
V. Basili et al. (Eds.): Empirical Software Engineering Issues, LNCS 4336, pp. 4 – 9, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Techniques for Empirical Validation

Marvin V. Zelkowitz

Abstract. In 1998 a survey was published on the extent to which software
engineering papers validate the claims made in those papers. The survey looked
at publications in 1985, 1990 and 1995. This current paper updates that survey
with data from 2000 and 2005. The basic conclusion is that the situation is
improving. One earlier complaint that access to data repositories was difficult
is becoming less prevalent and the percentage of papers including validation is
increasing.

1 Introduction

Any science advances by the process of developing new abstract models and then a
series of experiments to test those models against reality. However, all too often in the
software engineering domain, models (e.g., programs, theories) are described without
any corresponding validation that those models have any basis in reality.

In order to determine the status of experimental validation in software engineering,
in 1998 a paper by Zelkowitz and Wallace [4] surveyed the research literature in order
to classify the experimental methods used by authors to validate any technical claims
made in those papers. A total of 612 papers, published in 1985, 1990 and 1995, were
studied. Of these, 62 were deemed not applicable, leaving 560 research papers. The 3
data sources used for this survey were:

• ICSE – Proceedings of the International Conference on Software
 Engineering

• TSE – IEEE Transactions on Software Engineering
• SW – IEEE Software Magazine

Each of the research papers was classified according to a 14-scale taxonomy:

1. Project monitoring. Collect the usual accounting data from a project and then
study it.

2. Case study. Collect detailed project data to determine if the developed product
is easier to produce than similar projects in the past.

3. Field study. Monitor several projects to collect data on impact of the
technology (e.g., survey).

4. Literature search. Evaluate published studies that analyze the behavior of
similar tools.

5. Legacy data. Evaluate data from a previously-completed project to see if
technology was effective.

6. Lessons learned. Perform a qualitative analysis on a completed project to see if
technology had an impact on the project.

 Techniques for Empirical Validation 5

7. Static analysis. Use a control flow analysis tool on the completed project or
tool.

8. Replicated experiment. Develop multiple instances of a project in order to
measure differences.

9. Synthetic. Replicate a simpler version of the technology in a laboratory to see
its effect.

10. Dynamic analysis. Execute a program using actual data to compare
performance with other solutions to the problem.

11. Simulation. Generate data randomly according to a theoretical distribution to
determine effectiveness of the technology.

12. Theoretical. Formal axiom-proof style paper describing a new theory.
13. Assertion. Informal feasibility study of the technology. (More of an existence

proof rather than an evaluation of the claims of the technology).
14. No experimentation. The default classification if a paper fails to fall into any of

the preceding classification.

The first eleven categories represented various empirical validation methods.
Method 12 (Theoretical) indicated that the paper was a formal model of some
property. (The original 1998 paper did not include a separate theoretical category, as
methods 12 and 14 were combined as one category.) There was a thirteenth quasi-
validation method, called an assertion. Assertion papers were those where the author
knew that an experimental validation would be appropriate, but only a weak form of
validation was applied. (For example, a paper describing a new programming
language might only show that it was feasible to write programs in that language, not
whether the programming language solved any underlying problem that needed to be
solved.) All other papers were characterized as “No experimentation,” indicating that
some form of validation was appropriate, but was lacking.

The basic conclusion was that approximately half of the papers had an inadequate
level of validation. Similarly, Walter Tichy in 1994 [2] did his own literature search
using a different protocol, yet came up with a similar conclusion. The general result
was that the software engineering community was not doing a good job in developing
a science of software development.

It is now ten years after these two surveys, so it seemed appropriate to redo the
1998 study in order to see if the situation had changed. One of the conclusions in the
Zelkowitz and Wallace paper was that the situation seemed to be improving. Since
two more 5-year milestones have since passed, it is worthwhile to revisit that initial
survey to see how the research world has changed in the approximately 10 years since
the original survey was conducted.

If we were to redo in total, a slightly different taxonomy would be chosen than the
14-point scale given above. However, one goal was to understand how the research
world has changed since the 1990s, so the same classification model was used. One
problem today is that we don’t have an agreed upon model for classifying software
engineering research methods. Two other surveys compiled in the interim period [1]
[3] use a different classification model for determining the experimental validation
method used.

