ← 1;
7 while (k ≤ λ(ε) and max(|U |, |V |) ≤ γ/ε) do B expand until depth or node-count satisfied

8 U ← expand(U); V ← expand(V );
9 k ← k + 1;

10 C ← {(rep(u′), rep(v′)) : (u′, v′) ∈ U × V }; B collect all pairs of representatives

11 (p, q)← argmin(p,q)∈C ‖pq‖;
12 add edge (p, q) to G; B add the closest such pair to G

13 return MST(G);

We repeatedly expand the nonempty nodes of each
dumbbell head until either:

(i) the cells have side length at most ε · s(u)/4, or

(ii) the number of nonempty nodes exceeds γ/ε.

By condition (ii), the number of expanded nodes per
well-separated pair no longer involves exponential de-
pendencies on the dimension, but clearly the approx-
imation error on a per-pair basis is potentially much
higher than before.

To control the diameters of the cells of the decom-
position, define λ(ε) =

⌈
log2

4
ε

⌉
. In the while loop we

expand nodes within the dumbbell heads through at
most this many levels. If we reach this level of the de-
composition, the side lengths of the resulting cells are at
most ε · s(u)/4, which will satisfy the first termination
condition. See Algorithm 1 for the complete details. By
Lemma 2.2(ii), the graph G computed by this algorithm
is a spanning tree of P .

To establish the running time of this algorithm,
observe first that because the separation factor is a
constant, the quadtree and WSPD can be computed in
O(n log n) time. There are O(n) well-separated pairs,
each of which contributes one edge to G. The time
needed to process each well-separated pair (the body
of for-loop) is dominated by the time to extract the
closest pair (Lines 10 and 11), which is O((γ/ε)2). Thus,
it takes O(n(γ/ε)2) time to compute the edges of G.
Since G has O(n) edges, its MST can be computed in
O(n log n) time by any standard algorithm. Thus, the
overall running time is O(n(log n+ (γ/ε)2)). The value
of γ will be specified later.

Practical observations: Although it is conceptu-
ally simpler to present the algorithm as first computing
the WSPD and then visiting all the pairs of the WSPD,
these two simple algorithms can be elegantly merged

into a single algorithm. This is done by inserting the
foreach-loop (Line 4) at the point where the WSPD al-
gorithm detects that a pair of quadtree nodes (u, v) is
well-separated. Also, observe that the closest pair of
representatives for the nodes of U and V are computed
in O((γ/ε)2) time by brute force. A more practical ap-
proach would be to iteratively prune the pairs of U ×V
(based on inter-box distances), keeping only those that
could contribute to the final closest pair. While this
seems to be a good idea for any practical implementa-
tion, it does not improve our analysis of the worst-case
running time.

4 Basic Analysis

In this section we show that, subject to an appropriate
selection of value for γ, the output of Approx-MST(P, ε)
is a valid ε-approximation to MST(P ). We present a
basic analysis here, and we will present a more refined
analysis later in Section 5. The main result of this
section is given below.

Theorem 4.1. (Basic Analysis) For any fixed di-
mension d, algorithm Approx-MST computes an ε-
approximate EMST for a set of n points in Rd in
O(nε−2 log2 n

ε ) time and O(n) space.

The algorithm’s running time increases with γ,
but the approximation analysis requires that γ be set
sufficiently larger. In this section we will show that it is
possible to choose γ = O(log n

ε ) in order to achieve the
above running time. (The exact value will be specified
later.)

Consider a well-separated pair (u, v) that is pro-
cessed by the algorithm. Recall that (by our general-
ized representation of quadtree nodes) these nodes are
at the same level of the quadtree, and so their cells
have the same size. Suppose that the processing termi-



nates after k iterations of the for-loop of Algorithm 1
by condition (ii), that is, max(|U |, |V |) > γ/ε. We may
assume without loss of generality that |U | exceeds the
threshold. We say that the pair (u, v) is dense, and
more specifically it is dense at level `(u) + k. Otherwise
we say that the pair is sparse. Because the denseness of
a pair is determined by one of its two nodes, we some-
times abuse this notation by saying that a node u itself
is dense. The mini-cells associated with U (and with V
as well) are all of side length s(u)/2k.

In order to analyze the algorithm’s approximation
ratio, let T ∗ denote all the edges of MST(P ) and let
Ψ∗(P ) be the subset of well-separated pairs Ψ(P ) that
contribute an edge to T ∗. By Lemma 2.2(i), each
element of Ψ∗(P ) contributes exactly one edge to T ∗.
Let T ∗s and T ∗d denote a partition of T ∗ according to
whether the corresponding pair in Ψ∗(P ) is sparse or
dense, respectively.

