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Abstract 
In the high performance computing domain, the speed of 

execution of a program has typically been the primary 

performance metric. But productivity is also of concern to 

high performance computing developers. In this paper we 

will discuss the problems of defining and measuring 

productivity for these machines and we develop a model of 

productivity that includes both a performance component 

and a component that measures the development time of 

the program. We ran several experiments using students in 

high performance courses at several universities, and we 

report on those results with respect to our model of 

productivity. 

 

1. Introduction 
     
     Productivity is an economic concept that measures the 
amount of output per unit of input in an economic system. 
For a unit of output we will use the general concept of 
value and for a unit of input we will use the concept of 
cost. Therefore, a simple definition of productivity is 
value/cost. In this paper we want to define these terms in 
the context of solving specific problems on a computer, in 
particular, for the domain of high performance computers.  
 
     This seemingly simple relationship of value divided by 
cost becomes quite complex when we try to quantitatively 
define value. The value of a product depends upon the 
needs of the various stakeholders involved in creating or 
using a product. As we show, under different situations, 
the value of a product may change depending upon 
context. 
 
     In this paper, we present the development of a 
productivity measure applicable for the high performance 
computing (HPC) domain. Since we want to compute 
productivity values for specific programs, our goal is not 
only a formal model of productivity, but one that has 
parameters that can be easily computed. While our goal is 
to ultimately produce an absolute measure of productivity, 
in this paper we limit our discussion to the relative 
productivity between two implementations. Even this 
limited form of productivity should be useful, such as 
deciding which computer system or development method 
would be best for solving a specific application problem. 

 
Since the value component of productivity depends 

upon the needs of the various stakeholders, we can 
approach productivity from several points of view: 
1. What is the productivity of a team producing a 

specific program? 
2. What is the productivity that one environment (i.e., 

HPC machine, compiler, development tools) provides 
over a second environment? 

In this paper we will use the first point of view. We want 
to be able to compare the productivity of two different 
teams developing the same program on the same hardware 
platform. 
 
     In measuring productivity over the lifetime of a 
software project, software developers have typically been 
concerned with the amount of output a development 
generates for the amount of effort used to produce that 
output. For commodities (e.g., pencils, telephones, 
computers, tons of coal) output is easily computed as the 
number of such objects produced. However, for software 
the situation is murky. What does it mean for one program 
that costs $2M to have “more output” than a similar 
program that costs $1.5M? Utility is an economic concept 
that tries to measure such value. It is a stakeholder’s 
attempt to measure the increased value for an increase in 
input to the economic system. But computing this increase 
in utility is very inexact and somewhat subjective. 
 
      Therefore, output for software is often measured in the 
numbers of lines of code, and cost is often expressed as the 
number of hours required by the staff to produce that 
output. But as the utility discussion above implies, size is a 
highly dubious number. What about code quality and other 
attributes such as maintainability and reliability? With 
great reliance on COTS (Commercial Off the Shelf) 
products, use of program libraries, reuse of modules, 
object oriented class libraries, etc. such calculations are 
very hard to interpret. Using other measures such as 
function points doesn’t really help. They have the same 
problem as lines of code in being an imprecise measure of 
the value of a product. 
 
     While lines of code per day (or per hour of effort) have 
been a traditional measure of productivity – mostly 
because of the lack of a good alternative – it lacks a true 
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definition of utility for that software. This issue becomes 
evident in looking at the utility of programs required by 
the HPC community. They are concerned about measuring 
and evaluating the performance of the various high end 
computers used to solve complex problems. For these 
stakeholders, execution time is often the dominant factor 
and various benchmarks have been developed for 
measuring performance on these machines. However, the 
HPC community is quite aware that there are other critical 
factors involved in setting up the problem solution: time to 
program the solution and tune it for maximum efficiency, 
problem set-up times, times waiting in job queues and 
scheduling delays, and post execution processing of the 
results. These times can be significant [5, p. 60]. 
 
