
On the Complexity of an Unregulated
Traffic Crossing

Philip Dasler(B) and David M. Mount

Department of Computer Science, University of Maryland,
College Park, MD 20742, USA
{daslerpc,mount}@cs.umd.edu

Abstract. One of the most challenging aspects of traffic coordination
involves traffic intersections. In this paper we consider two formulations
of a simple and fundamental geometric optimization problem involving
coordinating the motion of vehicles through an intersection.

We are given a set of n vehicles in the plane, each modeled as a unit
length line segment that moves monotonically, either horizontally or ver-
tically, subject to a maximum speed limit. Each vehicle is described by
a start and goal position and a start time and deadline. The question is
whether, subject to the speed limit, there exists a collision-free motion
plan so that each vehicle travels from its start position to its goal posi-
tion prior to its deadline.

We present three results. We begin by showing that this problem is
NP-complete with a reduction from 3-SAT. Second, we consider a con-
strained version in which cars traveling horizontally can alter their speeds
while cars traveling vertically cannot. We present a simple algorithm that
solves this problem in O(n log n) time. Finally, we provide a solution to
the discrete version of the problem and prove its asymptotic optimality
in terms of the maximum delay of a vehicle.

1 Introduction

As autonomous and semi-autonomous vehicles become more prevalent, there is
an emerging interest in algorithms for controlling and coordinating their motions
to improve traffic flow. The steady development of motor vehicle technology will
enable cars of the near future to assume an ever increasing role in the decision
making and control of the vehicle itself. In the foreseeable future, cars will have
the ability to communicate with one another in order to better coordinate their
motion. This motivates a number of interesting algorithmic problems. One of the
most challenging aspects of traffic coordination involves traffic intersections. In
this paper we consider two formulations of a simple and fundamental geometric
optimization problem involving coordinating the motion of vehicles through an
intersection.

Supported by the National Science Foundation under grant CCF-1117259 and the
Office of Naval Research under grant N00014-08-1-1015.

c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 224–235, 2015.
DOI: 10.1007/978-3-319-21840-3 19



On the Complexity of an Unregulated Traffic Crossing 225

Traffic congestion is a complex and pervasive problem with significant eco-
nomic ramifications. Practical engineering solutions will require consideration of
myriad issues, including the physical limitations of vehicle motion and road con-
ditions, the complexities and dynamics of traffic and urban navigation, external
issues such as accidents and break-downs, and human factors. We are motivated
by the question of whether the field of algorithm design can contribute positively
to such solutions. We aim to identify fundamental optimization problems that
are simple enough to be analyzed formally, but realistic enough to contribute to
the eventual design of actual traffic management systems. In this paper, we focus
on a problem, the traffic crossing problem, that involves coordinating the motions
of a set of vehicles moving through a system of intersections. In urban settings,
road intersections are regulated by traffic lights or stop/yield signs. Much like an
asynchronous semaphore, a traffic light locks the entire intersection preventing
cross traffic from entering it, even when there is adequate space to do so. Some
studies have proposed a less exclusive approach in which vehicles communicate
either with one another or with a local controller that allows vehicles, possibly
moving in different directions, to pass through the intersection simultaneously
if it can be ascertained (perhaps with a small adjustment in velocities) that
the motion is collision-free (see, e.g., [9]). Even though such systems may be
beyond the present-day automotive technology, the approach can be applied to
controlling the motion of parcels and vehicles in automated warehouses [17].

Prior work on autonomous vehicle control has generally taken a high-level
view (e.g., traffic routing [5,6,15,18]) or a low-level view (e.g., control theory,
kinematics, etc. [10,14]). We propose a mid-level view, focusing on the con-
trol of vehicles over the course of minutes rather than hours or microseconds,
respectively. The work by Fiorini and Shiller on velocity obstacles [11] consid-
ers motion coordination in a decentralized context, in which a single agent is
attempting to avoid other moving objects. Much closer to our approach is work
on autonomous intersection management (AIM) [2,4,7–9,16]. This work, how-
ever, largely focuses on the application of multi-agent techniques and deals with
many real-world issues. As a consequence, formal complexity bounds are not
proved. Berger and Klein consider a dynamic motion-panning problem in a sim-
ilar vein to ours, which is loosely based on the video game Frogger [3]. Their
work is based, at least in part, on the work of Arkin, Mitchell, and Polishchuk
[1] in which a group of circular agents must cross a field of polygonal obstacles.
These obstacles are dynamic, but their motion is fixed and known a priori.

