
Measuring Productivity on High Performance Computers

 Marvin Zelkowitz

1,2
Victor Basili

1,2
Sima Asgari

1

Lorin Hochstein
1
Jeff Hollingsworth

1
 Taiga Nakamura

1

1Department of Computer Science, University of Maryland, College Park, MD 20742
2Fraunhofer Center Maryland, College Park, MD 20740

{mvz, basili, sima, lorin, hollings, nakamura}@cs.umd.edu

Abstract
In the high performance computing domain, the speed of

execution of a program has typically been the primary

performance metric. But productivity is also of concern to

high performance computing developers. In this paper we

will discuss the problems of defining and measuring

productivity for these machines and we develop a model of

productivity that includes both a performance component

and a component that measures the development time of

the program. We ran several experiments using students in

high performance courses at several universities, and we

report on those results with respect to our model of

productivity.

1. Introduction

 Productivity is an economic concept that measures the
amount of output per unit of input in an economic system.
For a unit of output we will use the general concept of
value and for a unit of input we will use the concept of
cost. Therefore, a simple definition of productivity is
value/cost. In this paper we want to define these terms in
the context of solving specific problems on a computer, in
particular, for the domain of high performance computers.

 This seemingly simple relationship of value divided by
cost becomes quite complex when we try to quantitatively
define value. The value of a product depends upon the
needs of the various stakeholders involved in creating or
using a product. As we show, under different situations,
the value of a product may change depending upon
context.

 In this paper, we present the development of a
productivity measure applicable for the high performance
computing (HPC) domain. Since we want to compute
productivity values for specific programs, our goal is not
only a formal model of productivity, but one that has
parameters that can be easily computed. While our goal is
to ultimately produce an absolute measure of productivity,
in this paper we limit our discussion to the relative
productivity between two implementations. Even this
limited form of productivity should be useful, such as
deciding which computer system or development method
would be best for solving a specific application problem.

Since the value component of productivity depends

upon the needs of the various stakeholders, we can
approach productivity from several points of view:
1. What is the productivity of a team producing a

specific program?
2. What is the productivity that one environment (i.e.,

HPC machine, compiler, development tools) provides
over a second environment?

In this paper we will use the first point of view. We want
to be able to compare the productivity of two different
teams developing the same program on the same hardware
platform.

 In measuring productivity over the lifetime of a
software project, software developers have typically been
concerned with the amount of output a development
generates for the amount of effort used to produce that
output. For commodities (e.g., pencils, telephones,
computers, tons of coal) output is easily computed as the
number of such objects produced. However, for software
the situation is murky. What does it mean for one program
that costs $2M to have “more output” than a similar
program that costs $1.5M? Utility is an economic concept
that tries to measure such value. It is a stakeholder’s
attempt to measure the increased value for an increase in
input to the economic system. But computing this increase
in utility is very inexact and somewhat subjective.

 Therefore, output for software is often measured in the
numbers of lines of code, and cost is often expressed as the
number of hours required by the staff to produce that
output. But as the utility discussion above implies, size is a
highly dubious number. What about code quality and other
attributes such as maintainability and reliability? With
great reliance on COTS (Commercial Off the Shelf)
products, use of program libraries, reuse of modules,
object oriented class libraries, etc. such calculations are
very hard to interpret. Using other measures such as
function points doesn’t really help. They have the same
problem as lines of code in being an imprecise measure of
the value of a product.

 While lines of code per day (or per hour of effort) have
been a traditional measure of productivity – mostly
because of the lack of a good alternative – it lacks a true

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

definition of utility for that software. This issue becomes
evident in looking at the utility of programs required by
the HPC community. They are concerned about measuring
and evaluating the performance of the various high end
computers used to solve complex problems. For these
stakeholders, execution time is often the dominant factor
and various benchmarks have been developed for
measuring performance on these machines. However, the
HPC community is quite aware that there are other critical
factors involved in setting up the problem solution: time to
program the solution and tune it for maximum efficiency,
problem set-up times, times waiting in job queues and
scheduling delays, and post execution processing of the
results. These times can be significant [5, p. 60].

 In this domain, the chief performance measure used is
time to solution. “The single most relevant metric for high-
end system performance is time to solution for the specific
scientific application of interest.” [5, p.6] Very little is
known about the various development processes (e.g., how
one designs, codes, tests) are used in this environment. In
particular, what are appropriate models of productivity for
this domain so that various environments can be compared
for their effectiveness?

 An HPC machine with 1000 processors, for example,
has the capacity to execute a program in 1/1000 of the time
of a machine with only one processor. The trick is to
divide up the problem space so that every processor can be
kept busy solving the problem in parallel. If we could do
this, then we would achieve a speedup of 1000.