     In this domain, the chief performance measure used is 
time to solution. “The single most relevant metric for high-
end system performance is time to solution for the specific 
scientific application of interest.” [5, p.6] Very little is 
known about the various development processes (e.g., how 
one designs, codes, tests) are used in this environment. In 
particular, what are appropriate models of productivity for 
this domain so that various environments can be compared 
for their effectiveness? 
 
     An HPC machine with 1000 processors, for example, 
has the capacity to execute a program in 1/1000 of the time 
of a machine with only one processor. The trick is to 
divide up the problem space so that every processor can be 
kept busy solving the problem in parallel. If we could do 
this, then we would achieve a speedup of 1000. 
 

Realistically, however, we achieve a speedup much 
less than this theoretical maximum. While the total 
processing power increases linearly with the number of 
processors, it becomes harder to divide some problems into 
equal-sized parallel pieces. Adams [1] gives an example 
where a solution that used 92% of the total computational 
power of 32 processors used only 48% of the total 
processing power when the machine was expanded to 128 
processors.  
 
      In developing HPC programs, there is the need to tune 
a program to utilize the multiple processors of an HPC 
system. This parallelization effort becomes a significant 
part of the total cost of the system. Because of this 
parallelization effort, for this class of stakeholders, utility 
is related to the speedup an HPC machine can achieve and 
productivity can be reduced to some function of the 
execution time of the program and its development time. 

 
We will first discuss several other theoretical models 

that measure productivity using high performance 
computers. Can we use these theoretical models in order to 
develop a computationally effective way to measure 

programmer productivity in the HPC domain? Just as 
important, will these productivity models be 
computationally effective? That is, can we actually run 
experiments to collect the relevant data to compute this 
productivity? We ran several experiments using students in 
high performance courses at several universities, and we 
will report on those results as it applies to our own model 
of productivity. 
 
     The work reported here is part of the Defense 
Advanced Research Projects Agency (DARPA) High 
Productivity Computing Systems (HPCS) program. The 
mission of the HPCS productivity team is to better 
understand how one develops software that will execute on 
the next generation of high performance computers. The 
HPCS program consists of several Working Groups and 
the activities presented in this paper represent work that 
came out of the Development Time Working Group, led 
by the University of Maryland [4].  As part of developing 
new high performance machine architectures, research 
from this HPCS activity may play a role in deciding on the 
software environments (e.g., compilers, editors, 
development tools) that need to be built to make those 
machines most productive. 

 

2. Productivity 
      

2.1. Models of productivity in the HPC domain 
     
     In the HPCS program, the primary interest in a 
productivity metric is to support the acquisition process, as 
one of several criteria for deciding which system to 
purchase. Such a metric can also be useful for a 
programmer or project manager faced with the decision of 
which parallel programming technology to use for a 
particular project. Note that in the former case, the metric 
would be applied to evaluate an entire HPC system, and in 
the latter case would be applied to evaluate a particular 
technology on a given HPC system.  

     A productivity metric can also be applied on an 
individual project, to evaluate how productive the 
programmers were in developing and executing the 
software on a particular HPC system. We restrict our 
discussion to productivity at the project level. To apply a 
productivity measure on a technology or system level 
would involve some method for aggregating the 
productivity measures from individual projects, which is 
outside the scope of this paper.  

     Several models have been proposed to define HPC 
productivity. Here we present 3 of them as typical of the 
many that have been proposed. See [7] for additional 
proposed models. 
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2.1.1. Utility values 
      
     Snir and Bader are one example of using utility theory 
to the problem of developing a model of productivity [10]. 
Cost is the cost of developing the solution plus the cost of 
using the system, but the value is the utility preference of a 
stakeholder (e.g., Laboratory director) to the work 
performed by the system. The utility of a solution will be 
how long it takes for the solution to be ready relative to the 
need for using that solution.. Utility, related to the concept 
of risk, is a function over [0..1] and in this case the utility 
is generally a decreasing function of time, reaching 0 just 
at the deadline when the solution must be available.  
 