We consider a simple problem formulation of the traffic crossing problem,
but one that we feel captures the essential computational challenges of coordi-
nating crosswise motion through an intersection. Vehicles are modeled as line
segments moving monotonically along axis-parallel lines (traffic lanes) in the
plane. Vehicles can alter their speed, subject to a maximum speed limit, but
they cannot reverse direction. The objective is to plan the collision-free motion
of these segments as they move to their goal positions.

After a formal definition of our traffic crossing problem in Section 2, we present
three results. First, we show in Section 3 that this problem is NP-complete.



226 P. Dasler and D.M. Mount

(While this is a negative result, it shows that this problem is of a lower complexity
class than similar PSPACE-complete motion-planning problems, like sliding-block
problems [12].) Second, in Section 4 we consider a constrained version in which cars
traveling vertically travel at a fixed speed. This variant is motivated by a scenario
in which traffic moving in one direction (e.g., a major highway) has priority over
crossing traffic (e.g., a small road). We present a simple algorithm that solves this
problem in O(n log n) time.

Finally, we consider the problem in a discrete setting in Section 5, which
simplifies the description of the algorithms while still capturing many of the
interesting scheduling elements of the problem. As part of this consideration, we
provide a solution to the problem that limits the maximum delay of any vehicle
and prove that this solution is asymptotically optimal.

2 Problem Definition

The Traffic Crossing Problem is one in which several vehicles must cross an
intersection simultaneously. For a successful crossing, all vehicles must reach
the opposite side of the intersection without colliding, and they must do so in
a reasonable amount of time. Formally, a traffic crossing is defined as a tuple
C = (V, δmax). This tuple is comprised of a set of n vehicles V which exist in R

2

and a global speed limit δmax ∈ R
+, where R

+ denotes the set of nonnegative
reals. Each vehicle is modeled as a vertical or horizontal open line segment
that moves parallel to its orientation. Like a car on a road, each vehicle moves
monotonically, but its speed may vary between zero and the speed limit. A
vehicle’s position is specified by its leading point (relative to its direction).

Each vehicle vi ∈ V is defined as a set of properties, vi = {li, p
�
i , p�

i , t�i , t�i }1,
where li is the vehicle’s length, p�

i and p�
i are its initial and goal positions,

respectively, and t�i and t�i are its start time and deadline for reaching its goal
position.

The set V and the global speed limit δmax define the problem and remain
invariant throughout. Our objective is to determine whether there exists a
collision-free motion of the vehicles that respects the speed limit and satisfies
the goal deadlines. Such a motion is described by a set of functions, called speed
profiles, that define the instantaneous speed of the vehicles at time t.

This set of functions is defined as D = {δi(t) | i ∈ [1, n],∀t, 0 ≤ δi(t) ≤
δmax}. A set D of speed profiles is valid if no vehicle (1) moves prior to its start
time or after its deadline, (2) violates the speed limit or travels in reverse (3)
collides with another vehicle or (4) fails to reach its goal prior to its deadline.

A traffic crossing C is solvable if there exists a valid set of speed profiles D.

3 Hardness of Traffic Crossing

Determining whether a given instance of the traffic crossing problem is solvable
is NP-complete. We show its NP-hardness by proving the following theorem:
1 The notational use of � and � set above a variable (e.g., α�) represents the beginning

and end of a closed interval, respectively (e.g., start and end times).