Realistically, however, we achieve a speedup much
less than this theoretical maximum. While the total
processing power increases linearly with the number of
processors, it becomes harder to divide some problems into
equal-sized parallel pieces. Adams [1] gives an example
where a solution that used 92% of the total computational
power of 32 processors used only 48% of the total
processing power when the machine was expanded to 128
processors.

 In developing HPC programs, there is the need to tune
a program to utilize the multiple processors of an HPC
system. This parallelization effort becomes a significant
part of the total cost of the system. Because of this
parallelization effort, for this class of stakeholders, utility
is related to the speedup an HPC machine can achieve and
productivity can be reduced to some function of the
execution time of the program and its development time.

We will first discuss several other theoretical models

that measure productivity using high performance
computers. Can we use these theoretical models in order to
develop a computationally effective way to measure

programmer productivity in the HPC domain? Just as
important, will these productivity models be
computationally effective? That is, can we actually run
experiments to collect the relevant data to compute this
productivity? We ran several experiments using students in
high performance courses at several universities, and we
will report on those results as it applies to our own model
of productivity.

 The work reported here is part of the Defense
Advanced Research Projects Agency (DARPA) High
Productivity Computing Systems (HPCS) program. The
mission of the HPCS productivity team is to better
understand how one develops software that will execute on
the next generation of high performance computers. The
HPCS program consists of several Working Groups and
the activities presented in this paper represent work that
came out of the Development Time Working Group, led
by the University of Maryland [4]. As part of developing
new high performance machine architectures, research
from this HPCS activity may play a role in deciding on the
software environments (e.g., compilers, editors,
development tools) that need to be built to make those
machines most productive.

2. Productivity

2.1. Models of productivity in the HPC domain

 In the HPCS program, the primary interest in a
productivity metric is to support the acquisition process, as
one of several criteria for deciding which system to
purchase. Such a metric can also be useful for a
programmer or project manager faced with the decision of
which parallel programming technology to use for a
particular project. Note that in the former case, the metric
would be applied to evaluate an entire HPC system, and in
the latter case would be applied to evaluate a particular
technology on a given HPC system.

 A productivity metric can also be applied on an
individual project, to evaluate how productive the
programmers were in developing and executing the
software on a particular HPC system. We restrict our
discussion to productivity at the project level. To apply a
productivity measure on a technology or system level
would involve some method for aggregating the
productivity measures from individual projects, which is
outside the scope of this paper.

 Several models have been proposed to define HPC
productivity. Here we present 3 of them as typical of the
many that have been proposed. See [7] for additional
proposed models.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

2.1.1. Utility values

 Snir and Bader are one example of using utility theory
to the problem of developing a model of productivity [10].
Cost is the cost of developing the solution plus the cost of
using the system, but the value is the utility preference of a
stakeholder (e.g., Laboratory director) to the work
performed by the system. The utility of a solution will be
how long it takes for the solution to be ready relative to the
need for using that solution.. Utility, related to the concept
of risk, is a function over [0..1] and in this case the utility
is generally a decreasing function of time, reaching 0 just
at the deadline when the solution must be available.

 For example, consider the problem of weather
prediction. Assume you want to know the weather 48
hours in advance. If you could accurately compute the
weather for 2 days in the future using only 1 hour of
computation, then the 47 hour advance notice has some
economic value (e.g., should you plan an outdoor activity
or if it will rain, move indoors?). If it takes 24 hours to
compute the weather 2 days hence, then the 1 day advance
notice still has value, but less so than if would have after
only 1 hour of computation. Finally if it takes more than
48 hours to compute the weather, the calculation has no
value; you can simply look out the window to see what the
weather is.

 As stated earlier, because of the importance of time to
solution as a performance metric, the use of utility
functions to address this attribute has appeal as a
productivity measure. But as a measure of productivity,
this approach has two weaknesses:
1. It is somewhat subjective since the utility of the

solution over time depends upon the subjective
opinion of the stakeholder creating the utility function.

2. Productivity is very dependent upon the particular
needs of the application being developed. That is, the
time that the solution is needed greatly affects the
utility curve that is produced. Therefore, two different
programs may have the same performance and
development time characteristics, but very different
utility curves. This model, while theoretical pleasing,
becomes difficult to use in practice.

2.1.2. Work Estimator

 Sterling [11] developed an alternative model that
defines productivity as utility over cost where utility is the
total lifetime work produced by a system and cost is the
total lifetime costs of the system, or more formally as:

(1)

where SP is the peak performance of the machine, E is the
efficiency of the computation (i.e., how much of the peak
performance is actually used), and A is the availability of
the machine (i.e., how much wall-clock time is actually
needed to compute one second of the solution) while CL

represents the total lifecycle costs to develop and execute
the program. The numerator represents the calendar time
needed to execute a solution to the problem by factoring in
how much of the peak performance a computation uses,
how efficient the computation is and how much time is
spent in various job queues waiting for access to the HPC
machine. Note that only execution characteristics in the
final solution are used to compute value in this calculation
of productivity. The time to develop the program is not
considered (although the cost to develop is part of CL).

