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1 Introduction

Clustering is an important problem, with applications
in areas such as data mining and knowledge discovery
[6], data compression and vector quantiation [8], and
pattern recognition and pattern classification [5]. One
important class of clustering problems is given a set
of n data points in real d-dimensional space, Rd, and
an integer k. The problem is to determine a set
of k points Rd, called centers, that minimizes the
mean squared distance from each data point to its
nearest center. This problem is closely related to other
clustering problems, such as the k-medians problem
[2], in which the objective is to minimize the sum
of distances, and the k-center problem [1], in which
the objective is to minimize the maximum distance.
The results of Arora, Raghavan and Rao [2] can be
extended to this problem, implying the existence of
a polynomial time approximation scheme, but this
algorithm is quite complex. Also see Hochbaum [9] and
Jain and Dubes [11] for a more general description of
clustering problems.

One of the most popular heuristics for computing
centers for minimizing the squared-error distortion is
called the k-means algorithm [12, 7]. It is a simple
iterative algorithm, and it may be used either for
computing an initial set of centers or for producing a
local improvement to a given set of centers. Here is how
it works. Given any set of k centers, for each center
ci, let Ri denote the set of data points for which ci
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is the nearest neighbor. For the next iteration of the
algorithm, replace ci with the centroid of Ri. These
two steps are repeated until some some convergence
conditions have been met. (See [14] for discussion of
its statistical and convergence properties).

One problem with k-means is that it takes a long
time to run. There are two reasons for this. First
it is often applied in moderate to high dimensional
spaces, and computing nearest neighbors efficiently in
such spaces (without resorting to brute-force search)
is not a trivial problem. The second reason is that
often many iterations are needed until the algorithm’s
termination conditions are satisfied.

We present an approach for improving the efficiency
of the k-means algorithm. Our approach is motivated
by an observation made by some researchers using
the k-means algorithm [10]. After an initial phase of
rapid movement of the center points, the algorithm
tends to settle into a long phase where the center
points move only very slowly. This suggests that
a smart algorithm should attempt to update nearest
neighbors incrementally after the centers move, rather
than recompute them from scratch each time. We
present an algorithm for doing this, and we analyze this
algorithm as a function of the distances that the centers
move. We have implemented this algorithm, and will
present empirical results in a more complete paper.

2 Algorithm Overview

In normal nearest neighbor searching, it is common to
preprocess a set of data points so that nearest neighbor
queries can be answered for a set of query points. In our
context, our center points play the role of the data point
in the nearest neighbor search, our data points play the
role of the query points in nearest neighbor searching.
Rather than design a dynamic data structure in which
to store the moving center points, our approach will be
to reverse the standard roles, and instead to build a
data structure for the larger static set of data points,
and to move the smaller set of center points through
this structure.
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The data structure in which the n data points are
stored is a balanced box-decomposition tree (or BBD-
tree) [3]. Each node of the tree is naturally associated
with a rectangular region of space, called a cell. The
tree and the associated decomposition of space can
be constructed in O(n log n) time. As part of this
preprocessing, for each node in the tree, we compute
the centroid of the points in the cell, weighted by the
number of points in the cell.

To compute the nearest neighbors efficiently, we
apply the following simple recursive algorithm. For each
cell of tree we maintain a set of candidate centers. These
are the center points that might serve as the nearest
neighbor for some point lying within the cell. These
candidates can be computed as follows. For each cell,
we compute the candidate c closest to its midpoint.
Then for each other candidate, if the cell lies entirely
on c’s side of the bisecting hyperplane between c and
this candidate, we remove this candidate. If a node is
associated with a single candidate, then this center is
the nearest neighbor of all the associated data points.
The weighted node centroid is assigned to this center.
Otherwise we recurse on its children. If a leaf node
is reached, then we compute the distances to all its
candidates, and assign the point to its nearest center.

To update nearest neighbors after the centers have
moved with each iteration, we model this as a kinetic
process, as if the centers move continuously in time (see,
e.g. [4]). Following their general approach, we maitain
a set of certificates, whose validity at any time implies
the correctness of the current structure. As centers
move, certificates may be violated. Since the centers do
not necessarily move predictably (e.g. along algebraic
curves), we cannot predict when a certificate will be
violated. So we compute an upper bound the movement
of each point before any of its certificates is violated.
As each of these events is triggered, we test the validity
of the certificate, and if violated we make appropriate
updates to the data structure.

3 Data Sensitive Analysis

The amount of computation performed in each iteration
of the above k-means algorithm will depend on the
distances by which the centers move. Traditional
worst-case analysis is inappropriate here, since we are
interested in the case where the movement is very small.
Instead, our analysis is based in part on a parameter r,
which is defined to be the maximum distance that any
center moves. We show that number of cells in the BBD-
tree that are visited by the algorithm, is proportional
to an intrinsic geometric quantity, which intuitively will
be small for typical applications.

This quantity is defined as follows. For each center

ci, define Vi(r) to be the set of points in p ∈ Rd such
that dist(p, ci) + r ≤ dist(p, cj) − r for all j 6= i. Notice
that Vi(0) is just the Voronoi cell of ci, and Vi(r) is
a subset of this cell. Let V (r) = Rd \ ∪i Vi(r), be
the complement of all these sets. The main observation
is that only those nodes of the BBD-tree whose cells
intersect V (r) need to be visited. Following the same
sort of analysis used in [13], it can be shown that the
number of nodes visited in the BBD-tree is proportional
to the simple-cover complexity of V (r).
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