On the Complexity of an Unregulated Traffic Crossing 227

Theorem 1. Given a Boolean formula F in 3-CNF, there exists a traffic cross-
ing C = (V, δ), computable in polynomial time, such that F is satisfiable if and
only if there exists a valid set of speed profiles D for C.

The input to the reduction is a boolean formula F in 3-CNF (i.e., an instance
of 3-SAT). Let {z1, . . . , zn} denote its variables and {c1, . . . , cm} denote its
clauses. Each variable zi in F is represented by a pair of vehicles whose motion
is constrained to one of two possible states by intersecting their paths with a
perpendicular pair of vehicles. This constraining mechanism (seen in Fig. 1) is
the core concept around which all mechanisms in the reduction are built. It
allows us to represent logical values, to transmit these values throughout the
construction, and to check these values for clause satisfaction.

(a) (b) (c)

v1

v′
1

Fig. 1. (a) An example of transferring values at t�
i . v1 and v′

1 are true and false,
respectively. (b) At time t�

i + 1, the upper horizontal vehicle will take on the value of
v′
1 while the lower takes the value of v1. (c) = t�

i + 2.

All vehicles in the reduction are of unit length and (barring a few special
cases) their deadlines are set so that they can reach their goal position with at
most one unit time delay. More formally, t�i − t�i −1 = (‖p�

i −p�
i ‖)

δmax
. In general, the

delay may take multiple forms (e.g., the vehicle could take a delay of 1 at any
point during its travel or spread the delay out by traveling slower than δmax), but
the mechanism described above constrains the delay to only one of two types: a
delay of exactly 0 or 1 taken immediately at the vehicle’s start time.

For each clause ci ∈ F , a mechanism is created that forces a collision if, and
only if, all three literals are false. This mechanism checks the positive and nega-
tive literals separately, then combines the results in order to determine whether
the clause is satisfied.

These mechanisms each require only a constant number of vehicles, resulting
in a reduction complexity on the order of O(n + m), where n and m are the
number of variables and clauses, respectively2.

3.1 Membership in NP

Lemma 1. The Traffic Crossing Problem is in NP.

2 Detailed descriptions of these mechanisms have been omitted due to space con-
straints, but can be found in the arXiv version of this paper.

http://arxiv.org/abs/1505.00874


228 P. Dasler and D.M. Mount

First, observe that for each pair of orthogonal vehicles, vi, vj , their paths
cross at a single intersection. The certificate provides a priority for each such
pair, specifying which vehicle crosses through the intersection first. Next, it can
be shown that if there exists a valid set of speed profiles for an instance of the
problem, then there exists another valid set where vehicles move at the maximum
speed and are subject to the constraints in the certificate. Finally, when proving
the validity of a solution provided by the certificate, only a number of events
polynomial in n must be processed and the number of bits of precision required
is polynomial in the number of bits in the input plus log n. For the sake of space,
the formal proof has been omitted.

4 A Solution to the One-Sided Problem

While the generalized Traffic Crossing Problem is NP-complete, it is possible to
solve a constrained version of the problem more efficiently. The complexity of the
generalized Traffic Crossing Problem arises from the interplay between horizon-
tal and vertical vehicles, which results in a complex cascade of constraints. To
break this interdependency, the vertically traveling vehicles are given priority,
allowing them to continue through the intersection at a fixed speed. In this vari-
ant, called the one-sided problem, the horizontal vehicles can plan their motion
with complete information and without fear of complex constraint chains.

First, we assume that the vertically traveling vehicles are invariant and are all
traveling at the same speed, sn. With vertical vehicle motion now fixed, there is
no way for horizontal vehicles to affect each other and movement profiles for each
can be found in isolation from the others. Finally, we assume that all vehicles
are of length l and in general position.

For the purpose of illustration we begin with a simplified version of the
problem and then, over the course of three cases, relax the restrictions until we
are left with a solution to the original problem under the fixed, one-sided policy
described above. These three cases are:

Intersection Between One-Way Highways
– Vertical vehicles approach from the North only.
– Horizontal vehicles approach from the West only.
– Each vehicle is in its own lane (i.e., no two vehicles are collinear).