2.1.3. Power and efficiency

 Kennedy [9] looks at the problem from the perspective
of the power of a given programming language by defining
power and efficiency with respect to a language.

 Let P0 be a standard reference implementation of a
program. We can define I(P0) as the implementation time
for P0. If L is another language we also compute I(PL) and
the ratio of the two, ρ, represents the programming
efficiency of implementing a solution in PL over a solution
in P0 (which he calls power). We can express this as:

ρ = I(P0)
 I(PL)

(2)

This gives a value of how efficient it is to program in L
over the reference language P0.

 Similarly we can compute the execution efficiency ε as
the ratio of execution times, or

ε = E(P0)
 E(PL)

(3)

This ratio shows how much execution time it takes to solve
the problem in L relative to the reference language.

 Kennedy’s time for a solution is the sum of
implementation time plus execution time, or:

T(PL) = I(PL)+ r E(PL) (4)

where T(PL) is the time to solution for program P in
language L, and r is a problem specific factor giving the
relative importance of implementation time over execution
time (e.g., r is large for programs that execute many times,
r is small for a program that executes once). Since his goal
is to evaluating various languages, he wants to find the Pi
that minimizes T(Pi). By choosing an appropriate value for
r, the impact of I(Pi) becomes more or less important to
decide whether only execution time or development time is
the more important component of T(Pi).

Ψ w =
S P × E × A

CL

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

 Substituting for I(PL) and E(PL), using the definitions of
ρ and ε, we get the time to solution as:

T(PL) = 1 I(P0)+ 1 r E(P0)
ρ ε

(5)

Under the assumption that ρ and ε are relatively constant
for a given language L, productivity is then the ratio of the
time to solution of P0 divided by the time to solution of PL,
which gives us the result:

Productivity = T(P0) = ρ + ε X
 T(PL) 1 + X

(6)

where
X = r E(PL)
 I(PL)

(7)

 This approach has some similarity to the one we adopt
later in this paper. However, it has one weakness in its
present definition to be applicable within the HPCS
program. Often L and the reference language P0 are
variants of the same language and implementation of one
aids the implementation of the other. As we later state, a
system like MPI simply adds the parallelization primitives
to a language like C so this straightforward computation of
ρ in equation (2) may be difficult to compute since I(PL)
also includes I(P0) and it may not be able to obtain an
accurate value of I(PL).

 While all of these models compute a value for
productivity, our goal was to produce a model we could
easily measure in the laboratory and would also be of
practical value. Beginning with a simple definition of
productivity, we proceed in the next section to develop an
alternative view of productivity.

2.2. Traditional productivity

 In the HPC domain, productivity, as we stated before,
can be represented as:

 Ψ = Productivity = Utility

 Cost

(8)

For traditional software projects, this has been an elusive
concept. We don’t really know the utility of a piece of
software, so its size is a reasonable estimator of its
complexity and usefulness and the effort to build the
product is a reasonable estimator of the cost to produce it.
So Utility is often expressed as source lines of code
(SLOC) and productivity is often expressed as SLOC per
hour of effort, and numbers like 10-20 lines per 8-hour
day, averaged over the entire development process, are not
uncommon (e.g., 160,000 SLOC divided by 20,000 total
hours give a productivity of 8 SLOC per hour or 64 SLOC
per day).

 But if we could quantify program utility (assuming we
knew what one unit of program utility represented) we
could define productivity accurately. Let M represent the

number of program utility units contained in the program.
Traditional productivity can then be defined as:

Traditional Productivity = Program utility units

 Effort in hours

(9)

2.3. HPC productivity Model

 In order to quantify the value of an HPC program, we
need to compute its productivity as given by utility/cost of
equation (8). But what are the utility and cost of such
programs? If we assume that we can measure the
traditional productivity of an organization (by equation
(9)) then the starting point for HPC productivity is this
utility in program utility units per hour, which represents
the development effort for building a large program.1 We
will assume here that it remains relatively constant for an
organization, although we know that it actually can vary
greatly from project to project.

 Creating a program for an HPC machine has a cost
factor generally not present in building a program for a
single processor. Often a C or FORTRAN program is
written to execute on a single processor, and then a parallel
version is built by adding function calls that invoke
processes to create parallel paths of execution in separate
processors. MPI and OpenMP are two common interfaces
used to parallelize a program. The Message Passing
Interface (MPI) builds a network of processes that pass
messages for communication and OpenMP creates multi-
threaded, shared memory parallelism. It requires
significant effort to achieve this parallelism by adding the
appropriate MPI or OpenMP interfaces to a serial version
of the program.

