
Software Engineering Technology Infusion within NASA

Marvin V. Zelkowitz
Institute for Advanced Computer Studies and Department of Computer Science

University of Maryland, College Park, Maryland 20742

Abstract

Technology transfer is of crucial concern to both government and industry today. In this paper,
several software engineering technologies used within NASA are studied, and the mechanisms,
schedules and efforts at transferring these technologies are investigated. The goals of this study
are: (1) to understand the difference between technology transfer (the adoption of a new method
by large segments of an industry) as an industry-wide phenomenon and the adoption of a new
technology by an individual organization (called technology infusion), and (2) to see if software
engineering technology transfer differs from other engineering disciplines. While there is great
interest today in developing technology transfer models for industry, it is the technology infusion
process that actually causes changes in the current state of the practice.

1 Introduction

The ability to move a new technology from a development laboratory into general use in industry is of
increasing concern as today’s economic climate constantly reduces the time available for companies to
develop new products. This process, generally called technology transfer, is of crucial concern as industry
today needs to remain economically competitive in the global marketplace.

Technology transfer is a difficult and slow process:

“One reason why there is so much interest in the diffusion of innovations is because getting a
new idea adopted, even when it has obvious advantages, is often very difficult. There is a wide
gap in many fields, between what is known and what is actually put into use. Many innovations
require a lengthy period, often of some years, from the time when they become available to the
time when they are widely adopted. Therefore, a common problem for many individuals and
organizations is how to speed up the rate of diffusion of an innovation.1”

The software development community is aware of this problem and the need to diffuse new innovations,
i.e., transfer effective technology towards improving the process of developing software. This is a major
goal towards achieving improvements in productivity and reliability of the resulting products. Concepts like

0This paper will appear in the August, 1996 issue of IEEE Transactions on Engineering Management. Copyright c1996, IEEE Inc.
1E. Rogers [12] Page 1

1

the Software Engineering Institute’s Capability Maturity Model [10] have grown in importance as a means for
modifying the software development process. The Experience Factory concept of the National Aeronautics
and Space Administration (NASA) Goddard Space Flight Center (GSFC) Software Engineering Laboratory
(SEL) [4] has shown the value of process improvement.

However, all process improvement involves changes. Some of these may be relatively minor alterations
to the current way of doing business (e.g., replacing one compiler or editor by another), while others
may require major changes that affect the entire development process (e.g., using Cleanroom software
development and eliminating much of the unit testing phase). In order for an organization to continually
improve its process, it must be aware of how it operates and what other technologies are available that may
be of use.

While much has been written on the general concept of technology transfer within an industry, there is not
much which describes the processes which an individual organization undergoes to adopt a new technology.
This change generally goes under the name of technology infusion. We can describe technology transfer as
technology infusion which diffuses across a broad segment of a given industry. In order to investigate these
issues, several software engineering technologies that have been adopted by NASA for use on various
development projects are studied. In particular, we are interested in the mechanisms that were used to
accomplish the infusion of the technology, the effort involved in performing that infusion, and the time that it
took to accomplish. This work is part of an indepth study from 1993 through 1994 of software engineering
technology within NASA [16]; however, only those results that seem to be applicable to a more general
technological audience are presented in this paper.

In Section 2 we discuss the general problems of technology transfer and in Section 3, we discuss
technology infusion at NASA. We show that software engineering seems to follow a technology infusion
process that differs from other engineering disciplines. In particular, the lack of a culture in software
engineering to experiment and measure results makes validation of new technologies difficult. Also, the
major “products” of software engineering are processes, which makes the discipline behave more like a
scientific than an engineering activity. Established technology transfer models to not address this well. We
present these findings in Section 4.

2 Technology Transfer

By technology transfer we mean the insertion of a new technology into most organizations that perform
similar tasks. The insertion must be such that the new organizations regularly use that technology if the
appropriate conditions on its use should arise in the future. The organization that adopts the new technology
is said to infuse that technology. We will call the creator of that technology the producer and the organization
that accepts and uses the new technology the consumer of that technology. The process of moving the
technology out of the producing organization will be called exporting the technology.

2.1 Models of technology transfer

Technology transfer has typically been identified as an importation process. It often follows the product
life cycle (PLC) identified by Rogers via the S-curve [12]. The first few customers are the “oddballs” or
“eccentrics” of society, who adopt a new product. Following them are the “opinion leaders,” who then give
their approval to the product. Society then follows these opinion leaders, and product growth follows rapidly.
During the mature stage, as the market saturates, growth levels off, giving the characteristic S-curve.

2

Eccentrics

Opinion leaders

Rapid market growth

Mature technology

Time

In
cr

ea
si

ng
 m

ar
ke

t s
ha

re

Figure 1: Product Life cycle S-curve growth cycle.

Gatekeepers. Technology transfer follows a similar process. One member of an organization, often called
the gatekeeper [1], monitors technological developments, and chooses those that seem appropriate for
inclusion in an organization; hence opens the “gate” to the new technology. Because this role is often
informal, it may fall naturally to the most creative and technically astute individual in an organization. Since
the gatekeeper is aware of technical developments outside of the organization, others in the group often
look towards this person for guidance. This person often is known by the name “guru” or similar sounding
monikers.

Transition models. However, the gatekeeper is not the only approach towards technology transfer. Other
models of the process have been identified. In one study of 44 technology transfer efforts at one aerospace
company, Berniker [5] identified four approaches towards technology transfer:

1. People mover model. In this approach, there is personal contact between the developer and the user
of a technology. Typically there is some facilitator within the infusing organization that knows about
the new technology and wishes to import it into the new organization (i.e., the gatekeeper mentioned
above). This method was found to be the most prevalent and effective of all technology transfer
methods.

Nochur and Allen [9] investigated this model and discovered that it really consists of three separate
subcategories, which we will call:

1. Spontaneous gatekeeper role assumed by organization member.

2. Assigned gatekeeper role imposed by management on some organization member.

3. Umbrella gatekeeper role assumed by another organization to impose new technology on others.

2. Communication model. In this approach, the new technology has appeared in print and, as with the
people mover model, some facilitator discovers the technology and wishes to infuse it into the new
organization. The “print” mechanism may be internal documentation, conference reports or journal
publications.