Intersection Between a One-Way Street and a Two-Way Highway
– Vertical vehicles approach from the North and the South.
– Horizontal vehicles approach from the West only.
– There is a single horizontal lane (i.e., all horizontal vehicles are collinear)

and one or more vertical lanes.
Intersection Between Two-Way Highways

– Vertical vehicles approach from the North and the South.
– Horizontal vehicles approach from the West and the East.
– There are k horizontal lanes, one or more vertical lanes, and vehicles

may share lanes.



On the Complexity of an Unregulated Traffic Crossing 229

4.1 Intersection Between One-Way Highways

Formally, vehicles from the North are in the subset N ⊂ V and their direction of
travel is dn = (0,−1), where as vehicles from the West are in the subset W ⊂ V
with a direction of travel of dw = (1, 0). Again, our only task is to find valid
speed profiles for vehicles coming from the West.

To begin, the problem space is transformed so that the vehicles in W are
represented as points rather than line segments. This makes movement planning
simpler while maintaining the geometric properties of the original space. Every
vehicle in W is contracted from left to right, until it is reduced to its leading
point. In response, the vehicles in N are expanded, transforming each into a
square obstacle with sides of length l and with their left edges coincident with
the original line segments.

Given the global speed limit δmax, there are regions in front of each obstacle
in which a collision is inevitable (this concept is similar to the obstacle avoidance
work done in [13]). These triangular zones (referred to as collision zones) are
based on the speed constraints of the vehicles and are formed by a downward
extension of the leading edge of each obstacle. The leftmost point of this edge is
extended vertically and the rightmost point is extended at a slope derived from
the ratio between δmax and the obstacle speed. As one last concession to clarity,
we scale the axes of our problem space so that this ratio becomes 1. Formally, a
collision zone ZO for the obstacle O is the set of all points p, such that there is
no path originating at p with a piecewise slope in the interval [1,∞] that does
not intersect O.

Expanding the vehicles in N into rectangular obstacles may cause some to
overlap, producing larger obstacles and, consequently, larger collision zones. This
merger and generation of collision zones is done through a standard sweep line
algorithm and occurs in O(n log n) steps, where n is the number of obstacles, as
described below.

Merging Obstacles and Growing Collision Zones. This process is done
using a horizontal sweep line moving from top to bottom. While the following
is a relatively standard application of a sweep line algorithm, it is included for
the sake of completeness. First, the event list is populated with the horizontal
edges of every obstacle, in top-to-bottom order, requiring O(n log n) time for
O(n) obstacles. The sweep line status stores a set of intervals representing the
interiors of disallowed regions (e.g., the inside of an obstacle or collision zone).
Each interval holds three pieces of information: the location of its left edge, a
sorted list of the right edges of any obstacles within the interval, and the slopes of
these right edges. These slopes will be either infinite (i.e., the edges are vertical)
or will have a slope of 1.

In addition to horizontal edge positions, the event list must keep track of
three other events which deal with the termination of the sloped edges of the
collision zones. These edges begin at the bottom right edge of an obstacle and
terminate in one of three ways: against the top of another obstacle, against the
right edge of another obstacle, or by reaching the left edge of an interval. The



230 P. Dasler and D.M. Mount

first case is already in the event list as the top edges were added at the start
of this process. The remaining two cases are added as the sweep line progresses
through the obstacles.

The initial population of the event list occurs in O(n log n). As the sweep line
progresses through the obstacle space, it adds and removes the right edges of
obstacles to the appropriate intervals. These lists of edges are built incrementally
in sorted order, requiring only O(log n) time. Finally, as there is a constant
number of possible events per obstacle (a single top edge, a single bottom edge,
and a single termination of its sloped edge), there are at most O(n) events to be
processed. Thus, the sweep line processes the obstacle space in O(n log n) time.