The edges generated by sparse pairs behave in the
same manner as the edges computed in the simple
algorithm of Section 3.1, and the error is charged to the
corresponding MST edge. The error induced by each
dense pair will be charged to the weight of the spanning
tree in the neighborhood of the dense dumbbell head.
With this in mind, let us identify the edges to be charged
in terms of this classification. Since we add one edge
to G for each pair of Ψ(P ), there is an edge of G for
each pair of Ψ∗(P ). Let Ts and Td denote the edges
of G corresponding to the sparse and dense pairs of
Ψ∗(P ), respectively. Let T denote the subgraph of
G resulting from just these edges. (Note that T is
not the same as MST(G) but rather consists of the
edges of G corresponding to the well-separated pairs
of MST(P ).) By Lemma 2.2(ii), T is a spanning tree
of P . Since T is a connected subgraph of G, we have
wt(MST(G)) ≤ wt(T ). Thus, in order to establish our
approximation bound, it suffices to show that wt(T ) ≤
(1 + ε) ·wt(MST(P )). Before doing this, we present two
useful bounds. The first lemma bounds the error for the
sparse well-separated pairs.

Lemma 4.1. Given T ∗s and Ts defined above, wt(Ts) ≤(
1 + ε

2

)
· wt(T ∗s ).

Proof. Consider a sparse pair (u, v). Let (p∗, q∗) ∈ T ∗s
be the edge of MST(P ) from this well-separated pair,
and let (p, q) ∈ Ts denote the corresponding pair of
representatives chosen by Algorithm 1. By sparseness,
each nonempty node of the expansion has side length
at most ε · s(u)/4 and hence diameter ε

√
d · s(u)/4.

Following the same reasoning as in Section 3.1 (recall
Eq. (3.1)) but with half the diameter value, we obtain
‖pq‖ ≤

(
1 + ε

2

)
‖p∗q∗‖. Summing over all (p, q) ∈ Ts

and the corresponding pairs (p∗, q∗) ∈ T ∗s establishes

the result. �

As mentioned earlier, the analysis of the dense-
pair case relies on a charging argument, where the
error committed for each edge of Td is charged to the
weight of MST(P ) in the vicinity of one of the dumbbell
heads of the associated well-separated pair. This can
result in charging the same MST edges multiple time.
Our second lemma shows that this can be handled by
adjusting the value of the parameter γ.

Lemma 4.2. Given T ∗d and Td defined above, we may
choose γ = O(log n

ε ) such that wt(Td) − wt(T ∗d ) ≤
ε
2 · wt(MST(P )).

This second lemma requires more effort to prove,
and we will defer its proof until later. Assuming these
two lemmas for now, let us complete the analysis of the
approximation ratio. As an immediate consequence, we
have the following two bounds:

wt(Ts) ≤ wt(T ∗s ) +
ε

2
· wt(T ∗s )(4.2)

wt(Td) ≤ wt(T ∗d ) +
ε

2
· wt(MST(P )).(4.3)

The sum of the left-hand sides equals wt(T ). Since
wt(T ∗s ) ≤ wt(T ∗s ) + wt(T ∗d ) = wt(MST(P )), the sum
of the right-hand sides is at most (1 + ε)wt(MST(P )).
Combining this with the running time analysis of the
previous section establishes Theorem 4.1.

The remainder of this section is devoted to proving
Lemma 4.2. Consider a dense pair (u, v). Let (p, q) ∈ Td
denote the associated pair of representatives chosen by
Algorithm 1, and let (p∗, q∗) be the corresponding pair
from T ∗d . Without loss of generality, we may assume
that u is the dense node of the pair. Let `(u)+k denote
the level at which u is dense. Because (p, q) is the closest
pair of representatives, and the side lengths of the cells
from which they are chosen is s(u)/2k, the absolute error
committed by choosing (p, q) is at most twice the cell’s
diameter, that is,

‖pq‖ − ‖p∗q∗‖ ≤ 2
√
d · s(u)

2k
.

Let err(u) = 2
√
d·s(u)/2k denote this error term. (Note

that the value of k will generally differ for each dense
pair, but our analysis will be independent of k’s value.)
The absolute weight error for all the dense pairs is

wt(Td)− wt(T ∗d ) =
∑

(p,q)∈Td

(‖pq‖ − ‖p∗q∗‖).

Let D denote the set of dense nodes of the quadtree.
By Lemma 2.1(ii) there is a constant cπ (depending on



dimension) such that each node u ∈ D appears in at
most cπ distinct pairs of the WSPD, and therefore u
contributes at most cπ times to the error. Thus, we
obtain

wt(Td)− wt(T ∗d ) ≤ cπ ·
∑
u∈D

err(u).