Table 1 presents the basic data from both the original and 2006 survey. In the 2006
survey, an additional 361 papers were evaluated, with 35 not applicable, leaving 326
additional research papers to classify.

6 M. V. Zelkowitz

2 Observations

The percentages (excluding the “not applicable” category) for each of the 13
validation methods are given in Figure 1. Case study remains the most popular
method, increasing in each survey period from 8.3% of the papers in 1985 to 18.8% in
2005. The “classical” experimentation method of a controlled replicated study
(represented as the sum of synthetic and replicated in Figure 1) grew slightly to 5.3%
of the papers in 2005 from 2.6% in 1985. Dynamic analysis dominated the
experimental methods in 2005 with 20% of the papers. A possible reason why this is
so is given later.

Table 1. Classification data from 973 papers: 1985-2005
p p

 P
ro

je
ct

 m
on

ito
rin

g

C
as

e
st

ud
y

F
ie

ld
 s

tu
dy

Li
te

ra
tu

re
 s

ea
rc

h

Le
ga

cy

Le
ss

on
s

le
ar

ne
d

S
ta

tic
 a

na
ly

si
s

R
ep

lic
at

ed

S
yn

th
et

ic

D
yn

am
ic

 a
na

ly
si

s

S
im

ul
at

io
n

A
ss

er
tio

n

T
he

or
et

ic
al

N
o

ex
pe

rim
en

ta
tio

n

N
ot

 a
pp

lic
ab

le

Total
 ICSE 0 5 1 1 1 7 1 1 3 0 2 12 3 13 6 56

 TSE 0 12 1 3 2 4 1 0 1 0 10 54 18 38 3 147

 SW 0 2 0 1 1 5 0 0 1 0 0 13 1 10 6 40

1985 Total 0 19 2 5 4 16 2 1 5 0 12 79 22 61 15 243

 ICSE 0 7 0 1 2 1 0 0 0 0 0 12 1 7 4 35

 TSE 0 6 1 1 2 8 0 1 4 3 11 42 19 22 2 122

 SW 1 6 0 5 0 4 0 0 1 0 0 19 0 8 16 60

1990 Total 1 19 1 7 4 13 0 1 5 3 11 73 20 37 22 217

 ICSE 0 4 1 0 1 5 0 1 0 0 1 4 3 7 5 32

 TSE 0 10 2 2 1 8 2 3 2 4 6 22 7 7 1 77

 SW 0 6 1 3 1 7 0 0 0 0 1 14 0 3 7 43

1995 Total 0 20 4 5 3 20 2 4 2 4 8 40 10 17 13 152

 ICSE 0 10 0 0 1 4 0 2 2 4 1 11 3 20 10 68

 TSE 0 9 3 1 0 0 0 0 4 4 7 11 10 15 2 66

 SW 0 7 3 1 1 3 0 0 3 0 0 4 1 11 19 53

2000 Total 0 26 6 2 2 7 0 2 9 8 8 26 14 46 31 187

 ICSE 0 14 1 0 1 0 0 0 3 8 1 10 1 3 0 42

 TSE 0 9 4 1 5 0 2 1 2 13 5 13 1 8 2 66

 SW 0 9 4 1 5 0 2 1 2 13 5 13 1 8 2 66

2005 Total 0 32 9 2 11 0 4 2 7 34 11 36 3 19 4 174

More important than individual methods is the general “health” of the software
engineering research field. This is summarized by Figure 2. Except for 2000, the
percent of “No experimentation” papers dropped from 26.8% in 1985 to only 10.9%
in 2005. Assertions dropped from 34.6% in 1985 to 21.2% in 2005. The percent of
papers that used one of the 11 validation methods rose from 29% to 66% in 2005.
(The percentage rose from 39% to 68% when theoretical papers were also included.)
Clearly the situation is improving. This is consistent with an alternative study of the
International Software Engineering conferences (ICSE) [3]. Using a sampling
technique over all 29 ICSE proceedings, they found that 19 of 63 papers included no
empirical study (30%). This present study indicates that 50 out of 208 ICSE papers

 Techniques for Empirical Validation 7

0 5 10 15 20 25 30 35 40

Project monitoring

Case study

Assertion

Field study

Literature search

Legacy

Lessons learned

Static analysis

Replicated

Synthetic

Dynamic analysis

Simulation

Theoretical

No exper.