Movement Planning. Currently, vehicles only move horizontally and obstacles
only move vertically. Instead, we will treat the obstacles as static objects and add
a corresponding vertical component to the vehicles’ motion. To find a movement
plan, a vehicle moves through the obstacle space at maximum speed (giving it a
slope of 1 under our scaled axes) until either reaching its goal or encountering an
obstacle. If the goal is reached, the plan is complete. If an obstacle is encountered,
the vehicle travels vertically until it is no longer blocked (this vertical motion
corresponds to stopping and waiting for the obstacle to pass). Once the path is
clear, the vehicle continues at maximum speed.

The path created by the above behavior can be found with another line sweep.
The sweep line in this case is perpendicular to the vehicles’ trajectories (giving
it a slope of -1), moves from the upper right to the lower left, and determines
how obstacles occlude one another, as seen from the vehicles’ perspective. These
occlusions reveal which obstacles are encountered and how the vehicle must move
in order to follow the strategy laid out above.

4.2 Intersection Between a One-Way Street and a Two-Way
Highway

In this case, vertical vehicles approach from the North and the South while
horizontal vehicles travel in a single lane.

To account for the bidirectional vertical vehicles we fold the space along the
horizontal lane. This rotates the northbound traffic to an equivalent southbound
set of vehicles (see Fig. 2). This only requires a O(n) transformation. Using the
plane sweep algorithm above yields a combined obstacle space.

Finally, we must prevent the vehicles from rear-ending each other. Once the
lead vehicle has found a motion plan through the obstacles, it creates a new
set of constraints for the vehicles behind it. The monotonic path of the lead
vehicle is stored in a binary search tree, allowing for easy collision queries. As
each vehicle finds its own path through the obstacles, this search tree is updated
to appropriately constrain subsequent vehicles 3.

In the end, we can still account for shared lanes without a running time
greater than O(n log n).

3 Details of how this is done can be found in the arXiv version of this paper.

http://arxiv.org/abs/1505.00874


On the Complexity of an Unregulated Traffic Crossing 231

(a) (b) (c)

Fig. 2. (a) An example of bidirectional cross-traffic. (b) To account for how these
vehicles interact when they reach a horizontal lane, we can fold the space along the lane,
rotating one set of vehicles about it. (c) Then, we run the same space transformation
and obstacle merger detailed above.

4.3 Intersection Between Two-Way Highways

Finally, this case combines the two above, allowing for bidirectional movement
horizontally and vertically, with multiple lanes along each axis, and the possi-
bility of collinear vehicles.

The vehicles approaching from the East are independent of those approaching
from the West, presenting a symmetric problem that can be solved with the
techniques discussed above. The addition of horizontal lanes, however, impacts
the running time of the algorithm. Previously, the bidirectional vertical traffic
was accounted for by folding the obstacle space along a single horizontal lane,
but in this case, because the position of the vertical vehicles relative to each
other is different at any given lane, the folding must occur individually for each
lane. Thus, the algorithm runs in O(kn log n), for k horizontal lanes. In general,
we assume that k is a relatively small constant.

5 Traffic Crossing in the Discrete Setting

In this section we consider the problem in a simple discrete setting, significantly
simplifying the description of the algorithms and freeing us from a number of cum-
bersome continuous issues while still capturing the most salient elements of the
original traffic-crossing problem. We assume that each vehicle occupies a point on
the integer grid in the plane, Z2. Time advances discretely in unit increments, and
at each time step a vehicle may either advance to the next grid point or remain
where it is. A collision occurs if two vehicles occupy the same grid point.

The discrete traffic crossing problem is defined in much the same manner as
in the continuous case. The problem is presented as a set V of n vehicles on the
integer grid. Each vehicle vi is represented by its initial and goal positions p�

i

and p�
i , respectively, both in Z

2. Also given are a starting time t�i and deadline
t�i , both in Z

+ (where Z
+ denotes the set of nonnegative integers). A vehicle’s

direction di is a unit length vector directed from its initial position to its goal,
which is either horizontal or vertical. Time proceeds in unit increments starting
at zero. The motion of vi is specified as a function of time, δi(t) ∈ {0, 1}. Setting
δi(t) = 0 means that at time t vehicle i remains stationary, and δi(t) = 1 means



232 P. Dasler and D.M. Mount

that it moves one unit in direction di. Thus, vi’s position at time t ≥ 0 is
pi(t) = p�

i + di

∑t
x=0 δi(x).