Define Σ to be the right-hand side of the above inequal-
ity. To complete the proof, it suffices to show that

(4.4) Σ ≤ ε

2
· wt(MST(P )).

We will employ the following useful lower bound on the
weight of the MST based on counting the number of
nonempty cells. This was proved by Czumaj et al. [8],
but for the sake of completeness we present the result in
our particular context. Given a cell b of the quadtree,
define the restriction of MST(P ) to b to be the portion
of the MST (viewed as a set of line segments) that
intersect b.

Lemma 4.3. Consider a quadtree node u whose cell has
been decomposed into m nonempty quadtree boxes each
of side length s. There exists a constant c (depending
on the dimension) and a neighbor v of u such that the
weight of MST(P ) restricted to v’s cell is at least sm/c.

Proof. Let b denote u’s cell, and let B denote the set
of m nonempty quadtree boxes of side length s within
b (see Fig. 4(a)). It is possible to assign 2d colors to
these boxes in a generalized checkerboard fashion, so
that each pair of boxes of the same color is separated
by a distance of at least s (see Fig. 4(b)).

One of these color classes contains at least m/2d

boxes. Because the MST is connected, the portions
of the edges of the MST that lie outside these boxes
form a Steiner tree that connects them. Consider a
twice-around tour of this Steiner tree (that is, double
each edge and take an Euler tour). Trim each path
that travels outside of b to a subpath of length s (see
Fig. 4(c)). The result is a set of m/2d paths that lie
entirely within u’s neighborhood, where each path is of
length at least s. The total weight of these paths is at
least sm/2d. Allowing for the double-counting of MST
edges along these paths, the weight of the MST within
u’s neighborhood is at least sm/2d+1. Therefore, at
least one of the 3d boxes in b’s neighborhood (possibly
b itself) contains MST weight at least sm/

(
2d+13d

)
.

Setting c = 2d+13d yields the desired bound. �

Since u is dense at level `(u) + k, it can be de-
composed into at least γ/ε nonempty boxes, each of
side length s(u)/2k. By the above lemma, there is a

neighboring node v such that the weight of the MST
restricted to this node’s cell is at least

s(u)

2k
· γ
ε
· 1

c
=

γ

2cε
√
d
· err(u).

Letting wt(v) denote the weight of the MST restricted
to v’s cell, we have err(u) ≤ 2cε

√
d · wt(v)/γ. Observe

that any node v can be charged at most 3d times in this
manner, in particular by the nodes of its neighborhood.
Therefore, we have

Σ = cπ
∑
u∈D

err(u) ≤ 2 · 3dccπε
√
d

γ

∑
v∈Q(P )

wt(v).

The sum of wt(v) for all nodes v at any given level of
the tree is at most wt(MST(P )). By preconditioning,
the smallest cell is of size Ω(εn), and so the tree has
O
(

log n
ε

)
levels. Thus, there exists a constant c′ such

that

Σ ≤ c′

γ
· log

n

ε
· ε

2
· wt(MST(P )).

Therefore, by setting γ = c′ · log n
ε = O(log n

ε ) we
have Σ ≤ ε

2 · wt(MST(P )), as desired. Earlier, we
showed that the algorithm’s running time is O(n(log n+
(γ/ε)2)). Given our choice of γ, the running time is
O(nε−2 log2 n

ε ). This completes the proof of Lemma 4.2
and establishes Theorem 4.1.

5 Full Analysis

We observed in the previous section that the princi-
pal issue in analyzing the error from the dense well-
separated pairs is that the same edges of the MST are
multiply charged. This arises from two sources. First,
each cell is contained within a constant number cπ of
well-separated pairs. Second, each MST edge could be
charged by well-separated pairs arising at any of the
O(log n

ε ) levels in the quadtree. Clearly, the latter is
the more significant of the two.

The parameter γ in the Approx-MST is adjusted
to compensate for this overcharging. This parameter
controls the number of mini-cells that are generated
before declaring that a cell is dense. Increasing its value
results both in greater accuracy and higher processing
time. Since the processing time grows quadratically
with γ, we would like to keep its value as small as
possible. In the previous section we showed that it is
possible to choose γ = O(log n

ε ). Here we will give a
more precise analysis, which shows that it suffices to set
γ = O(log 1

ε ). Here is our main result.