     For example, consider the problem of weather 
prediction. Assume you want to know the weather 48 
hours in advance. If you could accurately compute the 
weather for 2 days in the future using only 1 hour of 
computation, then the 47 hour advance notice has some 
economic value (e.g., should you plan an outdoor activity 
or if it will rain, move indoors?). If it takes 24 hours to 
compute the weather 2 days hence, then the 1 day advance 
notice still has value, but less so than if would have after 
only 1 hour of computation. Finally if it takes more than 
48 hours to compute the weather, the calculation has no 
value; you can simply look out the window to see what the 
weather is. 
 
     As stated earlier, because of the importance of time to 
solution as a performance metric, the use of utility 
functions to address this attribute has appeal as a 
productivity measure. But as a measure of productivity, 
this approach has two weaknesses: 
1. It is somewhat subjective since the utility of the 

solution over time depends upon the subjective 
opinion of the stakeholder creating the utility function. 

2. Productivity is very dependent upon the particular 
needs of the application being developed. That is, the 
time that the solution is needed greatly affects the 
utility curve that is produced. Therefore, two different 
programs may have the same performance and 
development time characteristics, but very different 
utility curves. This model, while theoretical pleasing, 
becomes difficult to use in practice. 

 

2.1.2. Work Estimator 
 
     Sterling [11] developed an alternative model that 
defines productivity as utility over cost where utility is the 
total lifetime work produced by a system and cost is the 
total lifetime costs of the system, or more formally as: 

 

 
(1) 

where SP is the peak performance of the machine, E is the 
efficiency of the computation (i.e., how much of the peak 
performance is actually used), and A is the availability of 
the machine (i.e., how much wall-clock time is actually 
needed to compute one second of the solution) while CL 

represents the total lifecycle costs to develop and execute 
the program. The numerator represents the calendar time 
needed to execute a solution to the problem by factoring in 
how much of the peak performance a computation uses, 
how efficient the computation is and how much time is 
spent in various job queues waiting for access to the HPC 
machine. Note that only execution characteristics in the 
final solution are used to compute value in this calculation 
of productivity. The time to develop the program is not 
considered (although the cost to develop is part of CL). 
 

2.1.3. Power and efficiency 
      
     Kennedy [9] looks at the problem from the perspective 
of the power of a given programming language by defining 
power and efficiency with respect to a language. 
 
     Let P0 be a standard reference implementation of a 
program. We can define I(P0) as the implementation time 
for P0.  If L is another language we also compute I(PL) and 
the ratio of the two, ρ, represents the programming 
efficiency of implementing a solution in PL over a solution 
in P0 (which he calls power). We can express this as: 
 

ρ     =    I(P0) 
              I(PL) 

(2) 

This gives a value of how efficient it is to program in L 
over the reference language P0. 
 
     Similarly we can compute the execution efficiency ε as 
the ratio of execution times, or 

ε     =    E(P0) 
              E(PL) 

(3) 

This ratio shows how much execution time it takes to solve 
the problem in L relative to the reference language.  
 
     Kennedy’s time for a solution is the sum of 
implementation time plus execution time, or: 

T(PL) = I(PL)+ r E(PL) (4) 

where T(PL) is the time to solution for program P in 
language L, and r is a problem specific factor giving the 
relative importance of implementation time over execution 
time (e.g., r is large for programs that execute many times, 
r is small for a program that executes once). Since his goal 
is to evaluating various languages, he wants to find the Pi 
that minimizes T(Pi). By choosing an appropriate value for 
r, the impact of I(Pi) becomes more or less important to 
decide whether only execution time or development time is 
the more important component of T(Pi). 
 

Ψ w = 
S P × E × A 

CL 
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     Substituting for I(PL) and E(PL), using the definitions of 
ρ and ε, we get the time to solution as: 

T(PL) = 1 I(P0)+ 1  r E(P0) 
ρ            ε  

(5) 

Under the assumption that ρ and ε are relatively constant 
for a given language L, productivity is then the ratio of the 
time to solution of P0 divided by the time to solution of PL, 
which gives us the result: 

Productivity = T(P0) =  ρ + ε X 
                       T(PL)       1 + X 

(6) 

where 
X  =   r E(PL) 
               I(PL) 

(7) 

     This approach has some similarity to the one we adopt 
later in this paper. However, it has one weakness in its 
present definition to be applicable within the HPCS 
program. Often L and the reference language P0 are 
variants of the same language and implementation of one 
aids the implementation of the other. As we later state, a 
system like MPI simply adds the parallelization primitives 
to a language like C so this straightforward computation of 
ρ in equation (2) may be difficult to compute since I(PL) 
also includes I(P0) and it may not be able to obtain an 
accurate value of I(PL). 
 