Generalizing the problem definition from Section 2, the objective is to com-
pute a speed profile D = 〈δ1, . . . , δn〉 involving all the vehicles that specifies a
collision-free motion of the vehicles in such a manner that each vehicle starts at
its initial position and moves monotonically towards its goal, arriving there at
or before its given deadline. Similar to road networks, we assume that along any
horizontal or vertical grid line, the vehicle direction vectors are all the same.

5.1 Maximum Delay

Because we will be largely interested in establishing approximation bounds in
this section, we will depart from the decision problem and consider a natural
optimization problem instead, namely, minimizing the maximum delay experi-
enced by any vehicle, defined formally as follows. For each vehicle we consider
only its initial and goal positions, and let us assume that all vehicles share the
same starting time at t = 0. A vehicle vi experiences a delay at time t if it
does not move at this time (that is, δi(t) = 0). The total delay experienced
by a vehicle is the total number of time instances where it experiences a delay
until the end of the motion simulation. The maximum delay of the system is the
maximum total delay experienced by any vehicle.

While we will omit a formal proof, it is not hard to demonstrate that the
NP-hardness reduction of Section 3 can be transformed to one showing that it
is NP-hard to minimize maximum delay in the discrete setting. (Intuitively, the
reason is that the reduction involves purely discrete quantities: integer vehicle
coordinates and starting times, vehicles of unit length, and unit speed limit. The
system described in the reduction is feasible if and only if the maximum delay is
at most five time units.) However, it is interesting to note that the question of
whether there exists a solution involving at most single unit delay can be solved
efficiently. This is stated in the following result.

Theorem 2. There exists an O(nm) time algorithm that, given an instance of
the discrete traffic crossing problem with n vehicles where each vehicle encoun-
ters at most m intersections, determines whether there exists a solution with
maximum delay of at most one time unit.

Due to space limitations, we have omitted the proof, but the algorithm
involves a straightforward reduction to 2-SAT. The key insight is that each
vehicle can be in one of two states, not-delayed or delayed. Since all potential
collisions involve pairs of vehicles, we can express the feasibility of a single unit
delay solution through an instance of 2-SAT.

5.2 The Parity Heuristic

In the discrete setting it is possible to describe a simple common-sense heuristic.
Intuitively, each intersection will alternate in allowing horizontal and vertical
traffic to pass. Such a strategy might be far from optimal because each time
a vehicle arrives at an intersection, it might suffer one more unit of delay. To



On the Complexity of an Unregulated Traffic Crossing 233

address this, whenever a delay is imminent, we will choose which vehicle to delay
in a manner that will avoid cross traffic at all future intersections. Define the
parity of a grid point p = (px, py) to be (px + py) mod 2. Given a horizontally
moving vehicle vi and a time t, we say that vi is on-parity at t if the parity of its
position at time t equals t mod 2. Otherwise, it is off-parity. Vertically moving
vehicles are just the opposite, being on-parity if the parity of their position is
not equal to t mod 2. Observe that if two vehicles arrive at an intersection at
the same time, one moving vertically and one horizontally, exactly one of them
is on-parity. This vehicle is given the right of way, as summarized below.

Parity Heuristic: If two vehicles are about to arrive at the same intersection at
the same time t, the vehicle that is on-parity proceeds, and the other vehicle
waits one time unit (after which it will be on-parity, and will proceed).

The parity heuristic has a number of appealing properties. First, once all
the vehicles in the system are on-parity, every vehicle may proceed at full speed
without the possibility of further collisions. Second, the heuristic is not (locally)
wasteful in the sense that it does not introduce a delay into the system unless a
collision is imminent. Finally, the rule is scalable to large traffic systems, since
a traffic controller at an intersection need only know the current time and the
vehicles that are about to enter the intersection.