 In order to compute productivity in the HPC domain,
we need to know the increased value of a program that
achieves a speedup of s. We make the following two
assumptions:
1. The economic utility is modeled as a combination

of program size and speedup. A program with M
program utility units (e.g., SLOC) that achieves a
speedup of s on an HPC machine has the same
economic utility as s versions of the program, each of
size M and each running on a single processor. The
utility of this code is then s*M. That is, achieving a
speedup of s is equivalent to s implementations of the
program, each of size M.

2. The cost is modeled as development effort. Because
of the complexity of achieving parallelism, an HPC

1 For ease in understanding, you can substitute SLOC for
program utility units. As stated previously, SLOC is the most
commonly used proxy for these units.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

program has an increased cost of development. Let C
represent the relative increase of producing the
parallel version of the program over the single
processor serial version. C can be expressed as the
ratio of the cost of the parallel version over the cost of
the single processor version. and for HPC programs C
is generally greater than 1.

 Let k be the cost for producing 1 program utility unit. If
M is the program size in program utility units, then the
uniprocessor cost is M*k. The cost of the parallel program
is then M*k program utility units times the relative cost
factor of C or M*k*C.

 Combining both assumptions, we get a tentative HPC
productivity measure as:

Ψ = s*M = s

 M*k*C k*C

or

 Ψ = 1 * s

 k C

(10)

(11)

where s is the speedup and C is the relative cost or effort
for creating and parallelizing the program (e.g., total effort
to both create the serial and then parallel version of the
program). The constant k represents the costs to produce 1
program utility unit of the final program (or as stated
previously, can be approximated by the cost to produce
one line of code). Instead of program utility units we can
use any proxy for that figure. So it is irrelevant if we use
hours of effort, SLOCs, function points, or some other
attribute as long as this attribute measures utility in some
direct way.

 Equation (10) gives us an absolute value for
productivity, but unfortunately we have no idea what k and
a program utility unit are. However, given two different
developments, if we divide one productivity value by the
other, the 1/k factors cancel, and we can use equation (11)
to compute the relative productivity between two different
projects. In this case, if we let P be the HPC program we
wish to evaluate and P0 be a reference implementation of
the same program, then P/P0 provides a relative value for
parallel implementation P compared to the reference
implementation P0. For a reference implementation we
choose to use a baseline serial implementation (i.e., an
implementation running on one processor). In most cases
we will set the serial execution time s as 1 and the relative

cost C as 1, so baseline serial productivity will be Ψ = 1/k
* s/C = 1/k. In this case, dividing the two productivity
values gives us a measure of utility of the parallel system
over relative costs compared to a serial implementation.

 We can then represent HPC productivity, by the
following model, originally developed by Jeremy Kepner

of MIT Lincoln Labs (and Project Director of the HPCS
productivity team) that we have been using for HPC
programs. We define productivity as given in Figure 1.

Figure 1. HPC Productivity Model.

2.3.1. Relative Speedup

 The numerator of our HPC productivity model, relative
speedup, sounds like a simple concept, but has significant
issues when trying to compute a reasonable value. For one
thing we would like to use relative speedup as a means to
compare two different implementations of a program,
perhaps to compare the effectiveness of the underlying
language or parallelization model (e.g., MPI versus
OpenMP). However, one can artificially inflate the relative
speedup by using a poorly implemented serial version. For
example, one can build a serial implementation, measure
the serial execution time, then simply turn on compiler
optimization switches and recompile. One can often
achieve a speedup of 2 or 3 that way with no
parallelization effort at all. (i.e., Relative effort has a value
of 1, with a resulting productivity of 2 or 3.)

 A more serious problem is that it is often not easy to
even get the serial implementation. Many developers work
on both the serial and parallel implementations at the same
time and the project may not even pass through a
development stage where there is a complete serial
implementation to measure. Some problems are simply too
complex to test or run via a serial implementation on a
single processor.

 In order to get a level playing field, one solution to this
problem is to use a reference serial implementation R1. It
actually doesn’t matter which one is used since we are
only comparing relative HPC productivities. That is, using
a different reference implementation R2 will have the
effect of changing all values of productivity by the factor
R1/ R2 and the relative ranking of each project will remain
the same.

 Obtaining a reference serial implementation also has
the effect of validating the value of the program in the time
to solution equations. If we can obtain an optimal serial
implementation, then a parallel implementation is superior
to this serial implementation only if it has a productivity

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

greater than 1 according to Figure 1. That is, we need a
speedup sufficient to counteract the increased effort of the
parallel implementation.