     While all of these models compute a value for 
productivity, our goal was to produce a model we could 
easily measure in the laboratory and would also be of 
practical value. Beginning with a simple definition of 
productivity, we proceed in the next section to develop an 
alternative view of productivity. 
 

2.2. Traditional productivity 
      
     In the HPC domain, productivity, as we stated before, 
can be represented as: 

           Ψ  =   Productivity =   Utility 

                              Cost 

(8) 

For traditional software projects, this has been an elusive 
concept. We don’t really know the utility of a piece of 
software, so its size is a reasonable estimator of its 
complexity and usefulness and the effort to build the 
product is a reasonable estimator of the cost to produce it. 
So Utility is often expressed as source lines of code 
(SLOC) and productivity is often expressed as SLOC per 
hour of effort, and numbers like 10-20 lines per 8-hour 
day, averaged over the entire development process, are not 
uncommon (e.g., 160,000 SLOC divided by 20,000 total 
hours give a productivity of 8 SLOC per hour or 64 SLOC 
per day).  
 
     But if we could quantify program utility (assuming we 
knew what one unit of program utility represented) we 
could define productivity accurately. Let M represent the 

number of program utility units contained in the program. 
Traditional productivity can then be defined as: 
 
Traditional Productivity  =  Program utility units      

                                              Effort in hours 

(9) 

 

2.3. HPC productivity Model 
 
     In order to quantify the value of an HPC program, we 
need to compute its productivity as given by utility/cost of 
equation (8). But what are the utility and cost of such 
programs? If we assume that we can measure the 
traditional productivity of an organization (by equation 
(9)) then the starting point for HPC productivity is this 
utility in program utility units per hour, which represents 
the development effort for building a large program.1  We 
will assume here that it remains relatively constant for an 
organization, although we know that it actually can vary 
greatly from project to project. 
 
     Creating a program for an HPC machine has a cost 
factor generally not present in building a program for a 
single processor. Often a C or FORTRAN program is 
written to execute on a single processor, and then a parallel 
version is built by adding function calls that invoke 
processes to create parallel paths of execution in separate 
processors. MPI and OpenMP are two common interfaces 
used to parallelize a program. The Message Passing 
Interface (MPI) builds a network of processes that pass 
messages for communication and OpenMP creates multi-
threaded, shared memory parallelism. It requires 
significant effort to achieve this parallelism by adding the 
appropriate MPI or OpenMP interfaces to a serial version 
of the program.  
 
     In order to compute productivity in the HPC domain, 
we need to know the increased value of a program that 
achieves a speedup of s. We make the following two 
assumptions: 
1. The economic utility is modeled as a combination 

of program size and speedup. A program with M 
program utility units (e.g., SLOC) that achieves a 
speedup of s on an HPC machine has the same 
economic utility as s versions of the program, each of 
size M and each running on a single processor. The 
utility of this code is then s*M. That is, achieving a 
speedup of s is equivalent to s implementations of the 
program, each of size M.  

2. The cost is modeled as development effort. Because 
of the complexity of achieving parallelism, an HPC 

                                                 
1 For ease in understanding, you can substitute SLOC for 
program utility units. As stated previously, SLOC is the most 
commonly used proxy for these units. 
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program has an increased cost of development. Let C 
represent the relative increase of producing the 
parallel version of the program over the single 
processor serial version. C can be expressed as the 
ratio of the cost of the parallel version over the cost of 
the single processor version. and for HPC programs C 
is generally greater than 1.  

 
     Let k be the cost for producing 1 program utility unit. If 
M is the program size in program utility units, then the 
uniprocessor cost is M*k.  The cost of the parallel program 
is then M*k program utility units times the relative cost 
factor of C or M*k*C. 
 