3. On-the-shelf model. This approach, relatively rare among the projects studied by Berniker, requires
the new technology to be packaged so that non-experts can discover it and learn enough about it to
begin the infusion process. It requires sufficient documentation so that others can easily pick it up and
use it. Reading about the technology in a “parts catalog” is an example of this method.

4. Vendor model. This last method requires an organization to turn over the task to a vendor to sell them
a new technology. It effectively turns the vendor into the agent of the People mover, Communication
or On-the-shelf model.

3

The communication model and the on-the-shelf model can be viewed as marketplace models. Innova-
tions (in the form of reports, papers, products) are placed in the marketplace, and users will discover what
they need. However, these appear to be very imperfect mechanisms for technology transfer:

“Papers are usually written for peers and for posterity, rather than for anything approaching
mass communication. The dissemination of knowledge in scientific disciplines is imperfectly
understood, but it appears to require only a very small number of diligent readers to start the
human networking process that eventually socializes the information in an important paper.
Many other papers never get socialized at all and pass unnoticed into the archival purgatory.2”

While Nochur and Allen found that the assigned gatekeeper was somewhat effective in importing new
technology, he or she could not continue the transfer by moving it to other internal organizations (in essence
acting like the umbrella gatekeeper). The third of these gatekeeper roles was most ineffective. Technology
generally has to be wanted by the new organization and cannot be dictated by outsiders. However, the
umbrella gatekeeper was really misclassified by Nochur and Allen. It is not a people mover strategy, since
it is not a technology importation process, but instead represents an exportation of technology from one
organization to another. We will call this new model the rule model:

5. Rule model. This method uses an outside organization to impose a new technology on the development
organization, which then infuses it into its own development process.

There are many examples within the government sector of this last technology transfer model. The
mandating of the Ada language by the Department of Defense’s Ada Joint Program Office for system devel-
opment, the use of the Software Engineering Institute’s Capability Maturity Model to evaluate developer’s
qualifications for a Department of Defense contract, the similar process of using international standard ISO
9000 in Europe, and the use of Federal Information Processing Standards (FIPS) by the National Institute
of Standards and Technology (NIST) are all examples of technology transfer imposed by an outside agency.

Industry is not immune to the rule model either. Organizations have imposed tool standards on their
subunits (e.g., imposing particular hardware and operating system products, CASE tools, or database
systems), and organizations need to react to rules imposed by government contracting organizations, such
as Request for Proposals that mandate a particular language, such as Ada. But in practice, however,
successful examples of this imposed technology are rare. (It is not even clear if the above instances are
successful examples of imposed technology transfer.) However, it is a model of technology transfer that
has tremendous impact and we must not lose sight of it in our study.

Advocates. Fowler and Levine at the Software Engineering Institute have been investigating technology
transition and have identified an extension to the gatekeeper model [6]. In their model, technology transition
is a push–pull process:

Producer) Advocate) Receptor) Consumer

The produce of the technology needs an advocate to export the technology outside of the development
organization, while the consumer organization must have receptors agreeable to importing the technology.
In many instances, however, both the advocates and receptors are part of the consumer organization, and
in practice, this reduces to a model very much like Allen’s gatekeeper.

2R. Lucky [7] Page 119

4

CONCEPT IMPLEMENTATION USE

CONSUMERPRODUCER

DEVELOPMENT EXPLORATION

(TRANSFER)

MATURATION

UNDERSTANDING TRANSITION

Figure 2: Technology Maturation Life Cycle

Successful technology transition. It should also be realized that the product life cycle S-curve is the
result of the introduction of a successful product, plotted after its success. There is no guarantee that a new
product will follow this curve and most new products do indeed fail. This is the problem of most forecasts
about the predicted growth in a new technology [14]. Developers of a new technology are almost always too
optimistic about the eventual success of that technology. One of the goals of our study is to understand the
relationship between those early users of a technology and the methods used to transform it into a mature
technology.

2.2 Technology maturation

In 1985, Redwine and Riddle [11] published the first comprehensive study of software engineering technol-
ogy transfer, which they called maturation. Their goal was to understand the nature of technology maturation
– what was the length of time required for a new concept to move from being a laboratory curiosity to general
acceptance by industry. They defined maturation of a technology as a 70% usage level across an industry.

Technology maturation involves five stages, two by the producer of the technology and three by con-
sumers of that technology (Figure 2):

1. The original concept for the technology appears as a published paper or initial prototype implementa-
tion.

2. The implementation of the technology involves the further development of the concept by the originator
or successor organization until a stable useful version is created.

3. In the understanding stage, other organizations experiment, tailor, expand, modify, and try to use the
technology.

4. In the later transition stage, use of the technology is further modified and expands across the industry.

5. The final maturation stage is reached when 70% of the industry uses the technology.

In their study, they looked at 17 software development technologies from the 1960s through the early
1980s (e.g., UNIX, spreadsheets, object-oriented design, etc.). Their results, most related to this current
study, were:

� They were unable to clearly define “maturation” for most technologies, but were able to make reason-
able estimates as to the length of time needed for new technologies to become widely available.

� Technologies required an average of 17 years to pass from an initial concept to a mature product.

5

NASA Consumers External Consumers
NASA Reuse(Kaptur), �AI(CLIPS) Reuse(Kaptur), �AI(CLIPS)
Producers �GUI(TAE), CASE tools �GUI(TAE)

Measurement(SME, GQM) Measurement(SME, GQM)
Rate monotonic scheduling, CASE tools

External Cost models, �Formal Inspections Not relevant
Producers �Object oriented technology to this study

�Ada, C, C++, �Cleanroom

� – technologies discussed in more detail

Table 1: Transferred technologies at NASA

� Technologies, once developed, required an average of 7.5 years to become widely available (i. e.,
the Exploration stage of Figure 2).