Theorem 5.1. (Full Analysis) For any fixed di-
mension d, algorithm Approx-MST computes an ε-
approximate EMST for a set of n points in Rd in
O
(
n log n+

(
ε−2 log2 1

ε

)
n
)

time and O(n) space.
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Figure 4: Proof of Lemma 4.3.

The leading O(n log n) term accounts for computing
the quadtree and the WSPD. We will show that once
these have been computed, the remaining running time
is O

((
ε−2 log2 1

ε

)
n
)
. The analysis follows the same

structure as in the previous section. In particular,
we distinguish between sparse and dense well-separated
pairs. The sparse-pair analysis given in Lemma 4.1
is unchanged. The principal improvement is to the
dense-pair analysis of Lemma 4.2, which is given in the
following lemma.

Lemma 5.1. Recalling the definitions of T ∗d and Td
given just prior to Lemma 4.2, we may choose γ =
O(log 1

ε ) such that wt(Td)− wt(T ∗d ) ≤ ε
2 · wt(MST(P )).

The rest of this section is devoted to the proof.
Before getting into the details, let us begin with a high-
level overview. The analysis begins in the same way
as that of Lemma 4.2 up through Lemma 4.3. The
remainder involves establishing the upper bound on Σ
from Eq. (4.4), but based on the new value of γ.

Recall that at least one of the nodes of each dense
well-separated pair (u, v) is dense, and we assume this
node to be u. The function err(u) bounds the absolute
error committed at this node. The quantity Σ bounds
the sum of errors over all the dense nodes and accounts
for the overlap due to multiple well-separated pairs
sharing the same dumbbell head. The basic analysis
makes the simplifying but pessimistic assumption that
the restriction of MST(P ) to any leaf cell may be
charged equally by every one of its O(log n

ε ) ancestors.
In order for this worst-case to occur, a node must have
many ancestors that are dense. We will show that
by adjusting the constant factor in the definition of γ,
whenever this phenomenon occurs, the charges assessed
by successive ancestors decay exponentially with every
O(log 1

ε ) levels. It will follow that the total charge
is dominated asymptotically by just the first O(log 1

ε )

ancestors, and this is why the smaller value of γ suffices.
Also, because the resulting geometric series converges,
it is not necessary to bound the height of Q(P ). Hence,
the rounding step of the preconditioning is not needed.

In order to apply this level-based analysis of the
MST edge weights, we adopt an approach similar to that
of Lemma 4.3 by relating the weight of the edges being
charged to the sum of the side lengths of the quadtree
cells that intersect the edges of MST(P ). We define a
new quadtree, called Q(P ), based on the quadtree boxes
that intersect the edges of MST(P ). We then classify a
subset of the nodes of Q(P ) as bushy, which correspond
roughly to the dense nodes of Q(P ). In particular, we
show that for each dense node u of Q(P ), there is bushy
node of Q(P ) of equal side length among u’s neighbors.
We demonstrate the exponential drop-off in charges
within Q(P ) and then apply this node correspondence
to show that the charging argument applies to Q(P ) as
well.

Let smin denote the side length of the smallest leaf
cell of Q(P ), and consider a quadtree-aligned grid of
this side length. Let L denote the cells of this grid that
have a nonempty intersection with any edge of MST(P )
(see Fig. 5(a)). Let Q(P ) denote an (uncompressed)
quadtree built over the cells of L (see Fig. 5(b)). Given
a node u of Q(P ), let L(u) denote the elements of L that
lie within u’s cell. We say that u is nonempty if L(u)
is nonempty (or equivalently, if u’s cell has a nonempty
intersection with MST(P )). The principal purpose of
introducing Q(P ) is that we can relate the weight of
MST(P ) to the sum of side lengths of the cells of L,
which is just smin·|L|. (Note thatQ(P ) is not computed.
It is merely used in the analysis.)

Lemma 5.2. Given smin and L defined above, smin ·
|L| ≤ 2d+1 · wt(MST(P )).

Proof. As in the proof of Lemma 4.3, observe that it
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Figure 5: (a) The leaf cells L, (b) the quadtree Q(P ), and (c) the cells of an MST decomposition.

is possible to assign 2d colors to the cells of L so that
each pair of cells of the same color is separated by a
distance of at least smin. At least one of these color
classes contains at least |L|/2d cells. Because the MST
is connected, the portions of the edges of the MST that
lie outside these cells form a Steiner tree that connects
them. The total weight of a twice-around tour of this
Steiner tree is at most 2 · wt(MST(P )), and each cell is
joined to its successor on the tour by a path of length at
least smin. Summing up the lengths of these connecting
paths, we have smin · |L|/2d ≤ 2 · wt(MST(P )), from
which we conclude that smin · |L| ≤ 2d+1 ·wt(MST(P )).
�

Each nonempty leaf node u of Q(P ) intersects
MST(P ). Because Q(P ) and Q(P ) share the same
alignments and by the definition of smin, u’s cell contains
at least (and possibly equals) one cell of L. (Here, we
are thinking of u as a standard leaf node of Q(P ), not a
generalized node. This is because generalized leaf nodes
can be arbitrarily small.) It follows directly that the
spatial decomposition defined by Q(P ) is a refinement
of that of Q(P ). Because both trees cover the same
domain (the unit hypercube), we have the following
useful correspondence between the nodes of these trees.

