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Abstract Traffic management systems of the near future will be able to exploit com-
munication between vehicles and autonomous traffic control systems to significantly
improve the utilization of road networks. In this work, a novel game-theoretic model
for the traffic management of vehicles in intersections is introduced. A core concept
from game theory that captures the important interplay between independent deci-
sion making and centralized control is the notion of a correlated equilibrium. We
characterize the correlated equilibria under this model, yielding interesting connec-
tions to maximum-weight independent sets in graphs. We develop efficient algo-
rithms for computing optimal correlated equilibria and demonstrate through simu-
lations the effectiveness of our algorithms for improving traffic flow.

1 Introduction

In this paper, we describe a model for intersection management using game-
theoretic principles. The core of our model rests on the idea of a correlated equi-
librium (CE) (see Section 2 for a formal definition). Here, the actions of agents are
entrusted to an external entity, whose decisions – which may be probabilistic – sat-
isfy the property that it is not in the interest of any agent to unilaterally deviate from
the recommendations of this entity. In the context of traffic, drivers entrust their
decisions to the traffic signals. It therefore makes intuitive sense that an intelligent
traffic manager should use a CE as the basis for deciding how to best direct traffic.

R. P. Adkins and D. M. Mount
Department of Computer Science, University of Maryland, College Park, Maryland 20742, USA
e-mail: {radkins2,mount}@umd.edu

A. A. Zhang
Montgomery Blair High School, Silver Spring, Maryland 20901, USA
e-mail: alizhang@mbhs.edu

1



2 R. P. Adkins, D. M. Mount, and A. A. Zhang

Other game-theoretic metrics exists, but are not used in this paper (see the work of
Blum et al. [2]).

Our model incorporates a vehicle-to-infrastructure (V2I) communication proto-
col (see [8] for an approach to traffic management using V2I technology). We as-
sume a V2I system that allows (a) vehicles to communicate their intended paths
(e.g., turn left, go straight, turn right) and request permission; and (b) the infras-
tructure to perform computations and send permission approval. The Autonomous
Intersection Management (AIM) project has demonstrated how an intersection man-
agement system can be designed in the case of fully autonomous vehicles [4]. We
compare our algorithms for connected vehicles against AIM’s reservation-based al-
gorithm for autonomous vehicles in Section 6. The AIM group as well as Talebpour
et al. show the advantages of game theory in modeling driver incentives and defin-
ing metrices for analysis (see [3] and [10]). Even so, Carlino et al. create a surro-
gate incentive (a currency used by vehicles) to support their game theoretic model,
whereas our approach models driver incentives directly through a function of delay
the driver has suffered. The work by Papadimitriou and Roughgarden in designing
time-efficient algorithms for computing CE in games that yield space-efficient rep-
resentations served as early theoretical reassurance that CE as a solution concept
could be a computationally viable choice [7].

2 Definitions

We will first introduce some terminology and notation from the field of game theory
(see, e.g., [6] for further information). A player is a rational entity with personal
incentives. Let n denote the number of players. The ith player can choose its actions
from a strategy set, denoted Si. Let S = S1×·· ·×Sn denote the strategy space. An
element s = (s1, . . . ,sn) ∈ S is a strategy profile. When dealing with the ith player,
it will be convenient to separate the ith component of the profile from the others.
Letting s−i = (s1, . . . ,si−1,si+1, . . . ,sn), we will represent s as (s−i,si). Define S−i
analogously.

Given a strategy space S, a utility function u : S→ R is a function, where u(s)
intuitively measures the “benefit” of playing the strategy profile s.

An n-player game G = (S,U) is defined to be a strategy space S = S1×·· ·×Sn
and a set U = {u1, . . . ,un} of utility functions. Si and ui denote the strategies and
utilities associated with player i.

The Nash equilibrium is the traditional standard for analyzing the choices of
rational players in game theory. A generalization of the Nash equilibrium, which
more accurately reflects situations where a centralized controller (in our case, the
traffic system) can recommend strategy choices, is the correlated equilibrium. This
is defined to be a probability distribution characterized by the random vector X =
(X1, . . . ,Xn) taking on values in S such that for every player i and for every pair of
strategy choices si,s′i ∈ Si,
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∑
s−i∈S−i

(
ui(s−i,si)−ui(s−i,s′i)

)
Pr[X = (s−i,si)] ≥ 0, (1)

where X = (X−i,Xi) is defined analogously to s = (s−i,si). That is, X satisfies the
property that no player can increase its expected utility by unilaterally deviating
from X’s value. In contrast to the Nash equilibrium, which requires exponential
time to compute in the worst case, a CE can be computed in polynomial time [7].
Given a global utility function u, a CE maximizing u in expectation is called an
optimal correlated equilibrium.