We view this current paper as the inverse of the Redwine and Riddle study. For each technology, how
long did it take to infuse that technology into a given organization? That is, what was the Exploration
stage within a given organization? The 7.5 years needed to penetrate an industry that was specified by
the Redwine-Riddle study would be an upper bound, and we know that the lower bound is more than the
gatekeeper simply declaring the new technology to be good.

3 Technology Infusion

In order to understand technology transfer within NASA, about 15 software engineering experts at several
NASA center were interviewed to determine which software engineering techniques were being used ef-
fectively in the agency. To keep the scope of this problem manageable, the following two restrictions were
imposed:

1. The technology had to clearly be software engineering. For example, successfully transferred pro-
grams, such as the widely-used modelling system NASTRAN available through the NASA Software
Repository (COSMIC), were not included.

2. The technology had to have a major impact on several groups within NASA. With more than 4,000
software professionals affiliated with GSFC alone (including government and contractors), almost
every software product has probably been used somewhere in the agency. While this was somewhat
subjective, a list of transferred technologies was developed (Table 1). Technologies developed outside
of NASA and not used within NASA were outside of the scope of this study, hence the “Not relevant
to this study” section of the table.

3.1 Examples of Technology Infusion

In this section we first discuss three technologies that were successfully infused into the state of the practice
at GSFC (Ada, Object oriented technology, and Cleanroom) in greater detail. The details of transferring
those technologies are summarized by Figure 3. Each represents the understanding and transition stages as

6

CLEANROOM

OOT

ADA

FIRST USE

TRAINING PILOT 1

PILOT 2

UNDERSTAND (30) TRANSITION (30) USE

TRAINING PILOT 1 FIRST USE

USE IN SPECIFIC DOMAINSGUIDELINES PILOT 2 - IMPLICIT

UNDERSTANDING (20) USETRANSITION (26)

USE IN SPECIFIC DOMAINS

TRAINING PILOT 1 PILOT 4

TRANSITIONUNDERSTAND (26)

PILOT 2

PILOT 3

EMBEDDED USE

85 87 89 91 93 95

Figure 3: SEL technology transfer experience

NASA plays the role of consumer organization trying to adopt these new technologies. These technologies
were studied by the Software Engineering Laboratory (SEL) at GSFC. In addition, we also include several
technologies transferred by groups other than the SEL.

The NASA/GSFC SEL has been a major source of technology infusion at Goddard Space Flight Center.
The SEL was organized in 1976 to study flight dynamics software, and since that time it has had a significant
impact on software development activities within the Flight Dynamics Branch. Most of these technologies
(e.g., measurement, resource estimation, testing, process improvement) have been reported elsewhere [2].

As a brief overview of SEL operations, the SEL has collected and archived data on over 125 software
development projects. The data are also used to build typical project profiles against which ongoing projects
can be compared and evaluated. The SEL provides managers in this environment with tools for monitoring
and assessing project status. Typically there are 6 to 10 projects simultaneously in progress in the flight
dynamics environment. Each project is considered an experiment within the SEL, and the goal is to extract
detailed information to understand the process better and to provide guidance to future projects.

Projects range in size from approximately 10K lines of source code to 300K to 500K at the high end.
Projects involve from 6 to 15 programmers and typically take from 12 to 24 months to complete. All software
was originally written in FORTRAN, but Ada was introduced in the mid-1980s (see below), and there is now
an increase in C and C++ programming.

Use of Ada

Ada is a language that was developed by the U.S. Department of Defense from 1976 until 1983 as a
common language on which to build complex embedded applications. It is a general purpose programming

7

language adaptable to any computing environment, although some claim that the language is too complex
to use effectively. During the 1980s, as Ada compilers started to appear commercially, many organizations
evaluated the language as a solution for their existing programming needs.

Technology Transfer Model. Use of Ada on flight dynamics projects was first considered in 1985. Be-
cause of Department of Defense interest in the language and because of NASA Johnson Space Center’s
decision to use Ada for Space Station software, the SEL desired to look at its applicability for other NASA
applications. The initial stimulus for this activity, then, could be a mixture of the communication model (i.e.,
papers were written about Ada), on-the-shelf model (i.e., Ada products were being sold) and to some extent,
the rule model (i.e., since Johnson Space Center adopted Ada, there was some pressure to do the same
elsewhere within NASA).

Understanding phase of Technology Transfer. A training class and sample program was the first Ada
activity. However. to truly evaluate the appropriateness of Ada within the SEL environment, a parallel
development of an Ada (GRODY) and FORTRAN (GROSS) simulator was undertaken. GROSS, as the
operational product, had higher priority and was developed on time. GRODY, as an experiment to learn Ada,
had a much longer development cycle. In addition, since GRODY was known by all to be an experiment,
the development team was not as careful in its design. However, the experiences of the GRODY team with
the typical set of requirements NASA used for such products led to a greater interest in applying object-
oriented technology instead as a model for future NASA requirements and design specifications. Although
the development of this simulator continued until early 1988, by early 1987 it was decided that the initial
project was sufficiently successful to continue the investigation of Ada on other flight dynamics problems.
Elapsed time since start of Ada activity was 30 months.

Experiences at NASA Langley Research Center were similar to those of the SEL, but had a different
conclusion. Understanding Ada began under the advocacy of one individual. A project was developed
in both FORTRAN and Ada. Although the Ada project was deemed more successful than the FORTRAN
version, the difference was not deemed great enough to enforce Ada on all projects.

Transition phase of technology Transfer. Because of the poor performance on the GRODY simulator
and the problems with developing Ada requirements, the SEL undertook a second Ada pilot project (GOADA)
as an experiment. However, there was sufficient confidence in Ada by this time to make GOADA an
operational product, thus schedules and performance were more critical than with the previous GRODY
experiment. In this case, the resulting product was comparable to performance of previous FORTRAN
simulators. Between 1988 and 1990, four other simulators (one dynamic and three telemetry) were built
successfully. In addition, one embedded application was developed beginning in 1989 and was not as
successful due to the poor quality of the compilers for embedded applications that were available. By early
1990, Ada became the language of choice for simulators in the Flight Dynamics Division. Transition time
was another 30 months.