Lemma 5.3. For every nonempty (generalized) node u
of Q(P ) whose cell size is at least smin, there exists a
nonempty node u′ of Q(P ) such that u and u′ share the
same cell.

Our analysis of the dense pairs will involve a charg-
ing argument. We charge the errors committed by our
algorithm to the nodes of Q(P ), and we then distribute
these charges to its leaves L. We will bound the total
charge received by any leaf node in terms of its side
length smin. For the sake of the charging argument,

we focus on nodes that carry a significant amount of
weight of the MST, relative to the side length of the
node’s cell. We will need to apply charging to groups
of nodes at various levels with disjoint cells. To do this,
we introduce a few useful concepts.

Given a node u of Q(P ), we define an MST de-
composition of u to be any subset V of u’s nonempty
descendants such that the sets L(v) for v ∈ V form a
disjoint cover of L(u). (An example of such a decompo-
sition is illustrated in Fig. 5(c).) Given an MST decom-
position V of u, define its edge weight, denoted s(V ),
to be the sum of the side lengths of its corresponding
cells, that is, s(V ) =

∑
v∈V s(v). We say that a node

u of Q(P ) is chargeable if for any MST decomposition
V of u, s(V ) ≥ s(u)/3d. Recall from Section 3.2 that
λ(ε) =

⌈
log2

4
ε

⌉
. Given a node u and an integer k,

where 1 ≤ k ≤ λ(ε), we say that u is bushy, and more
specifically that it is bushy at level `(u) + k, if the num-
ber of chargeable descendants of u at level `(u) +k is at
least γ/9dε, and k is the smallest value such that this is
true.

The following lemma provides a connection between
the dense nodes of Q(P ) and the bushy nodes of Q(P ).
It states that for each dense well-separated pair there is
a bushy node of Q(P ) that belongs to the neighborhood
of one of this pair’s dumbbell heads.

Lemma 5.4. Let (u, v) be a well-separated pair that is
dense, and let u be the dense node of the pair. Let u′

be the corresponding node to u in Q(P ) (which exists
by Lemma 5.3). Then there is a bushy node in the
neighborhood of u′ in Q(P ). Furthermore, if u is dense
at level `(u)+k then u′ is bushy at level `(u′)+k′, where
k′ ≤ k.

Proof. By definition of denseness, there exists k, 1 ≤
k ≤ λ(ε), such that u has at least γ/ε nonempty
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Figure 6: Proof of Lemma 5.4.

descendants in Q(P ) at level `(u) + k. The cells
associated with these nodes are each of side length
s′ = s(u)/2k (see Fig. 6(a)).

We can color these nodes using 3d colors such that
any two nodes of the same color have neighborhoods
that are disjoint from each other. Clearly, there exists
a color class that has at least γ/3dε nodes (shaded in
Fig. 6(a)). By Lemma 5.3, for each of these nodes there
exists a nonempty node in Q(P ) with the same cell. Let
V denote this set of nodes.

We assert that for every w ∈ V , at least one of the
nodes within w’s neighborhood is chargeable. To see
why, observe first that since each w (viewed as a node
of Q(P )) is nonempty, it contains a point p ∈ P . By
the connectivity of the MST, there is a path in the MST
that connects p to some point q that lies outside of w’s
neighborhood. Clearly, the L∞ distance between p and
q must be at least s′. Thus, there exists j, 1 ≤ j ≤ d,
such that p and q’s jth coordinates differ by at least
s′ (the vertical dimension in Fig. 6(b)). Consider the
subset of cells of any MST decomposition that covers
this path. The orthogonal projections of these cells onto
the jth coordinate axis cover an interval of length at
least s′, which implies that the sum of their side lengths
is at least s′. Therefore, for any MST decomposition of
the 3d nodes of w’s neighborhood, at least one of the
nodes has a total edge length of at least s′/3d, and so
this node is chargeable. Because the neighborhoods of
the nodes of V are disjoint, there are at least γ/3dε
chargeable nodes.