Not applicable

2005

2000

1995

1990

1985

Fig. 1. Percentages of each validation method

(26%) had no experimentation. They also found a statistically significant increase in
evaluation papers between the conferences prior to 1990 and those since then.

Unlike in the Zannier et al study [3], no attempt was made to evaluate the quality
of the validation presented in those papers. (It was beyond our knowledge to
understand and evaluate all 886 papers, but it was fairly easy to understand hoe the
authors proposed to evaluate that technology.) If the paper stated an hypothesis about
the technology described in the paper (even if stated indirectly) and then proceeded to
describe a validation method for that hypothesis, we considered it as validated.
Perhaps the hardest part of the study was trying to understand what the underlying
hypothesis really was and how the authors would proceed to evaluate it. As stated
earlier, we need a common terminology in which to describe validation methods.
Many of the authors used terms like “experiment,” “case study,” “simulation,”
“controlled,” etc. in very different ways.

Several anecdotal observations are buried in the data. A common complaint 20
years ago was the lack of published data sources that others could have access to.
That seems to be changing. Many of the papers used the various open source

8 M. V. Zelkowitz

0

10

20

30

40

50

60

70

1985 1990 1995 2000 2005

Year

P
e
rc

e
n
t

Validation

Assertion

Theory

No experimentation

Fig. 2. Changes over time in validated papers

repositories, looking at the development history of products such as the Apache web
server or Mozilla, as sources for data. This use of historical data using open source
and other data repositories was one of the reasons for the rise in the dynamic analysis
category in Figure 1. Similarly, data mining through theses sources led to the rise in
the legacy data category.

3 Conclusions

There are several threats to the validity of this study.

1. The 2006 classification was performed about 9 years after the earlier study.
While the same classification process was used to classify the papers according to the
14-point taxonomy, undoubtedly the intervening years may have changed our views
of some of the validation methods. Consistency of this somewhat subjective
classification method is a problem. For example, in [1], they report 0 and 3 controlled
studies in ICSE for 1995 and 2000, respectively, while Table 1 shows 1 and 4,
respectively, for those years in our classification). While this may have affected
individual percentages in Figure 1, it should not have had much of an impact on the
overall results as given by Figure 2.

2. As with the earlier 1998 study, each paper source for each year was managed by
a different editor or conference chair. This has an effect on the overall acceptance rate
of various papers submitted to that source. For example, the rise in “No
experimentation” in 2000 was partially due to the largest number of ICSE papers (68)
in the entire survey and the relatively large number of “No experimentation” papers
(20) in those proceedings. Although such variances affect individual sources in a
given year, the overall trends seem consistent.

 Techniques for Empirical Validation 9

3. There was a change in the scope of IEEE Software between 1995 and 2000. In
the earlier survey, this magazine often published longer articles that had a research
component. However, more recently the papers have been shorter with more regular
columns appearing in each issue. Regular columns were not included in this survey
and a value judgment was made on the remainder of the papers. If a paper discussed
many solutions to a given problem, the paper was considered a tutorial or survey and
listed as “Not applicable,” but if the paper focused on a particular technique (often the
author’s), then it was considered a research paper.

The greatest limitation to this study, however, was mentioned earlier – the quality
of the evaluation was not considered in classifying a paper. If the field is to mature as
a scientific discipline, not only do we need empirical validation of new technology,
we also need quality evaluations. However, that study still needs to be done.

In spite of these limitations, the results should prove of interest to the community.
It provides a general overview of the forms of validation generally used by the
computer science community to validate the various research results that are
published and it does show that the field is maturing. Computer science seems to be
developing an empirical culture so necessary to allow it to mature as a scientific
discipline.

References

1. Sjøberg D. I. K., J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N-K Liborg
and A. C. Rekdal, A survey of controlled experiments in software engineering, IEEE Trans.
on Soft. Eng. 31, 9 (2005) 733-753.

2. Tichy W. F., P. Lukowicz, L. Prechelt, and E. A. Heinz, Experimental evaluation in
computer science: A quantitative study, J. of Systems and Software 28, 1 (1995) 9-18.

3. Zannier C., G. Melnik and F. Maurer, On the success of empirical studies in the
International Conference on Software Engineering, Inter. Conf. on Software Eng.,
Shanghai, China (2006) 341-350.

4. Zelkowitz M. V. and D. Wallace, Experimental models for validating computer technology,
IEEE Computer 31, 5 (May, 1998) 23-31.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