Comments on Technology Transfer. Total transfer time for Ada was approximately 60 months. Ada is
now the language of choice for simulator projects using Ada on DEC VAX computers. Although Ada code
costs more, line by line, than FORTRAN code (about 20%), the higher levels of reuse result in lower overall
delivery costs for such projects.

Ada was also proposed as the implementation language for large mission ground support systems, but
this was never tested. The inhibitors in this case were outside of the features of the Ada language, itself.

8

The operational systems at GSFC are IBM mainframe compatible, and no effective Ada compiler existed
for this environment during the three times Ada was evaluated during the late 1980s. All of the successful
simulator projects were implemented on DEC VAX computers, which did have an effective Ada system.

Presently, Ada is used on approximately 15% of the SEL’s software. Eleven operational Ada projects
have been completed to date. Another report gives a more complete analysis of the SEL’s experiences with
Ada [3].

One difficulty in evaluating the effects of Ada on software development within the SEL is due to side
effects which may occur. The following study of object-oriented technology grew directly out of the early
Ada experiences.

Object Oriented Technology

In traditional software design of the 1960s and 1970s, a program consisted of a series of functions grouped
into a set of subprograms. Software design consisted of developing these subprograms via functional
decomposition of the overall program requirements into smaller functional units.

In the 1980s, object-oriented design became an alternative to the earlier functional decomposition. A
program now consists of a set of data objects and a set of operations that apply to these data objects. Soft-
ware design now consists of developing these complex data objects (called data abstractions) and building
a set of functions that manipulate the objects. Since design is more localized to the operations applying to a
single data object, proponents of the method claim that the resulting product is more manageable, simpler,
and more reliable.

Technology Transfer Model. Use of object-oriented technology (OOT) in the SEL was investigated at the
same time as Ada was considered, although was not a primary goal of the original decision to study Ada.
In modifying the “standard” requirements of the FORTRAN-implemented GROSS simulator for the GRODY
experiment (the simulator to be written in Ada), it became apparent that the standard GSFC requirements
document was oriented towards a FORTRAN functional decomposition and the use of these requirements
on an Ada project would be very inefficient. We view this as an example of the communications model of
technology transfer. The existing requirements were deemed inadequate, and papers in the literature were
collected on an alternative technology (i.e., object-orientation) which might be applicable in this domain.

Understanding phase of Technology Transfer. Object orientation seems more natural an approach with
the use of Ada packages and generic functions. Therefore the requirements for GRODY were rewritten to
use a more object-oriented approach. Following this, an OOT guidebook for GSFC was developed (GOOD
- General Object Oriented Software Development [13]) for use on future projects.

Elapsed time for these activities took from early 1985 until August, 1986, or a total of 20 months.
Expenses for understanding this technology were high since this activity was wrapped up in the Ada
evaluation which required parallel system development of GRODY with the FORTRAN equivalent GROSS.

Transition phase of technology Transfer. On a second project (UARSAGSS), object-oriented design
was used implicitly. This was a FORTRAN ground support system, and experiences gained from the earlier
GRODY effort allowed the programmers to better understand the design and use OOT. By the end of this

9

project, it was sufficiently clear that OOT was an effective technique in some domains. Transition time was
on the order of 26 months.

Comments on Technology Transfer. Total transfer time in this case was only 46 months. Although almost
four years, this was relatively short since it did not require major changes in system development. The same
set of tools could be used; object-oriented technology was mostly a change in approach towards system
building that could be used with any underlying implementation language. Although initially considered as an
Ada technique, the same methods would map easily to a FORTRAN development model. Since it fit within
the usual development paradigm, tailoring the method and inserting it into the usual NASA development
process was relatively easy.

It should also be mentioned, that although object-oriented technology was originally studied within the
Ada domain, it has had a profound effect on productivity on FORTRAN projects as well. This provides an
additional reason why adoption of Ada as the development language has not provided significantly better
productivity within the SEL. Although overall productivity using Ada has greatly improved over FORTRAN
productivity of the mid-1980s, FORTRAN productivity has also improved dramatically.

For example, productivity measurements in statements produced per hour of effort on four recent Ada
and four recent FORTRAN projects show that FORTRAN is still easier to write and is easier to reuse than
Ada code [15]:

Ada FORTRAN
Statements Stmts/hr Stmts/hr
New statements 1.1 1.2
Reused statements 5.0 5.5

While not statistically significant, the data does indicate that both languages seem comparable.

Reuse has proven to provide the largest boost in productivity with both Ada and FORTRAN due to the
effects of object-oriented technology:

1988-90 1990-1994
Language % Reuse % Reuse
Ada 4-17 (3 projects) 64-88 (4 projects)
FORTRAN 4-12 (7 projects) 75-90 (4 projects)

Although not every project achieves such high levels of reuse, the trend is certainly upwards. This shows
the seredipity nature of technology transfer. You generally cannot dictate exactly what you want to change,
and change may occur from unexpected sources.

Cleanroom

Cleanroom is a software development method that relies on a priori verification of a software product rather
than the usual a posteriori testing of software for validation. All software designs are verified via both formal
and informal proofs of correctness rather than relying on later testing to find errors. The claim is made that
errors are easier to find within a design document before that design has been codified into a large source
program. The method was developed by H. Mills while at IBM during the late 1970s.

10

FORMAL

INSPECTIONS

AT JPL

USETRANSITION (24)UND(9)

2 PILOTS INCREASED USE

MODERATOR FEEDBACK

USE IN SPECIFIC DOMAINS

LIT.

SEARCH

TRAINING

TRN PILOT USE ON PROJS.

USEUNDFORMAL

INSPECTIONS

AT LANGLEY

TRANS

87 89 91 93 95

Figure 4: Formal inspections technology transfer experience

The immediate effect of this method is that a project spends more time and effort in the design phase as
designs are verified than with more traditional development methods. The payoff is that less testing will be
needed later, with a decrease in total project costs and an increase in product reliability.

Technology Transfer Model. Cleanroom was studied in the SEL via the people-mover model, at the
instigation of V. Basili of the University of Maryland, who is also one of the SEL Directors. Previously, Basili
had studied cleanroom within a student environment at the University of Maryland.