Note that the chargeable nodes need not be descen-
dants of u, because the neighborhoods of u’s descen-
dants may extend into u’s neighborhood. Among the
3d nodes in u’s neighborhood, at least one of them con-
tains at least (γ/3dε)/3d = γ/9dε chargeable nodes k
levels below it. This node satisfies the bushiness condi-

tion at level `(u) + k, and so it is bushy at some level
`(u) + k′, for k′ ≤ k. �

Next, we show how to relate the approximation
error in Q(P ) to the properties of Q(P ). Consider any
node u ∈ Q(P ) that is dense at some level `(u) + k. By
the above lemma, it is associated with a node u′ ∈ Q(P )
of equal size that is bushy at level `(u′) + k′, where
k′ ≤ k. Define err(u′) = 2

√
d · s(u′)/2k′ . Note that

this is the same as err(u′), but using the bushiness
level k′ rather than the denseness level k. Let B
denote the associated set of bushy nodes of Q(P ). For
each u′ ∈ B there are at most 3d dense nodes of Q
that could have chosen to be associated with u′ (those
nodes having u′ in their neighborhoods). Both err and
err are monotonically decreasing functions of level (of
denseness and bushiness, respectively), and therefore
err(u′) ≥ err(u). Recalling the WSPD overlap constant
cπ introduced earlier, define Σ = cπ

∑
u′∈B err(u′).

Thus, we have

(5.5) Σ ≤ 3d · Σ.

To complete the analysis of the dense-pair error, it
suffices to prove the following bound on Σ.

Lemma 5.5. Σ ≤ ε · wt(MST(P ))/(2 · 3d).

The remainder of this section is devoted to proving
Lemma 5.5. Our approach will be to apply a charge that
is proportional to err(u) to each node u ∈ B and then
distribute this charge among a subset of the nonempty
leaves of Q(P ) (that is, the cells of L(u)). We will show
that for each w ∈ L, the sum of charges assessed to
this node is at most proportional to ε · s(w)/c, for a
suitable constant c. By summing over all these leaves
and appealing to the upper bound of Lemma 5.2, we



will obtain the desired bound provided that c is chosen
properly.

For charging purposes, we partition the bushy nodes
B into groups. For 0 ≤ i < λ(ε), define Bi to be
the subset of bushy nodes u ∈ B such that `(u) ≡ i
(mod λ(ε)). Let us fix an arbitrary value of i, and let
u0 be an arbitrary node of Bi. Let `(u0)+k0 be the level
at which u0 is bushy. Define u0’s charge to be s(u0)/2k0 ,
which we denote by χ(u0). We propagate this charge to
a subset of the nonempty leaves descended from u0 by
the following iterative process. Initially u0 is the only
node with a charge. For any node w that receives a
charge from u0, let χu0

(w) denote this charge.

(1) Let u be a bushy descendant of u0 (possibly u0

itself) such that χu0(u) 6= 0. Let `(u) + k be
the level at which u is bushy. By definition
of bushiness, there are at least γ/9dε chargeable
descendants of u at level `(u) + k. Distribute
χu0

(u) uniformly over these descendants so that
each receives a charge of at most 9d ε · χu0

(u)/γ.

(2) Let v denote any of the descendants of u that
receives a charge by rule (1). Distribute this charge
to a subset of v’s nonempty descendants as follows.
Consider the set of paths (including possibly the
empty path) that descend from v until first reaching
a node of Bi or a nonempty leaf node. Let V (v)
denote the subset of nodes at which these paths
terminate. (If v itself is in Bi or is a leaf, then
V (v) = {v}.) It is easy to see that V (v) is an MST
decomposition of v. Recall that s(V (v)) is the sum
of side lengths of the boxes of V (v). For each u ∈
V (v), we assess it a charge of χu0(v) ·s(u)/s(V (v)).

Observe that each node charged by rule (1) propa-
gates its charge to a subset of its descendants, and each
of these nodes then propagates this charge to a subset
of its descendants by rule (2). Since each non-leaf node
charged by rule (2) is in Bi, this charge will again be
propagated by rule (1). It follows that all of u0’s initial
charge will be distributed to a subset of its descendant
leaves. The following lemma shows that if the value of
γ (in the definition of dense nodes) is Ω(log 1

ε ), then the
sum of charges distributed to any leaf is proportional to
ε times its side length.

Lemma 5.6. For any positive constant c′, we may
choose γ = O(log 1

ε ) such that for all w ∈ L∑
u∈B

χu(w) ≤ c′ ε · s(w) = c′ ε · smin.