2.3.2. Relative Effort

 For a similar reason, we can often not even obtain both
the serial and parallel effort for a development since
parallelization may occur during the initial development of
the solution. However, if we substitute the effort for
building the serial reference implementation, as with
relative speedup, we get uniform value we can use (up to a
multiplicative constant).

 Combining both of these results, we get an equation for
HPC productivity as given in Figure 2. Note that our
equation for relative effort is a variant of the value ρ from
Kennedy’s model given in equation (2) and speedup is
simply Kennedy’s efficiency ε from equation (3). The
difference is that in Kennedy’s case he is using as a
reference implementation a standard parallel solution to
the problem. In our case, we want the reference
implementation to be a serial implementation.

Figure 2. Revised HPC productivity

 In order to provide normalization to the values of ε and
ρ, a good choice for this reference implementation should
be the best serial implementation in terms of execution
time that can be written. As stated at the end of Section
2.3.1, ρ represents the additional effort needed to
parallelize all solutions to the problem over a good serial
implementation, and ε represents the ultimate speedup one
can achieve over the reference implementation. However,
if no optimal implementation is available, then any serial
implementation will do, except that the values of ρ and ε
will have to be interpreted differently.

3. Experimentation
 As part of our work on the HPCS program, we have
been evaluating development characteristics for HPC
programs by studying the development of programs within
selected high performance computing classes at several
universities [4]. Each semester 2 or 3 graduate HPC-

related classes at several universities run several
experiments addressing HPCS development time issues.
These experiments are done within the context of the
programming assignments for the course. Typically
students develop 2 or 3 programs using several standard
models (e.g., MPI, OpenMP) and we collect all
compilation and execution time characteristics for these
programs as well as copies of all source programs
compiled by the students. In addition the students (are
supposed to) turn in logs giving the time spent on
performing the various tasks in completing the assignment.
From this data we are able to evaluate the various
workflows used to build those programs. We can use this
data in order to evaluate our model of productivity
described in this paper.

Figure 3. Simple HPC productivity measure

 Accurate effort data is usually very difficult hard to
obtain [6]. Programmers are either reluctant or find it
difficult to keep accurate records on their activities.
However, we have already shown by equation (11) that
any measure of relative effort suffices. As long as the
application domains are similar, SLOC counts are an
approximation of effort, so within a limited domain, Figure
3 gives an easily computed formula for productivity. We
use this as well as effort in our classroom experiment.

3.1. Evaluating productivity measures

 Table 1 presents an initial evaluation of the productivity
measures from Figures 2 and 3. These represent 5 students
in one class where we have the relevant data in solving
Conway’s game of life program in C using MPI as the
parallelization interface.

 Part A represents the calculations where actual effort
data is used to compute productivity. Program 3 was rated
as the highest productivity. The program with shortest
execution time (Program 5 with an execution time of 8.5
seconds) was only the second best in terms of productivity.
Even though it took 4 seconds longer to run (about 50%),
total effort to construct the program was only 10 hours
compared to 22 for program 5. Program 4 which also ran

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

about 10% faster than program 3 took 34.5 hours to build
instead of the 10 hours of program 3. The other 2 programs
clearly had lower productivity both in terms of effort to
complete and in performance.

 Using SLOC counts to estimate effort, we get the
results in Part B of Table 1. We believe the results are
similar, but not as accurate. The two programs with highest
productivity are the same and the bottom 3 are the same.
In this case program 5 does have the highest productivity,
due principally to the extreme brevity of the MPI source
program compared to program 3.

 Applying this analysis to a second program, we get the
results described by Table 2. This second problem was the
Buffon-Laplace needle problem, a Monte Carlo
simulation, where the value of π can be computed by
dropping a needle randomly on a grid. In this case effort
data is mostly missing and several serial executions are not
available. But using the SLOC counts and parallel
execution, we can get a representative productivity value.

 In this example, the reference implementation chosen

was program 18. It had the optimal serial execution time at
3.17 seconds, but exhibited an all too common
phenomenon in the HPC domain that the parallel version
running on 8 processors actually ran slower at 3.42
seconds (i.e., a speedup of less than 1).

 Program 11 was judged highest in productivity at 5.81
with program 15 at 4.01 not far behind. Program 11 indeed
has the least execution time at 0.70 seconds with program
15 being the second at 0.94. Program 11 also had the
characteristic of requiring the least lines of code at 43 with
program 15 only requiring 46.

 Tables 1 and 2 also demonstrate some of the practical
problems in computing productivity measures. We did not
obtain the serial effort for program 5, but fortunately it is

not needed in our calculations of Ψ. Similarly, serial
SLOC counts for programs 1, 3 and 4 were also missing.
Almost all effort data for programs 11 through 22 was not
submitted by the students. Fortunately, again these are not
needed to compute our productivity measures. As we’ve
said previously, obtaining intermediate values (e.g., serial
effort, serial SLOC count, serial execution times) are very
hard to obtain and basing our calculations on final values
greatly increases the usefulness of the formulas, even if the
precision is not as great. All we need is some reference
implementation upon which to base our relative measures.