Understanding phase of Technology Transfer. To understand Cleanroom, a series of training courses
was given in 1988 by H. Mills, original developer of the method. A pilot project was undertaken and proved
to be very successful. All participants were converts to the method, even though several had reservations
about it before they began. Time to understand the method (training until the start of the second Cleanroom
project) was 26 months.

Transition phase of technology Transfer. Two follow-on Cleanroom projects were undertaken. A smaller
in-house development was very successful, but a larger contracted project was not so successful. It was
not as apparent that problems on the larger project were due to scaling up of Cleanroom to larger tasks or
to a lack of training and motivation of the development team on this project. For this reason, a fourth larger
Cleanroom project was undertaken. The fourth pilot was completed in early 1995 (after this technology
transfer study officially ended), and the resulting system was considered to be extremely reliable.

Comments on Technology Transfer. Cleanroom technology appears to be an effective technology on
smaller projects, but may lose some of its effectiveness on NASA projects involving more than 160K lines
of code. Training and motivation of the staff were considered crucial for its success. Understanding time
was 26 months and transition time was about 46 months. With the completion of the fourth pilot project, the
Flight Dynamics Branch is now evaluating Cleanroom’s role in future developments.

Formal Inspections

In addition to the techniques evaluated by the SEL, technology infusion was studied elsewhere within NASA.
One such technique whose use is growing within NASA is the use of formal inspections (Figure 4).

A formal inspection is a verification method that has aspects similar to the cleanroom method mentioned
previously. In a formal inspection, one software artifact (e.g., a module design, source code for a module,

11

test data) is identified for inspection. The author of that artifact must present the design of that artifact to a
meeting of fellow workers, who were previously given the artifact to study. The process of discussing the
artifact for a given period of time (generally not more than 2 hours) has proven to be very effective in finding
errors in the object of study.

Infusion of formal inspections We first studied the infusion of formal inspections within the Jet propulsion
Laboratory.

Technology Transfer Model. Initial work at the Jet Propulsion Laboratory (JPL) on formal inspections
began in February, 1987 in response to a need for higher quality software. J. Kelly of JPL was the initial
gatekeeper who proposed studying this technology.

Understanding phase of Technology Transfer. After studying the literature, a decision was made in
mid-1987 to tailor inspections for JPL use. A course was developed for use at JPL and the initial advocates
for inspections sought other JPL managers (the receptors) who would use and benefit from the technology.

Transition phase of Technology Transfer. Approximately 2 or 3 pilot projects were started in 1988 using
inspections. Bimonthly moderator meetings were held to spread the advocacy from the initial developers to
other managers at JPL so that there would be others who “own” the process should the developers leave
the organization. From 1989 through 1991 additional projects used the technology to help institutionalize
the process. By late 1989 it was rapidly becoming a standard technology at JPL.

Comments on Technology Transfer. The elapsed time for developing the method was about 33 months
and involved about 3 staff years of effort. Meetings and telephone contact with M. Fagan of IBM, developer
of the technique, helped the JPL staff understand the process. It has been successfully transferred to JPL
and between its initial use in February, 1987 through 1990, over 200 inspections were carried out. The use
of moderator meetings greatly aided the “people mover” model as other managers became advocates of
the technology to help infuse it at JPL.

Transfer of Formal Inspections Based upon experience at JPL, NASA tried to move the technology to
other NASA centers.

Technology Transfer Model. The transfer of formal inspections demonstrates the difficulty of the assigned
gatekeeper model described earlier. The need for this gatekeeper was quite apparent early in this process.
For example, although meetings were held with management at Kennedy Space Center, no receptor for
the technology was found and the infusion process never took hold (i.e., failure of the assigned gatekeeper
role).

To avoid this problem at other centers, the transfer process first tried to identify the appropriate receptor
who would promote the infusion process. At Langley Research Center, a course was offered and an
advocate was identified who helped with the infusion. In May of 1991 the initial Formal Inspection course
was offered, and by Fall, 1991 a pilot project was started. In August of 1992, inspections were declared a
standard part of all developments. This process took only 16 months, because of the previous experiences

12

TAE CLASSIC

TAE PLUS

PROTODEVELOPMENT ENHANCE MAINTENANCE

PROTOTYPE DEV ENHANCE MAINT

31 100 200LICENSES 6 19

20 100 500 650 700LICENSES

81 8583 87 89 91 93 95

USETRANSITIONUND

Figure 5: TAE development

at JPL. About 12 staff months of effort were required, but most of this effort was in “unpaid overtime.”
No NASA support was available for developing the technology. Once installed at Langley, it has been
transferred to several contractors working at Langley.

Comments on Technology Transfer. Formal inspections were successfully transferred at JPL and Lan-
gley. Total time for transferring at both centers were 33 months and 16 months. These were relatively
short since formal inspections cover only a relatively narrow and precise process in software development
and can be inserted relatively easily into almost any mature development process. On the other hand, the
process was not successful at other centers where no advocate was found.

TAE

TAE (Transportable Application Environment) probably represents NASA’s major success in exporting soft-
ware products outside of NASA. TAE is a graphical user interface useful as a front-end for other software
products. It was developed between 1981 and 1990 at GSFC.

Initially TAE was a simple character-oriented interface between the user at a terminal and an application.
With the development of the X Window System by the MIT X Consortium in the 1980s, TAE was rewritten
to use the X Windows graphical interface.

TAE development as a producer. Originally designed in 1981 (See Figure 5) to support ASCII terminals,
this product was renamed TAE Classic when an enhanced X-Windows and Motif compatible version (TAE
Plus) was developed in 1986. It was originally distributed through the NASA software library COSMIC. Over
900 licenses have been obtained for the product. TAE represents one of the few commercial successes
in software technology transfer for NASA. For the past two years non-NASA users have obtained TAE
commercially via Century Computing, Inc. It is one of the few software engineering technologies that has
been transferred via the On-the-shelf model of technology transfer, although the communication model was
the primary vehicle for “getting the word out.”