A useful concept for expressing games succinctly is a graphical game. Each
player’s utility depends only upon a subset of the other players, and these depen-
dencies are represented as a graph in which an edge (u,v) exists when the utilities
of players u and v depend upon each other. This property, which will hold for our
formulations, reduces the complexity of a game’s description, and hence decreases
the time needed to compute CE. A treatment of CE in graphical games is given
in [5].

3 Overview of Our Traffic Model

Each vehicle has an intended path through a single intersection. If two paths in-
tersect, these vehicles should avoid entering the intersection at the same time (see
Fig. 1(a)). We model each path as a node in a conflict graph, where two intersecting
paths are connected by an edge (see Fig. 1(b)).

(a) (b)

p1

p2
p4

p3

p1

p2

p3

p4

Fig. 1 (a) Configuration of paths and (b) conflict graph

The paths serve as convenient surrogates for representing the vehicles’ incen-
tives. Therefore, the paths are the players in the game for this model. At any time, a
path can either be “on” or “off”, corresponding to whether vehicles traveling along
the path are permitted through the intersection. It is the job of a system called the
intersection manager to decide from one time interval to the next which paths are
to be switched on and which are switched off. With an appropriate discretization of
time, the intersection manager can alter its recommendation at periodic intervals.

Given paths p1, . . . , pn through an intersection, each path has the strategy set
{0,1}, where 0 corresponds to “off” (or “stop”) and 1 to “on” (or “proceed”). Hence,
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the strategy space for this model is simply {0,1}n. Let δ (pi) be a positive number
representing the sum of delays for vehicles traveling along pi. Define pi’s utility
ui : {0,1}n→ R as

ui(s) =


0 if si = 0
δ (pi) if si = 1 and no other “on” path intersects pi

− f (pi) otherwise,

where f is some appropriate positively valued function. A collision is an undesir-
able event, justifying the negative utility for crossing paths. (Traffic management
systems like AIM [4] may allow vehicles with intersecting trajectories to enter the
intersection at the same time, but it assumes complete control of vehicle motions,
thus preventing collisions from occurring.) With the intention to provide a balance
between fairness and delay minimization, it seems natural to have the intersection
manager calculate an optimal CE with respect to the global utility u = ∑i ui then
sample from this distribution for permitting vehicles through the intersection.

4 Correlated Equilibria in Independent Set Games

An independent set in a graph is any subset of vertices that share no edge in com-
mon. Given the goal of avoiding collisions, it is natural that the strategies suggested
by an intersection manager should correspond to independent sets in the conflict
graph. Based on this principle, we introduce the concept of an independent set
game. The possible profile vectors s = (s1, . . . ,sn) ∈ {0,1}n are in one-to-one cor-
respondence with subsets of vertices of the conflict graph G, where vertex i is in-
cluded in the subset if and only if si = 1. We can assert s ∈ IS(G), where IS(G)
denotes the collection of independent sets in G. We will denote vertex i’s neighbor-
hood as Ni = { j | (i, j) is an edge in G}. Finally, we will write Ni(s) = ∑ j∈Ni s j to
mean the sum of vertex i’s neighbors in s. Note that Ni(s) = 0⇔ ∀ j∈Ni s j = 0 and
Ni(s)> 0⇔∃ j∈Ni s j = 1. Vertex i’s utility can therefore be expressed as

ui(s) =


0 if si = 0
ai if si = 1 and Ni(s) = 0
−bi if si = 1 and Ni(s)> 0,

where ai,bi > 0.
It is clear that our traffic model satisfies the definition of an independent set game.