3.2. Discussion

 The productivity measure has an implicit time to
solution component built in with the calculations of ε and
ρ. But going back to Table 1, do we want to say that
program 3 with productivity of 4.11 is always better than
program 5 with productivity 2.83? If this is a problem
executed once (what is often called the “lone researcher”
workflow), then program 3 probably is better since we are
trading off 12 development hours for a decrease of 4.3
seconds of execution time. But if this is a problem that will

Table 1. Productivity – Game of Life program

Part A. Using effort for productivity

Program ���� 1 2* 3 4 5

Serial effort (hrs) 3 7 5 15

Total effort (hrs) 16 29 10 34.5 22

Serial Exec (sec) 123.2 75.2 101.5 80.1 31.1

Parallel Exec (sec) 47.7 15.8 12.8 11.2 8.5

Speedup 1.58 4.76 5.87 6.71 8.90

Relative Effort 2.29 4.14 1.43 4.93 3.14

Productivity 0.69 1.15 4.11 1.36 2.83

Part B. Using SLOC as effort measure

Serial SLOC 161 134

Parallel SLOC 123 352 300 1827 151

Relative SLOC 0.76 2.19 1.86 11.35 0.94

SLOC Productivity 2.07 2.18 3.15 0.59 9.49

*- Reference serial implementation

Table 2. Productivity – Buffon Laplace needle problem

Part A. Using effort for productivity

Program ���� 11 12 13 14 15 16 17 18* 19 20 21 22

Serial effort (hrs) 4 4 12

Total effort (hrs) 7

Serial Exec (sec) 3.33 5.10 20.00 6.20 3.17 3.90 5.91

Parallel Exec (sec) 0.70 1.07 2.50 2.97 0.94 4.00 1.95 3.42 1.50 1.98 1.81 1.81

Speedup 4.54 2.96 1.27 1.07 3.36 0.79 1.62 0.93 2.11 1.60 1.75 1.75

Relative Effort --- --- --- --- --- --- --- --- --- --- --- ---

Productivity --- --- --- --- --- --- --- --- --- --- --- ---

Part B. Using SLOC as effort measure

Serial SLOC 32 40 28 36 37 50 55 33 43

Parallel SLOC 43 52 43 50 46 57 66 92 55 62 42 77

Relative SLOC 0.78 0.95 0.78 0.91 0.84 1.04 1.20 1.67 1.00 1.13 0.76 1.40

SLOC Productivity 5.81 3.13 1.62 1.17 4.01 0.76 1.35 0.55 2.11 1.42 2.29 1.25

*- Reference serial implementation

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

run daily for the next 10 years, then we want to increase
the importance of execution time over effort in computing
productivity. Much like the factor r in Kennedy’s time to
solution equation (4), we need to modify productivity to
reflect the execution versus implementation tradeoffs in
computing productivity. In the next section we offer some
comments on approaching that problem.

4. Productivity revisited

 The productivity formula of Figure 3 has the weakness
that it doesn’t address the total lifetime execution behavior
of an HPC program. In order to address that factor, we
propose to modify the equation by reducing the impact of
the cost factor (e.g., relative effort term in Figure 3) when
a program is repeatedly executed. As in Kennedy’s
productivity model, we propose a factor r in the
calculation of relative effort to cause this effect, as in:

(12)

The value r represents the number of executions of the
program over its lifetime and varies between 0 and 1. This
is only a temporary solution. As we show, this
modification has most of the properties we want, but we
need to establish it on a better theoretical foundation.

 For the single execution lone researcher type of
program, r has the value of 0 and equation (12) reduces to

Figure 3 with productivity given by Tables 1 and 2.
However, if the program represents one used repeatedly,
then r is close to 1 and the Relative Effort value
approaches 1, meaning that the influence of development
time is less on productivity and the utility of the program
reduces to just speedup.

 Returning to the example presented in Table 1, there
was a question of whether program 3 or 5 had higher
productivity. Program 5 had higher speedup of 8.90 over
5.87 for program 3, but required 12 more hours of
development. Our analysis chose 3 as the better program.

 In Figure 4 we plot the values of Productivity for both
program 3 and program 5 as r varies between 0 and 1. The
solid line represents program 3 and the dashed line
represents program 5. For r=0 we get the productivity of
Table 1 and for r=1 we get productivity as simply the
speedup of the various solutions with program 5 being

most productive. At r=0.26 the lines cross, changing the
answer of which program has higher productivity.