13

ENHANCEMENTS (1.5-2 years/release)DEV. QAPROTOUSE ART

8583 87 89 91 93 95

TRANSITION USEUND

Figure 6: CLIPS development

Comments on Technology Transfer. The TAE developers support its users via: (1) A help desk in lieu
of training and consulting; (2) Over 1500 pages of reference documentation; (3) Newsletters giving advice
on how to use the system; and (4) TAE user conferences held approximately every 18 months.

Exporting TAE encountered problems quite similar to those encountered in other technology transfer
environments:

1. The cultural bias against anything new made other organizations reluctant to try this product. The
“Not Invented Here” syndrome is strong in software development organizations. Discovering potential
gatekeepers from the outside is difficult to accomplish.

2. The mechanisms to make potential users aware of the benefits of TAE were inadequate.

3. Mandating use of an immature technology (the Rule model) may be counterproductive if it causes an
effective technique to be discarded before it is ready to be used. TAE Classic was not quite ready in
the mid-1980s and its mandated use on some GSFC projects led to less than optimum performance
and a lack of advocacy among some development groups. It took the development of TAE Plus to get
the product to its full potential. Therefore, TAE use within GSFC generally lags behind use of TAE at
other NASA centers.

4. There was a reluctance to accept a government-developed product as legitimate and of quality design.
However, two-thirds of all TAE licenses are at non-NASA sites.

TAE development as a consumer. TAE use spread through NASA. TAE usage within NASA was similar
to infusion of any other technology. Reports about TAE were read, and since the group was already
committed to an X-Windows and Motif interface, use of TAE Plus seemed appropriate. Total understanding
and transition time was approximately 42 months before it became operational.

CLIPS Expert System

The C Language Integrated Production System (CLIPS) was developed at NASA/JSC (Johnson Space
Center) as an expert system to solve problems that JSC was having with previous products [8]. Using a
rule-based syntax similar to ART (Automated Resoning Tool), CLIPS was implemented in C to be efficient
and portable.

CLIPS development began around 1985 as a prototype proof-of-concept batch implementation that
would use some of the syntax from the earlier ART product (Figure 6). The initial goal was simply a training
exercise to make JSC an “intelligent customer” for similar products. However, after completing the prototype,
in May, 1985 it was decided to build a product for internal use for the HP workstation. This product was

14

completed around May, 1986. Only after completion did the developers consider the possibility that others
may want to use it, and a Quality Assurance phase (QA) was instituted to eliminate remaining errors and
make the system portable and useful by others. The software was submitted to COSMIC in August, 1986.

CLIPS had a relatively short 15 month development cycle. Since its rules were based upon the previous
ART expert system, there was little need for design trade-off studies. The basic rule-based algorithms were
coded in C for efficiency and portability. Since its initial release, versions of CLIPS have been ported to DEC
VAXs, mainframes, UNIX workstations, Macintoshes and PCs; its portability enhanced by being coded in C.

Comments on Technology Transfer. CLIPS was transferred outside of NASA/JSC by the following
mechanisms:

� NASA Technology Transfer facilities. CLIPS was submitted to COSMIC for general distribution.
Since 1986, CLIPS has over 5,000 users in government, academia and industry. COSMIC was
viewed as just a vehicle for distributing the source program, but not in how to spread the word
about the product. CLIPS represents a second example, like TAE, of an “on-the-shelf” product being
exported outside of NASA.

� Conferences. Papers on CLIPS appeared at many professional conferences. Papers started to
appear that referenced the use of CLIPS to solve various application problems, thus increasing
interest in the product.

� Technology transfer model. The people mover model via “word of mouth” was the most effective
means for distributing information about CLIPS. The JSC development group distributed copies to
other NASA centers, where NASA project managers became advocates who wanted their contractors
to use CLIPS for relevant applications. Thereafter, non-space-related divisions of these contractors
learned about CLIPS and started to use it on non-NASA applications. Discussions over the Internet
spread the word about the product. Being written in C, its efficiency led to rapid growth in its use.

Both CLIPS developers and some users claimed that one of the reasons for its spread was that it was
the only expert system shell generally available in source program format. This enabled users to tailor the
product for their own local environment and made understanding aspects of the system easier.

3.2 Software Engineering Processes

Software processes are generally not embodied in a product. Transfer of processes turns out to be very
difficult. For example, the most successfully transferred products found in this study of NASA were TAE
and CLIPS, both executable products. Transfer of processes (e.g., Cleanroom, object-oriented technology,
formal methods) was found to be much more limited in this study.

SEL measurement model. To address this problem, the SEL has developed the quality improvement
paradigm (QIP) for the diffusion of new innovation within an organization. Figure 7 briefly summarizes this
process as an evolution of SEL activities since the inception of the SEL in 1976. The process improvement
model involves understanding a technology, assessing its applicability within a new environment, and
packaging it for routine use.

15

Manager’s handbook

Training material

Approach to data collection

Resource and effort profiles

Error and change profiles

Initial Ada-FORTRAN study

Relationship among development measures

Initial cleanroom study

Reuse analysis

IV&V

Initial OO study

Subjective measures

Evaluate cost and resource models

Assess design criteria

Compare test techniques

Quality Improvement Paradigm

Evaluate Ada

Evaluate OO

Goals-Questions-Metrics model

Experience Factory model

Evaluate cleanroom

Domain analysis

Design measurements

Maintenance characterization

Environments

Recommended approaches

Programmer’s handbook

SME

Cleanroom process model

Ada users manual

UNDERSTANDING

ASSESSING

PACKAGING

1976-1980 1980-1985 1985-1990 1990-1995

Iterate

Figure 7: Summary of SEL Studies

The understanding step baselines process and product characteristics (e.g., cost, reliability, software
size, reuse levels, error classes). The assessment step incorporates potential improvements into develop-
ment projects that are to be evaluated. Quantified SEL experiences (e.g., most significant causes of errors)
and clearly predefined goals for the software (e.g., decrease error rates) drive the selection of candidate
process changes. After the changes are selected, training is provided and experiment plans are produced.
Then the processes are applied to one or more production projects from which detailed measurements are
taken. The new process is assessed by comparing these measures with the continually evolving baseline.
As a result of the analysis, processes are adopted, discarded, or tailored for ensuing efforts depending on
the observed impacts. The packaging step infuses identified improvements into the standard SEL process.
This includes updating and tailoring standards, handbooks, training materials, and development support
tools.