Proof. Consider any i, 0 ≤ i < λ(ε), any node u0 ∈ Bi,
and any nonempty leaf node w that receives some of

u0’s charge. From the charging rules, there exists a
sequence of nodes 〈u0, v1, u1, v2, u2, . . . , vm, um〉, such
that um = w and for 1 ≤ j ≤ m, vj receives its charge
from uj−1 by rule (1), and uj receives its charge from vj
by rule (2). Note that these nodes are not necessarily
distinct, since by rule (2) we may have uj = vj , but this
cannot happen for rule (1), and so vj+1 6= uj .

We will first show that there exists a constant c such
that χu0

(w) ≤ ε · s(w)(c/γ)m. To do this we will show
by induction that, for 1 ≤ j ≤ m,

χu0(vj) ≤ ε · s(vj)
(
c

γ

)j
1

3d
(5.6)

χu0
(uj) ≤ ε · s(uj)

(
c

γ

)j
.(5.7)

To start, recall that u0 is bushy at level `(u0) + k0.
By rule (1) u0 distributes its initial charge of s(u0)/2k0

uniformly among at least γ/9dε descendants, each of
which is chargeable and resides k0 levels below u0.
Since v1 is one of these nodes, it follows that s(v1) =
s(u0)/2k0 . Therefore, for any c ≥ 27d we have

χu0
(v1) ≤ s(u0)/2k0

γ/9dε
=

ε · s(v1) · 9d
γ

≤ ε · s(v1)

(
c

γ

)
1

3d
.

Assuming inductively that the bound of Eq. (5.7)
holds for vj , we will show that it also holds for uj . Let V
denote the MST decomposition from charging rule (2).
Because vj is chargeable, we have s(V ) ≥ s(vj)/3

d. By
this rule the charge received by uj is

χu0(uj) = χu0(vj) ·
s(uj)

s(V )

≤
(
ε · s(vj)

(
c

γ

)j
1

3d

)
s(uj)

s(vj)/3d

= ε · s(uj)
(
c

γ

)j
.

Again, assuming inductively that the bound of
Eq. (5.6) holds for uj , for j < m, we will show that
it also holds for vj+1. Because j < m, uj is not
a leaf, and hence uj ∈ Bi. This implies that uj is
bushy. Let `(uj) + kj denote the level at which it is
bushy. By rule (1), uj distributes its charge of χu0(uj)
uniformly among at least γ/9dε descendants that lie kj
levels below it. By definition, λ(ε) ≤ lg 1

ε + 3. By
the definition of bushiness (which is derived from the
definition of denseness) kj ≤ λ(ε). Therefore,

s(vj+1) =
s(uj)

2kj
≥ s(uj)

2λ(ε)
≥ ε · s(uj)

8
.



Therefore, for any c ≥ 8 · 27d, we have

χu0(vj+1) ≤ χu0
(uj)

γ/9dε

≤
(
ε · s(uj)

(
c

γ

)j)
9dε

γ

≤ ε · s(vj+1)

(
c

γ

)j
8 · 9d
γ

≤ ε · s(vj+1)

(
c

γ

)j+1
1

3d
.

This establishes Eqs. (5.6) and (5.7). Applying this to
w = um, we have χu0

(w) ≤ ε · s(w)(c/γ)m, as desired.
Next, we will bound the total charge received by w

for all the nodes of Bi. Consider two nodes u0, u
′
0 ∈ Bi

that distribute a charge to w. Since these are distinct
ancestors of w, we may assume that u0 is a proper
ancestor of u′0. By the above analysis, there exist
integers m and m′ such that χu0

(w) ≤ ε · s(w)(c/γ)m

and χu′
0
(w) ≤ ε · s(w)(c/γ)m

′
. We will show that

m > m′. Let 〈u0, v1, . . . , um〉 and 〈u′0, v′1, . . . , u′m′〉
denote the respective sequences of nodes in the above
charge-distribution analysis, where w = um = u′m′ .
Because both u0 and u′0 are in Bi, their levels in the
quadtree differ by at least λ(ε). In the analysis of the
charge distribution for u0, by rule (1) its first chargeable
node v1 lies at most λ(ε) levels below it, and therefore
v1 is a (not necessarily proper) ancestor of u′0. The
next node in the sequence u1 is the first descendant of
v1 in Bi, implying that u1 is a (not necessarily proper)
ancestor of u′0. If u1 = u′0, then m′ = m − 1. (This
follows from the fact that the nodes selected in the
charging process do not depend on any properties of
ancestor nodes, just descendants.) If not, we apply the
same argument inductively to u1 until we find the first
j ≥ 1 such that uj = u′0. It follows that m′ = m − j,
and so m > m′ as desired.