Given an intersection conflict graph, we will formulate the behavior of vehicles
through an intersection as a graphical game. This is valid since, by the definition of
ui in the model, the utility of path pi depends only on the decisions of its neighbors
in the conflict graph that is, the intersecting paths.
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As argued in Section 3, it will be useful to characterize the CEs and optimal CEs
that can arise in an independent set game. We consider two types of independent
set games. The first type, a finite independent set game, applies when bi < ∞. The
second type, an infinite independent set game, is the limiting case bi → ∞ as an
extension of the finite case. Formally, given any positive sequence bi(n) for n ≥ 1
such that limn→∞ bi(n) = ∞, we require that there exists an N such that the CE
constraints hold for all bi(n) where n≥N. For the traffic application, this is a natural
condition where a collision between two vehicles is assigned an infinitely high cost.

4.1 Finite Case

We first consider the finite case. By the definition of a CE we have the following.

Lemma 1. A random vector X is a correlated equilibrium of a finite independent
set game if and only if X satisfies

Pr[Xi = 1,Ni(X) = 0] ≥ bi

ai
·Pr[Xi = 1,Ni(X)> 0] (2)

Pr[Xi = 0,Ni(X) = 0] ≤ bi

ai
·Pr[Xi = 0,Ni(X)> 0]. (3)

Proof. For each vertex i, there are two nontrivial CE constraints on X (following
from Eq (1)).

∑
s−i∈S−i

(ui(s−i,1)−ui(s−i,0))Pr[X = (s−i,1)] ≥ 0

∑
s−i∈S−i

(ui(s−i,0)−ui(s−i,1))Pr[X = (s−i,0)] ≥ 0.

By unfolding the definition of ui, the first inequality becomes

∑
s−i∈S−i

(ui(s−i,1)−ui(s−i,0))Pr[X = (s−i,1)] ≥ 0

∑
s−i∈S−i

ui(s−i,1)Pr[X = (s−i,1)] ≥ 0

ai ∑
s−i:Ni(s−i)=0

Pr[X = (s−i,1)]−bi ∑
s−i:Ni(s−i)>0

Pr[X = (s−i,1)] ≥ 0

aiPr[Xi = 1,Ni(X) = 0]−biPr[Xi = 1,Ni(X)> 0] ≥ 0,

and hence Eq (2) holds. By analogous algebra, Eq (3) also holds.

Given that bi denotes the penalty incurred by allowing the possibility of a col-
lision, it is natural to ask whether there is some sufficiently large finite value of bi
that guarantees that X only evaluates to independent sets? Does an answer to this
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question require non-trivial restrictions on G? Even though it seems natural to con-
jecture that such non-trivial requirements are necessary, the answer is, surprisingly,
contrary.

Theorem 1. If a finite independent set game with graph G has at least one edge, then
there exists a correlated equilibrium X for which Pr[X = s]> 0 for some s /∈ IS(G).

Proof. We will explicitly construct a distribution with the desired property and show
that it satisfies Lemma 1. Let SMIS be a finite set of independent sets that satisfies
the property: For each v ∈ G, v ∈ s for some s ∈ SMIS. Let m = |SMIS|. Define

b
a+mb

= max
1≤i≤m

bi

ai +mbi
.

Note that this implies
b
a

= max
1≤i≤m

bi

ai
.

The following distribution is a CE.

∀s ∈ SMIS, Pr[X = s] =
b

a+mb

Pr[X = (1, . . . ,1)] =
a

a+mb
.

This is indeed a valid distribution since the values are all positive and

a
a+mb

+ ∑
s∈SMIS

b
a+mb

= 1.

First we check that Eq (3) is satisfied. Note that if Xi = 0, then X ∈ SMIS and hence
(X−i,1) /∈ IS(G) by maximality of X . Thus, Pr[Xi = 0,Ni(X) = 0] = 0 for all i,
implying Eq (3) is satisfied. To see that Eq (2) is satisfied, observe

Pr[Xi = 1,Ni(X) = 0]≥ Pr[X = s] =
b

a+mb
=

b
a

a
a+mb

=
b
a

Pr[X = (1, ...,1)] =
b
a

Pr[Xi = 1,Ni(X)> 0]

≥ bi

ai
Pr[Xi = 1,Ni(X)> 0]

where s is any s ∈ SMIS with i ∈ s.