Process improvement applies to both the individual project or experiment level (observing 2 or 3 projects)
as well as to the overall organization level (observing trends of numerous projects over many years). In
the early years, the SEL emphasized building a clear understanding of the process and products within
the environment. This led to the development of models, relations, and general characteristics of the SEL
environment. Most of the experiments (process changes) consisted of the study of specific, focused tech-
niques (e.g., program design notations, structure charts, reading techniques), but the major enhancement
was the infusion of measurement, process improvement concepts, and the realization of the significance of
the process as part of the software culture.

Measurement and experimentation elsewhere. One of the original goals of this study was to also collect
data on the costs of technology infusion. However, outside of the SEL, very little data was collected on which

16

to make any conclusions. While total project costs are usually collected by development organizations, there
is usually no real breakdown into the various activities required for exploring a new technology. Any results
here would be mostly unreliable guesses.

4 Conclusions

In studying technology transfer we believe that we have identified the five models of technology transfer at
work within NASA, the four models (people-mover, communications, on-the-shelf, and vendor) of Berniker
as well as our fifth rule model.

Infusion of technology generally took from two to four years to accomplish. An initial study, training
course, or prototype development took from six months to a year. Once the technology was deemed
appropriate, two to four pilot studies were undertaken as the method was tailored to the local environment.
After several of these studies, the method (either implicitly or explicitly) became state-of-the-practice within
that organization.

One limitation to this study is that NASA, as a government agency, is not driven by the same set of market
forces as in a profit-making organization. While pressure to downsize, lower costs, increase reliability, and
shorten the development cycle are as true for NASA as they are for most other organizations, the demands
to do so are driven more by management (and Congressional) demands and less by loss of market share
and lack of profit.

From this study, we can make several observations about technology transfer mechanisms. While these
conclusions apply solely to NASA, we believe that the results are fairly general and should apply to other
comparable technological organizations.

4.1 Differences between software engineering and other technologies

This study of NASA exhibited several attributes of software engineering which differ from other engineering
disciplines. As such, software engineering technology infusion follows a process that differs somewhat from
other technology transfer models:

1. Infusion mechanisms do not address software engineering technologies well. Software has a
crucial difference that separates programming from other engineering disciplines. Just as software
differs from other products in that it really does not “age,” “decay,” or “cease to function” (and hence
engineering concepts like mean-time-to-failure are not truly relevant with software), the development
of software is much more process-driven and less product-oriented. Software engineering is currently
very dependent upon programmer expertise and less upon implemented technology than with many
other forms of engineering, as we describe below.

There are few integrated systems that effectively aid the software engineer to build complex systems.
Most software engineering technology are processes, a set of rules to be followed in the development
of systems. How to package and transfer processes as a corporate asset must be handled better.
For example, within the GSFC Software Engineering Laboratory, the following processes have been
studied over the past few years:

(a) Object Oriented Technology,

(b) Goals/Questions/Metrics paradigm of software development,

17

(c) The Experience Factory model of development, and

(d) Cleanroom software development.

(Only (a) and (d) were described in this paper. See [2] for other SEL studies.)

None of these processes is embodied in a product. One cannot buy a “Cleanroom” program. Instead
one buys some books, a training course and some guidance on using the technique. Although NASA
does not explicitly address the packaging of such processes as assets to be transferred, NASA in
not unique in this regard. Much of industry does not understand the unique role that processes play
in software development compared to most engineering processes. It is imperative for industry to
understand this distinction and to address the transfer of processes as well as products.

This observation makes software engineering appear more like Allen’s view of science rather than
technology [1]. In science, the desired output is “verbally encoded information” in the form of published
papers, whereas in technology, the desired result is “physically encoded information” in the form of
hardware products. “Verbally encoded information” in the form of product documentation or published
papers on the technology is not viewed as important as the product itself. Current technology transfer
organizations are attuned to the technology model of technology transfer and have not adapted (or
needed to adapt) to the science model of software engineering technology.

2. Quantitative data is crucial for understanding software development processes. Like other engi-
neering disciplines, without quantitative results, it is impossible to fully understand what is happening
and what are the effects of instituted changes. However, outside of the SEL at NASA/GSFC, few
organizations (both inside NASA and outside) collect effective data on their development practices. In
this study, while we were able to track the time to accomplish several instances of technology infusion,
any details about the costs of such technology transfer and on their bottom-line effects on project
costs, reliability, or schedules were mostly educated guesses. Measurement and experimentation are
not part of the software development culture.

3. Technology infusion is not free. Organizations already understand that without the appropriate
advocate already in place in some infusing organization, the ability to export a new technology to that
organization depends upon a significant marketing effort to make the new organization aware of the
benefits of the new technology. For example, NASA already spends considerable funds running a
Technology Utilization Office, COSMIC, and other components of its technology transfer program. On
the other hand, technology infusion is rarely supported.

Unlike other engineering disciplines, rarely are IRAD (Internal Research And Development) funds
available for developing new software technology. New technology is often procured out of existing
project funds and not capitalized over the life of the product. This may be related to the previous
comment that software engineering behaves more like a science, and IRAD funds typically are used
for technology developments.

Organizations generally keep track of total project costs, but separating them into individual tasks
(pilot project development, tool use training, new method experimentation, etc.) is generally not done.
The cost of innovation as a part of an operational project becomes a severe inhibitor to using new
innovations. Costs of such innovation have to be borne by project development budgets, greatly
increasing the risk of a cost overrun. Conservative fiscal planning makes innovation an even higher
risk than is necessary.

4.2 Similarities between software engineering and other technologies

To a great extent, we reconfirmed within the software engineering domain many of the issues concerning
technology transfer found by others:

18

1. Most software professionals are resistant to change. One manager at NASA referred to the
“cultural block” to new technology by those who were used to mainframe computers, while another
manager was more pragmatic in stating that his staff needed to see the technology demonstrated in
a meaningful way in their own environment before they would consider accepting the technology.