Because each node of Bi that charges w has a
different power of the (c/γ) term in the charging bound,
it follows that the total charge received at w from all
these nodes is at most

∑
u∈Bi

χu(w) =

∞∑
m=1

ε · s(w)

(
c

γ

)m
= ε · s(w)

∞∑
m=1

(
c

γ

)m
.

If γ ≥ 2c, then the above summation is at most 2c/γ.

By summing over all values of i, 0 ≤ i < λ(ε), we obtain∑
u∈B

χu(w) =
∑

0≤i<λ(ε)

∑
u∈Bi

χu(w)

≤ λ(ε) · ε · s(w) · 2c

γ
.

By setting γ = 2cλ(ε)/c′, which isO(log 1
ε ) and recalling

that s(w) = smin we achieve the desired bounds. �

By summing up the charges over all the leaves L of
Q(P ) we obtain∑

u∈B
χ(u) ≤ c′ ε · smin · |L|.

By combining this with Lemma 5.2, we obtain the
following bound on the total charge.

Lemma 5.7. For any positive constant c′, we may
choose γ = O(log 1

ε ) such that∑
u∈B

χ(u) ≤ 2d+1c′ ε · wt(MST(P )).

To complete the proof of Lemma 5.5, recall the
WSPD overlap constant cπ (defined just prior to
Eq. (4.4)). Select any c′ ≤ 1/(cπ · 8 · 6d

√
d). For each

node u ∈ Q(P ) that is bushy at level `(u) + k, recall
that err(u) = 2

√
d ·s(u)/2k and χ(u) = s(u)/2k. By the

definition of Σ and applying Lemma 5.7, we have

Σ = cπ
∑
u∈B

err(u)

= cπ
∑
u∈B

2
√
d · s(u)

2k
= cπ2

√
d
∑
u∈B

χ(u)

≤ cπ2
√
d · (2d+1c′ ε) · wt(MST(P ))

= c′cπ · 8 · 6d
√
d

(
ε · wt(MST(P ))

2 · 3d
)

≤ ε · wt(MST(P ))

2 · 3d ,

as desired.

By combining Lemma 5.5 with Eq. (5.5) we obtain

Σ ≤ 3d · Σ ≤ ε

2
· wt(MST(P )),

which as shown in Eq. (4.4) suffices to complete the
error analysis for the dense pairs. By combining this
with the analysis of the sparse pairs from Lemma 4.1,
we complete the proof of Theorem 5.1.



6 Concluding Remarks

We have presented an algorithm, which given a set of
n points in Rd, computes an ε-approximate EMST in
time O

(
n log n +

(
ε−2 log2 1

ε

)
n
)
. This is the first algo-

rithm for computing approximate EMSTs (not just the
weight) that eliminates all exponential ε dependencies.
The algorithm is simple and deterministic, relying on
nothing more than a compressed quadtree data struc-
ture. Subject to a minor change in some of the algo-
rithm’s parameters, it can compute an ε-approximation
to the minimum spanning tree in any Minkowski norm
(such as the L1 and L∞ norms) in the same running
time.

Note that our algorithm does not eliminate all
exponential dependencies on dimension, because the
big-O notation conceals constant factors of the form
O(1)d. The analysis of Section 5 suggests that these
constants are quite large. We hasten to add that these
are worst-case values, and we have made no attempt to
optimize their values.

Our algorithm achieves its efficiency by being slop-
pier in approximating bichromatic closest pairs between
well-separated pairs in situations where we can infer
there is significant EMST weight in the vicinity of the
well-separated pair. This sloppiness implies that certain
local properties of the EMST are not necessarily well
approximated. For example, it is well known that the
exact EMST is the minimum bottleneck spanning tree,
meaning that it minimizes the maximum edge length.
Our algorithm does not produce an ε-approximation to
the bottleneck EMST. (It is easy to show that it pro-
duces an O(ε1/d)-approximation.) It is an interesting
open problem as to whether it is possible to eliminate
exponential ε dependencies in computing the approxi-
mate the minimum bottleneck spanning tree.

The exact EMST is also known to contain an edge
between the closest pair of points of P . It can be shown3

that our approximate EMST shares this the property.
An interesting question is which order statistics of
EMST edge lengths can be well approximated without
incurring exponential ε dependencies.
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3This follows from the well-known fact that if p and q are the
closest points of P , then in any 2-WSPD of P , there must be a

well-separated pair ({p}, {q}) containing just these points. Hence
the edge (p, q) will be added to the graph G of Approx-MST.
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