From Theorem 1, we see that it is not the case that there are a small number of
adversarial Gs having some CE that recommends a non-independent set with posi-
tive probability. In fact, all graphs that contain a non-independent set are associated
with such a CE. Hence, no finite value bi can yield Theorem 2, even when imposing
non-trivial restrictions on G.
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Example Application of Theorem 1
Suppose G is as in Fig. 2 and bi = 2ai for all i. Then, the theorem says we have
a distribution over the sets in Fig. 3. In particular, setting Pr[X = (0,1,0)] =
Pr[X = (1,0,1)] = 2/5 and Pr[X = (1,1,1)] = 1/5 – as in the proof of the the-
orem – guarantees a CE. This is true even through 1/5 of the time the system
recommends a non-independent set.

p2p1 p3

Fig. 2 An example graphical game graph.

p2p1 p3 p2p1 p3 p2p1 p3

Fig. 3 Strategy vectors with non-zero probabilities in a particular CE.

4.2 Infinite Case

We now consider the infinite case. Our analysis of this case will make use of a prop-
erty of collections of independent sets. A collection of independent sets {V1, . . . ,Vn}
is said to be mutually maximal if, for all Vi and vertices v, it holds that v /∈Vi implies
there is some Vj such that Vj ∪{v} is not independent. Note that {V1} is mutually
maximal if and only if V1 is a maximal independent set. See Fig. 4 for an example of
a set of mutually maximal independent sets in which no independent set is maximal.

p2p2 p2 p2

p1

p3

p4

p1

p3

p4

p1

p3

p4

p1

p3

p4

Fig. 4 Mutually maximal independent sets where no single independent set is maximal.

Given this concept, we can characterize the distributions that are CE.

Theorem 2. A random vector X is a correlated equilibrium of an infinite indepen-
dent set game if and only if X evaluates to mutually maximal independent sets in the
game graph.

Proof. From Lemma 1, we require for each vertex i and positive integer n≥ N
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Pr[Xi = 1,Ni(X) = 0] ≥ bi(n)
ai

Pr[Xi = 1,Ni(X)> 0]

Pr[Xi = 0,Ni(X) = 0] ≤ bi(n)
ai

Pr[Xi = 0,Ni(X)> 0],

which is equivalent to

Pr[Xi = 1,Ni(X)> 0] ≤ ai

bi(n)
Pr[Xi = 1,Ni(X) = 0]

Pr[Xi = 0,Ni(X)> 0] ≥ ai

ai +bi(n)
Pr[Xi = 0],

which is then equivalent to

Pr[Xi = 1,Ni(X)> 0] = 0 (4)
Pr[Ni(X)> 0|Xi = 0] > 0 or Pr[Xi = 0] = 0. (5)

Unlike the finite case, the infinite case always disallows non-independent sets,
since Eq. (4) dictates that a CE can only recommend independent sets in G. Eq. (5)
dictates that a CE must either recommend some vector that, upon including i, is
not an independent set or else always recommend that i be included. Together, the
inequalities dictate that X forms a CE if and only the set of s’s with positive proba-
bilities are mutually maximal independent sets.

In the context of the example in Fig. 1, a CE could be a probability distribution
over the maximal independent sets in Fig. 5. But, the mutually maximal independent
sets need not be individually maximal, as Fig. 4 shows.

(a) (c)

p1

p2

p3

p4

p1

p2

p3

p4

(b)

p1

p2

p3

p4

Fig. 5 Maximal independent sets of conflict graph in Fig. 1(b)

4.3 Optimal CE

After exploring the nature of equilibria in independent set games, one may wonder
how the optimal CE behave. We will set the global utility function as u = ∑i ui and
weight each vertex i in the graph by ai. The ensuing result is quite interesting and
holds for both finite and infinite independent set games.
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Theorem 3. A random vector X is an optimal correlated equilibrium of an indepen-
dent set game with respect to the global utility u = ∑i ui if and only if X evaluates to
maximum-weight independent sets in the weighted game graph.