5.3 Steady-State Analysis of the Parity Heuristic

Delays may be much larger than a single time unit under the parity heuristic. (For
example, a sequenceofk consecutivevehicles travelinghorizontally that encounters
a similar sequence of k vertical vehicles will result in a cascade of delays, spreading
each into an alternating sequence of length 2k.) This is not surprising given the
very simple nature of the heuristic. It is not difficult to construct counterexamples
in which the maximum delay of the parity heuristic is arbitrarily large relative to an
optimal solution. We will show, however, that the parity heuristic is asymptotically
optimal in a uniform, steady-state scenario (to be made precise below).

Consider a traffic crossing pattern on the grid. Let mx and my denote the
numbers of vertical and horizontal lanes, respectively. Each lane is assigned a
direction arbitrarily (up or down for vertical lanes and left or right for hori-
zontal). Let R denote a W × W square region of the grid containing all the
intersections (see Fig. 3(a)). In order to study the behavior of the system in
steady-state, we will imagine that R is embedded on a torus, so that vehicles
that leave R on one side reappear instantly in the same lane on the other side
(see Fig. 3(b)). Equivalently, we can think of this as a system of infinite size by
tiling the plane with identical copies (see Fig. 3(c)). We assume that W is even.

If the system is sufficiently dense, the maximum delay of the system will gener-
ally grow as a function of time. Given a scheduling algorithm and a discrete traffic
crossing, define its delay rate to be the maximum delay after t time units divided
by t. Define the asymptotic delay rate to be the limit supremum of the delay rate
for t → ∞. Our objective is to show that, given a suitably uniform traffic crossing
instance on the torus, the asymptotic delay rate of the parity algorithm is optimal.



234 P. Dasler and D.M. Mount

R

(a) (b)

W

W

(c)

Fig. 3. Analysis of the Parity Heuristic

We say that a traffic crossing on the torus is uniform if every lane (within
the square R) has an equal number of vehicles traveling on this lane. Letting n′

denote this quantity, the total number of vehicles in the system is n = n′(mx +
my). (The total number of positions possible is W (mx + my) − mxmy, and so
n′ ≤ W −mxmy/(mx +my).) The initial positions of the vehicles within each of
the lanes is arbitrary. Let p = n′/W denote the density of vehicles within each
lane. Let ρpar∞ = ρpar∞ (W,p,mx,my) denote the worst-case asymptotic delay rate
of the parity heuristic on any uniform discrete traffic crossing instance of the
form described above, and let ρopt∞ = ρopt∞ (W,p,mx,my) denote the worst-case
asymptotic delay for an optimum scheduler.

Our approach will be to relate the asymptotic performance of parity and the
optimum to a parameter that describes the inherent denseness of the system.
Define χ = max(0, 2p − 1) to be the congestion of the system. Observe that
0 ≤ χ ≤ 1, where χ = 0 means that the density is at most 1/2 and χ = 1
corresponds to placing vehicles at every available point on every lane (which is
not really possible given that n′ < W ). To demonstrate that the parity heuristic
is asymptotically optimal in this setting, it can be shown that ρpar∞ ≤ χ/(1+χ) ≤
ρopt∞ . This is a consequence of the following two lemmas, whose proofs are omitted
due to space constraints.

Lemma 2. Given any uniform traffic crossing instance on the torus with con-
gestion χ, ρpar∞ ≤ χ/(1 + χ).

Lemma 3. Given any uniform traffic crossing instance on the torus with con-
gestion χ, ρopt∞ ≥ χ/(1 + χ).

While the proofs are somewhat technical, the intuition behind them is rel-
atively straightforward. If χ = 0, then while local delays may occur, there is
sufficient capacity in the system for them to dissipate over time, and hence the
asymptotic delay rate tends to zero as well. On the other hand, if χ > 0, then
due to uniformity and the cyclic nature of the system, delays will and must grow
at a predictable rate. As an immediate consequence of the above lemmas, we
have the following main result of this section.