 Since parallel effort (consisting of the total time to write
a serial then parallel version of the program) is so much
greater than the serial effort alone in the HPC domain, if
we assume that the parallel effort is greater than the
reference effort, Relative effort becomes a monotonically
decreasing function of r, so productivity is monotonically
increasing. Because of this, we can always eliminate
solutions with lower speedup values. So for Table 1,
programs 1 and 2 can never have highest productivity for
any value of r. Program 4, with speedup of 6.71 potentially
has higher productivity than program 3, but by plotting
program 4 (dotted line) we see that program 3 and program
4 have the same productivity of 5.59 at r=0.76, but
program 5 already is higher at 7.73.

 In order to better resolve this issue, we still need to
evaluate equation (12) so that:
1. We have a better understanding of the modifications

of relative effort to better reflect the contribution of
development time over the repeated execution of the
program over its lifetime.

2. We need to correlate the factor r to the number of
repeated executions of a program. (That is, what does
r=0.26 mean for the example graphed in Figure 4?
What is the physical reality expressed by r=0.26?)

 As a final check on our model, we compare our
productivity results with the results from Kennedy’s
productivity analysis (Equation (6)). Table 3 presents his
productivity results for the data in Table 1 based upon the
value of r chosen. We use the same program 2 as the
reference P0 of his analysis.

 We get a result similar to his model. For r=1, program 3
has the highest productivity (in bold in Table 3). But as r
increases, the execution component of T(P) becomes more
important and for r=10,000 program 3 and program 5 have

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Value of r

P
ro

d
u

c
ti

v
it

y

Figure 4. Productivity for programs 3, 4, and 5.

Table 3. Kennedy’s productivity from Table 1

r Prg. 1 Prg. 2 Prg. 3 Prg. 4 Prg. 5

1 0.44 0.24 0.70 0.20 0.32

100 0.52 0.31 0.88 0.26 0.41

1000 0.95 0.84 2.06 0.74 1.14

10000 1.45 2.96 4.74 3.29 4.73

20000 1.51 3.64 5.24 4.39 6.14

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

almost the same productivity. For larger r, program 5 has
the highest productivity, demonstrating that for large
number of executions, implementation time is less
important than execution time speedup. (As with our
model, Kennedy needs a correlation of the value of r with
a measure of total execution time.) In both models, the
limiting value in productivity as execution time increases
will be the speedup factor.

 Table 4 compares the productivity ranking of the
programs in the two models for increasing values of r.
(Remember that r is an integer for Kennedy and a number
between 0 and 1 for our model.) Both identify the same
highest ranking program for small r. In our case program 1
received the lowest ranking because of its extremely high
execution time compared to the others. In Kennedy’s case
all 5 programs were ranked the same as their total
development effort. For our data at least, execution time
did not play a role in his model until the influence of
execution time (via increasing r) was significant.

 As r increases the two rankings converge. Both will
have the same rankings for extremely large r, being just
the speedup factor.

5. Conclusions

 In this paper we have addressed the issues of
productivity in the high end computing domain. Although
measures such as source lines of code per day or function
points per day are traditionally used in the software
engineering world as measures of productivity, these
measures are not applicable in all domains. In the HPC
world, time to solution counts as well or may be even more
important.

 We have been working on a productivity model that
uses relative speedup and relative costs as the primary
drivers of the model. What still needs to be developed is a
relationship of the parameters of our model and real world
characteristics of HPC programs. Can we use our
productivity measure to create an absolute measure of
productivity rather than simply a relative measure among a
set of implementations? This requires an understanding of
the constant 1/k we dropped from equation (11). While k
was not important in the analysis performed here, it is
necessary in order to compute an absolute value for
productivity. Also, the factor r introduced in Section 4

needs a relationship with physical reality and measures the
relative costs of development time versus repeated
executions.

 In our HPCS project, we have been investigating
productivity via a series of experiments in student classes.
Our initial productivity measure, given by Figure 2 seems
appropriate and its modification using SLOC counts in
Figure 3 gives results that are generally available and easy
to compute. Looking at the effects of repeatedly executing
a given program with a long lifetime, the effects of
development time diminish in importance. We therefore
get the tentative absolute productivity formula given in
Figure 5. (We put back the constant k we dropped
previously in evaluating the class experiments in Section
3.) (While actual effort is the preferred measure, SLOC
counts instead of actual effort may also be used. In this
case, k would be the cost to produce 1 line of code.) As
given in the previous section, we need to better understand
and evaluate the Relative Effort term in this formula.

Figure 5. Modified Productivity

 The major weakness in using the formula in Figure 5 is
in capturing actual effort data. SLOC counts do not give as
accurate a result. This data has been difficult to capture
accurately in our experiments, and from 30 years
experience with industrial projects (such as the NASA
Software Engineering Laboratory), it is just as difficult to
capture accurately in industry [3]. This is something we
are well aware of and have been addressing it. In our
experiments, effort time is captured in 3 ways:
1. Student logs. This is the method reported in this

paper and the one we believe is most accurate, when it
can be collected. Students turn in web-based forms
periodically on the effort spent on various activities.