Proof. First, consider a finite independent set game with some equilibrium repre-
sented by the random vector X . Then, the expected global utility is

E[u(X)] = ∑
i

E[ui(X)]

by linearity of expectation. Theorem 1 says that we could have non-independent sets
in the finite case. For any s /∈ IS(G), we can remove vertices which contribute nega-
tively to u(s) from s until the remaining vertices s′ ⊂ s form a maximal independent
set. ui(s)≤ ui(s′) since

ui(s′)−ui(s) =



ai +bi if si = 1,s′i = 1,Ni(s)> 0
0 if si = 1,s′i = 1,Ni(s) = 0
bi if si = 1,s′i = 0,Ni(s)> 0
0 if si = 1,s′i = 0,Ni(s) = 0
0 if si = 0,s′i = 0

for every i. Therefore, we can form a new equilibrium X ′ where we set Pr[X ′ = s] =
0 and Pr[X ′ = s′] = Pr[X = s′]+Pr[X = s] and, by the argument above, this results
in

E[u(X)] = ∑
i

E[ui(X)]≤∑
i

E[ui(X ′)] = E[u(X ′)] (6)

by applying the inequality to each i. Therefore, we can restrict our domain to in-
dependent sets without loss of generality. Suppose that s is an independent set and
s′ ⊃ s is a maximal independent set. Then ui(s)≤ ui(s′) since

ui(s′)−ui(s) =


0 if si = 1,s′i = 1
ai if si = 0,s′i = 1
0 if si = 0,s′i = 0

.

So we can restrict our domain even further to maximal independent sets (denoted
MIS(G)) as in the argument above for independent sets. u(s) is exactly the sum of
the ai weights when s ∈ MIS(G). By definition, any maximal independent set has
sum of weights at most equal to the sum of weights in a maximum weight indepen-
dent set (denoted MWIS(G)) which gives us our last restriction on the domain of X .
Let M = u(s) for s ∈MWIS(G) (which is constant over MWIS(G)). Then,

E[u(X)] = ∑
s∈S

u(s)Pr[X = s] ≤ ∑
s∈MWIS(G)

u(s)Pr[X ′ = s]

= M ∑
s∈MWIS(G)

Pr[X ′ = s] = M
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for an appropriate transformation X 7→ X ′ to restrict the domain to MWIS(G) and
increase the utility as above.

For the infinite case, recall from Theorem 2 the fact that the CE domain is already
restricted to independent sets, and so the above argument holds.

5 Independent Sets and Non-Crossing Matchings

In this section we consider how to compute maximum-weight independent sets in
the conflict graph. In general, computing maximum independent sets is known to
be hard, even to approximate (see, e.g., [1]). But here, n is practically bounded by
the size of intersections, and we can exploit special properties of these graphs to
obtain efficient solutions. We present two algorithms. The first is a simple and effi-
cient greedy heuristic, which does not necessarily generate an optimal solution. The
second, which is based on dynamic programming, guarantees an optimal solution,
but it has higher computational complexity.

A single intersection is given, which is modeled as a central resource that is sur-
rounded by a circular collection of lanes, radiating outwards from the intersection.
Each lane is directed either into the intersection (in-lane) or out from the intersec-
tion (out-lane). For example, in Fig. 6(a), the lanes with odd indices are in-lanes and
the lanes with even indices are out-lanes. A graph G is given, each of whose edges
represents a path along which vehicles wish to travel. Its nodes are the lanes and
each edge p consist of one in-lane and one out-lane (see Fig. 6(b)). A matching M
is a subset of edges of G, such that each node of G is an endpoint of at most one
edge of M. A matching is non-crossing if the path associated with the edges of the
matching do not conflict with each other (see Fig. 6(c)). The weight of a matching
is u(M) (valid since non-crossing matchings correspond to independent sets). Given
G and the δ values for its paths, it is easy to see that an independent set of maxi-
mum weight in the conflict graph is equivalent to a non-crossing matching M that
maximizes u(M) in the intersection graph.
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`4

`6
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(7, 2)
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(a) (b) (c)

M :

Fig. 6 An intersection and a non-crossing matching
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5.1 Greedy Algorithm

We first present a simple greedy heuristic to determine which paths to admit (see
Algorithm 1). Let P be the set of all paths through the intersection (of the form (i, j)
as in Fig. 6). Recall that for each path p ∈ P, δ (p) denotes the summed delays of
vehicles traveling along p. A simple greedy heuristic is to sort P in decreasing order
of δ (p), and include a path p in the non-crossing matching if it does not cross any
previously selected path. In order to avoid gridlock, we perform this step twice; In
the first traversal, we only select paths p for which there exists a vehicle at the head
of its queue and is traveling along p.