“Activities in this [technology transition] life cycle must attend to the culture of the organization in which
the technology is being implemented” [6] is an aspect of technology infusion that is often ignored. The
motto of “one size fits all” should not apply in this domain.

2. Technology transfer is more than simply understanding the new technology. Technology trans-
fer takes time. Understanding the technology has been shown to take upwards of 2.5 years, and it
usually involves multiple instances of training and pilot projects. The transition time when the organi-
zation is exploring, tailoring and modifying the technology for its own use often takes more than the
understanding time, with a total transfer time on the order of five years not being unusual.

3. Technology infusion is part of the total environment of the consumer organization. Technology
infusion does not occur in a vacuum. The SEL experience with Ada is such an example. Ada proved
to be successful with flight simulators. However, the operational system for flight dynamic software
was the IBM mainframe, and no effective Ada compiler was available during the 5 years (from 1985
to 1990) when Ada was under evaluation. The “window of opportunity” on using Ada has passed
and FORTRAN remained the language of choice for such applications. Had an effective mainframe
Ada compiler been available, then the result of evaluating Ada for large systems might have been
different3.

4. The government can have an impact on technology infusion. As others have shown, the im-
position of rules mandating certain technologies (i.e., the rule model) is generally not very effective.
However, the experiences with inspections and CLIPS demonstrates that the government can employ
an effective people mover strategy to infuse technology. In both of these cases, advocates were
recruited from NASA centers different from the development group. Those advocates started to use
these technologies with contractors working for them. The transfer process occurred as other devel-
opment groups within the contractor organization noticed the technologies that their colleagues were
using and then voluntarily decided that they were effective for solving certain problems. Project by
project, these technologies gradually spread among the contractors without the need for mandates.

5. People contact is the main transfer agent of change. As many others have observed, technology
transfer occurs best when the developers of a technology are involved in the technology transfer
process. In our study, that happened in order for Cleanroom to be effectively used at GSFC, for
inspections to be brought first to JPL and then to Langley, and for CLIPS to develop an initial set of
users. Finding the appropriate advocate to act as gatekeeper for the technology is a crucial component
of any technology transfer mechanism.

6. Timing is a critical decision. This can be either a positive or a negative influence. When to enforce
a decision is important for its adoption. The TAE experience at GSFC shows that early mandating of
an immature technology may have the paradoxical consequence of delaying an effective technology
even more than by not mandating it at all.

On the other hand, the early studies of Ada led to the observation that object-oriented technology
might have an impact on the organization. The result of this observation was an improvement in the
use of Ada as well as vastly improved FORTRAN code being produced.

Technology infusion today is generally ignored and left up to the individual engineer to discover what
is needed and available. With today’s shrinking budgets and the need to work “Better, Faster, Cheaper,”
management needs to address this issue and help in the search for new effective technology to use.

3For the past several years the use of C and C++ has been growing within this community, and it now looks like FORTRAN may be
replaced by C++ as the language of choice for flight dynamics appplications.

19

5 Acknowledgment

This research supported in part by grant NSG-5123 from NASA Goddard Space Flight Center to the
University of Maryland, College Park, Maryland. Frank McGarry of Computer Sciences Corporation, formerly
of NASA/GSFC, and Kellyann Jeletic of NASA/GSFC helped in collecting the data described in this paper.

References

[1] Allen, T. J., Managing the Flow of Technology, MIT Press, Cambridge, MA, 1977.

[2] Basili V., M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R. Pajerski, SEL’s software process-
improvement program, IEEE Software, (November, 1995) 83–87.

[3] Bailey J., S. Waligora and M. Stark, Impact of Ada in the Flight Dynamics Division: Excitement and
Frustration, 18th Software Engineering Workshop, SEL-93-003, NASA/GSFC, (December, 1993), 422-
449.

[4] Basili V. R., The experience factory: Can it make you a 5?, 17th NASA/GSFC Software Engineering
Workshop, Greenbelt, MD (December, 1992) 55-64.

[5] Berniker E., Models of technology transfer (A dialectical case study), IEEE Conference: The New
International Language, Portland, OR, (July, 1991), 499-502.

[6] Fowler P. and L. Levine, A conceptual framework for software technology transition, Software Engi-
neering Institute, Carnegie Mellon University, SEI-93-TR-31 (December, 1993).

[7] Lucky R. W., Silicon Dreams: Information, Man and Machine, St. Martin’s Press, New York, (1989).

[8] Mettrey W., A Comparative evaluation of expert system tools, IEEE Software 24, 2 (February, 1991)
19-31.

[9] Nochur K. S. and T. J. Allen, Do nominated boundary spanners become effective technological gate-
keepers?, IEEE Trans. on Eng. Management (39)3 (1992), 265-269.

[10] Paulk M. C, B. Curtis, M. B. Chrissis, and C. V. Weber, Capability Maturity Model for Software, Version
1.1, Technical Report SEI-93-TR-24, Software Engineering Institute, Pittsburgh, PA (1993).

[11] Redwine S. and W. Riddle, Software technology maturation, 8th IEEE/ACM International Conference
on Software Engineering, London, UK, August, 1985, 189-200.

[12] Rogers E., Diffusion of Innovation, The Free Press, New York, (1983).

[13] Seidewitz E. and M. Stark, General Object Oriented Software Development, SEL-86-002, NASA/GSFC,
August, 1986.

[14] Schnaars S., Megamistakes, The Free Press, New York, (1989).

[15] Waligora S., J. Bailey, and M. Stark, The impact of Ada and object-oriented design in the Flight
Dynamics Division at Goddard Space Flight Center, NASA Goddard Space Flight Center Technical
Report SEL-95-001 (March, 1995).

[16] Zelkowitz M. V., Assessing Software Engineering Technology Transfer Within NASA, Software Engi-
neering Program Technical Report NASA-RPT-003-95, NASA, (January, 1995).

20