2. Instrumented compilers. We have implemented
scripts that students use to compile and execute their
programs. These capture machine times quite
accurately. However, it doesn’t capture think time
when the student is thinking about the problem or in
evaluating changes to make in the source program

Table 4. Rank of each program by each model

r Model 1 2 3 4 5

Kennedy 2 4 1 5 3 small

Our model 5 4 1 3 2

Kennedy 5 4 2 3 1 large

Our model 5 4 1 3 2

Very large Both 5 4 3 2 1

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

while editing the program. This is a significant part of
the total effort.

3. Instrumented environment. We have also been
using Johnson’s Hackystat system to automatically
extract information from the computer system as
students work [8]. Hackystat works by plugging in to
an editor, listening for edit events, and recording the
activity the student is working on and what file is
being manipulated. This gives an indication of what
computer resources are being used, but doesn’t
address the same “think time” problem of the
instrumented compiler solution.

 For now we rely mostly on student logs, but are
investigating ways to automate the process better. For
Tables 1 and 2 we chose those classroom projects where
we believed we had the most accurate effort data. One idea
we have been looking at is integrating Hackystat with the
Eclipse environment [2] to make the process more
transparent to the student and we hope more accurate. This
and other approaches are being studied.

 The major impact of this work is the realization that
productivity may have different meanings in different
application domains. Source lines of code per day works in
traditional software development environments, but for
other applications, such as the HPC domain discussed
here, we need to go back to the original economic
definition of productivity as value divided by cost and
define each of these in the context of that environment.

Acknowledgement

 This research was supported in part by Department of
Energy contract DE-FG02-04ER25633 to the University of
Maryland. We wish to acknowledge the contributions of
the various faculty members and their students who have
participated in the various experiments we have run over
the past 2 years. This includes Alan Edelman at MIT, John
Gilbert at the University of California Santa Barbara, Mary
Hall at the University of Southern California, Alan
Snavely at the University of California San Diego, and Uzi
Vishkin at the University of Maryland. We are also
indebted to Jeremy Kepner of MIT Lincoln Labs for his
contributions to the basic productivity model.

References

[1] M. F. Adams, H. H. Bayraktar, T. M. Keaveny, and P.
Papadopoulos, Ultrascalable Implicit Finite Element Analyses in
Solid Mechanics with over a Half a Billion Degrees of Freedom"
SC2004, Pittsburgh, PA, November 2004.

[2] J. Arthorne and C. Laffra, Official Eclipse 3.0 FAQs Addison
Wesley Professional, 2004.

[3] Basili V., F. McGarry, R. Pajerski, M. Zelkowitz, Lessons
learned from 25 years of process improvement: The rise and fall
of the NASA Software Engineering Laboratory, IEEE Computer
Society and ACM International Conf. on Soft. Eng., Orlando FL,
May 2002, 69-79.

[4] Carver J., S. Asgari, V. Basili, L. Hochstein, J. K.
Hollingsworth, F. Shull, M. Zelkowitz, Studying Code
Development for High Performance Computing: The HPCS
Program, Workshop on High Productivity Computing, ICSE,
Edinburgh, Scotland, (May, 2004) 32-36.

[5] Workshop on The Roadmap for the Revitalization of High-
End Computing, Computing Research Association, June 2003.

[6] Hochstein L., V. Basili, M. Zelkowitz, J. Hollingsworth and J.
Carver, Combining self-reported and automatic data to improve
programming effort measurement, Joint 10th European Software
Engineering Conference and 13th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE 2005),
Lisbon, Portugal, September 2005.

[7] International Journal of High Performance Computing
Applications (18)4, Winter 2004.

[8] P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang, A. Kagawa
and T. Yamashita, Practical automated process and product
metric collection and analysis in a classroom setting: Lessons
learned from Hackystat-UH, Proceedings of the 2004
International Symposium on Empirical Software Engineering,
Los Angeles, California, August, 2004.

[9] K. Kennedy, C. Koelbel, and R. Schreiber, Defining and
measuring the productivity of programming languages, The
International Journal of High Performance Computing
Applications, (18)4, Winter 2004, 441-448..

[10] M. Snir and D. A. Bader, A framework for measuring
supercomputer productivity, The International Journal of High
Performance Computing Applications, (18)4, Winter 2004, 417-
432.

[11] T. Sterling, Productivity metrics and models for high
performance computing, The International Journal of High
Performance Computing Applications, (18)4, Winter 2004, 433-
440.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