Algorithm 1: Greedy heuristic for a maximum-weight independent set
1 Greedy(P[n])
2 M← /0;
3 P′← sort P by delay;
4 foreach (p ∈ P′) do
5 if (existsFrontVehicle(p)∧doesNotCross(p,M)) then
6 M←M∪{p};

7 foreach (p ∈ P′) do
8 if doesNotCross(p,M) then
9 M←M∪{p};

The function doesNotCross(p,M) returns true if p does not cross any of the paths
in M and returns false otherwise. This algorithm clearly takes polynomial time (no
longer than O(n2) for n = |P|) and produces a non-crossing matching. Although, it
is not necessarily a maximum matching since a locally optimum choice to include
some p in M may exclude a later choice that results in a globally optimal matching.
Regardless, small inefficiencies in the construction of M are not detrimental since
the system is, in a certain sense, “self-correcting” due to the dynamic changes in
vehicle delays.

5.2 Dynamic Programming Algorithm

We next present a more sophisticated dynamic-programming algorithm. While our
dynamic-programming algorithm is slower than the greedy heuristic, it is guaran-
teed to compute an independent set of maximum weight. The intersection is mod-
eled as a graph whose vertices correspond to the entry-exit points of the lanes, and
edges correspond to paths. Define Gi, j to be the induced subgraph consisting of the
vertices from i to j in clockwise order about the intersection. Define W [i, j] to be
the weight of the maximum non-crossing matching on this subgraph. The dynamic-
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programming presented in Algorithm 2 computes W [i, j] by considering all possible
ways of connecting i to another vertex k in the [i, j] interval, and then recursively
solving the two subproblems, from [i+1,k−1] and [k+1, j].

Algorithm 2: DP algorithm for a maximum-weight non-crossing matching
1 ComputeWeight(δ [n,n])
2 for (d← 1 to n−1) do // length of the vertex interval
3 for (i← 0 to n−d−1) do // first vertex of the interval
4 j← i+d; // last vertex of the interval
5 wt←W [i+1, j];
6 G′← induced(G, i, j); // induced subgraph on [i, j]
7 foreach (k adjacent to i in G′) do // try path (i,k)
8 curr← δ [i,k]+W [i+1,k−1]+W [k+1, j];
9 wt←max(wt,curr);

10 W [i, j]← wt;

6 Experimental Results

We wrote an intersection simulator that implements the greedy and DP algorithms
from the previous section, and we compare the queueing behavior in our system
versus other systems. Define QT,L as the number of vehicles with zero velocity in
lane L after simulator time step T . Then, let QT = maxL QT,L. We define the average
max queue length as

Q̄T =
1
T ∑

t≤T
Qt .

Fig. 7 shows the effect of traffic flow on Q̄100000 corresponding to 33 minutes of
simulated physical time. Note that the Q̄100000 values approach an asymptote due to
the lane capacity in the simulations. Looking first at the stop sign versus a four phase
traffic light, we confirm the common knowledge that stop signs are more effective
than traffic lights for low traffic flows, but traffic lights are more effective for higher
traffic flows (in our case, the intersection occurs around 120 vehicles per hour per
lane). However, our greedy algorithm outperforms both of these systems, and is able
to handle much higher traffic flows without filling the lane capacities. While the
AIM reservation-based protocol from UT Austin [4] can handle higher traffic flows,
our system supports the weaker assumption of connected vehicles as opposed to the
fully autonomous vehicles of AIM. Finally, the optimal CE minimizes delay while
simultaneously ensuring a certain degree of fairness. Smith and Gali [9] support the
notion that it is often desirable to constrain delay minimization in traffic networks
by some notion of fairness.
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Fig. 7 Effect of traffic flow on average max queue length.

7 Conclusion

We showed that our game-theoretic traffic model based on delay and safety reduces
to an independent set game. Theorem 1 and Theorem 2 show that if one wants to
prohibit the possibility that vehicles could accept an accident with small probability,
then the model needs to assign an infinite cost to an accident. Theorem 3 shows that
regardless of the choice of cost, a coordinating agent can select a maximum-weight
independent set and guarantee an optimal CE. Our experimental simulations show
that our approach for connected vehicles allows more throughput than standard con-
trol mechanisms yet less throughput than AIM’s reservation-based protocol for fully
autonomous vehicles. Therefore, our approach provides practical improvement over
current methods while vehicles on the road are not yet fully autonomous.
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