On the Complexity of an Unregulated Traffic Crossing 235

Theorem 3. Given a uniform traffic crossing instance on the torus, the asymp-
totic delay rate of the parity heuristic is optimal.

References

1. Arkin, E.M., Mitchell, J.S.B., Polishchuk, V.: Maximum thick paths in static and
dynamic environments. Comput. Geom. Theory Appl. 43(3), 279–294 (2010)

2. Au, T.-C., Stone, P.: Motion planning algorithms for autonomous intersection man-
agement. In: Bridging the Gap Between Task and Motion Planning (2010)

3. Berger, F., Klein, R.: A traveller’s problem. In: Proc. 26th Annu. Sympos. Comput.
Geom., SoCG 2010, pp. 176–182. ACM, New York (2010)

4. Carlino, D., Boyles, S.D., Stone, P.: Auction-based autonomous intersection man-
agement. In: 2013 16th International IEEE Conference on Intelligent Transporta-
tion Systems-(ITSC), pp. 529–534. IEEE (2013)

5. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Operations Res. 12(4), 568–581 (1964)

6. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management Sci.
6(1), 80–91 (1959)

7. Dresner, K., Stone, P.: Multiagent traffic management: a reservation-based inter-
section control mechanism. In: Proc. Third Internat. Joint Conf. on Auton. Agents
and Multi. Agent Syst., pp. 530–537. IEEE Computer Society (2004)

8. Dresner, K., Stone, P.: Multiagent traffic management: an improved intersection
control mechanism. In: Proc. Fourth Internat. Joint Conf. on Auton. Agents and
Multi. Agent Syst., pp. 471–477. ACM (2005)

9. Dresner, K.M., Stone, P.: A multiagent approach to autonomous intersection man-
agement. J. Artif. Intell. Res. 31, 591–656 (2008)

10. Fenton, R.E., Melocik, G.C., Olson, K.W.: On the steering of automated vehicles:
Theory and experiment. IEEE Trans. Autom. Control 21(3), 306–315 (1976)

11. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity
obstacles. Internat. J. Robot. Res. 17(7), 760–772 (1998)

12. Hearn, R.A., Demaine, E.D.: Pspace-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of compu-
tation. Theo. Comp. Sci. 343(1–2), 72–96 (2005)

13. Petti, S., Fraichard, T.: Safe motion planning in dynamic environments. In: 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.
(IROS 2005), pp. 2210–2215, August 2005

14. Rajamani, R.: Vehicle Dynamics and Control. Springer Science & Business Media,
December 2011

15. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Res. 35(2), 254–265 (1987)

16. Van Middlesworth, M., Dresner, K., Stone, P.: Replacing the stop sign: unman-
aged intersection control for autonomous vehicles. In: Proc. Seventh Internat. Joint
Conf. on Auton. Agents and Multi. Agent Syst., pp. 1413–1416. International Foun-
dation for Autonomous Agents and Multiagent Systems (2008)

17. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. The AI magazine 29(1), 9–19 (2008)

18. Yu, J., LaValle, S.M.: Multi-agent path planning and network flow. In: Frazzoli, E.,
Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X.
Springer Tracts in Advanced Robotics, vol. 86, pp. 157–173. Springer, Heidelberg
(2013). http://dx.doi.org/10.1007/978-3-642-36279-8 10

http://dx.doi.org/10.1007/978-3-642-36279-8_10

	On the Complexity of an Unregulated Traffic Crossing
	1 Introduction
	2 Problem Definition
	3 Hardness of Traffic Crossing
	3.1 Membership in NP

	4 A Solution to the One-Sided Problem
	4.1 Intersection Between One-Way Highways
	4.2 Intersection Between a One-Way Street and a Two-Way Highway
	4.3 Intersection Between Two-Way Highways

	5 Traffic Crossing in the Discrete Setting
	5.1 Maximum Delay
	5.2 The Parity Heuristic
	5.3 Steady-State Analysis of the Parity Heuristic

	References