     Combining both assumptions, we get a tentative HPC 
productivity measure as: 

Ψ    =     s*M      =           s    

                M*k*C          k*C 

or 

           Ψ     =        1   *      s       

            k          C 

(10) 

 

 

 

(11) 

 

where s is the speedup and C is the relative cost or effort 
for creating and parallelizing the program (e.g., total effort 
to both create the serial and then parallel version of the 
program). The constant k represents the costs to produce 1 
program utility unit of the final program (or as stated 
previously, can be approximated by the cost to produce 
one line of code). Instead of program utility units we can 
use any proxy for that figure. So it is irrelevant if we use 
hours of effort, SLOCs, function points, or some other 
attribute as long as this attribute measures utility in some 
direct way. 
 
     Equation (10) gives us an absolute value for 
productivity, but unfortunately we have no idea what k and 
a program utility unit are. However, given two different 
developments, if we divide one productivity value by the 
other, the 1/k factors cancel, and we can use equation (11) 
to compute the relative productivity between two different 
projects.  In this case, if we let P be the HPC program we 
wish to evaluate and P0 be a reference implementation of 
the same program, then P/P0 provides a relative value for 
parallel implementation P compared to the reference 
implementation P0. For a reference implementation we 
choose to use a baseline serial implementation (i.e., an 
implementation running on one processor). In most cases 
we will set the serial execution time s as 1 and the relative 

cost C as 1, so baseline serial productivity will be Ψ = 1/k 
* s/C = 1/k. In this case, dividing the two productivity 
values gives us a measure of utility of the parallel system 
over relative costs compared to a serial implementation. 
 
     We can then represent HPC productivity, by the 
following model, originally developed by Jeremy Kepner 

of MIT Lincoln Labs (and Project Director of the HPCS 
productivity team) that we have been using for HPC 
programs. We define productivity as given in Figure 1. 
 

 
Figure 1. HPC Productivity Model. 

      
 
2.3.1. Relative Speedup 

 

     The numerator of our HPC productivity model, relative 
speedup, sounds like a simple concept, but has significant 
issues when trying to compute a reasonable value. For one 
thing we would like to use relative speedup as a means to 
compare two different implementations of a program, 
perhaps to compare the effectiveness of the underlying 
language or parallelization model (e.g., MPI versus 
OpenMP). However, one can artificially inflate the relative 
speedup by using a poorly implemented serial version. For 
example, one can build a serial implementation, measure 
the serial execution time, then simply turn on compiler 
optimization switches and recompile. One can often 
achieve a speedup of 2 or 3 that way with no 
parallelization effort at all. (i.e., Relative effort has a value 
of 1, with a resulting productivity of 2 or 3.) 
 
     A more serious problem is that it is often not easy to 
even get the serial implementation. Many developers work 
on both the serial and parallel implementations at the same 
time and the project may not even pass through a 
development stage where there is a complete serial 
implementation to measure. Some problems are simply too 
complex to test or run via a serial implementation on a 
single processor. 
 
     In order to get a level playing field, one solution to this 
problem is to use a reference serial implementation R1. It 
actually doesn’t matter which one is used since we are 
only comparing relative HPC productivities. That is, using 
a different reference implementation R2 will have the 
effect of changing all values of productivity by the factor 
R1/ R2 and the relative ranking of each project will remain 
the same. 
 
     Obtaining a reference serial implementation also has 
the effect of validating the value of the program in the time 
to solution equations. If we can obtain an optimal serial 
implementation, then a parallel implementation is superior 
to this serial implementation only if it has a productivity 
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greater than 1 according to Figure 1. That is, we need a 
speedup sufficient to counteract the increased effort of the 
parallel implementation. 
 
2.3.2. Relative Effort 

 

     For a similar reason, we can often not even obtain both 
the serial and parallel effort for a development since 
parallelization may occur during the initial development of 
the solution. However, if we substitute the effort for 
building the serial reference implementation, as with 
relative speedup, we get uniform value we can use (up to a 
multiplicative constant). 
  
     Combining both of these results, we get an equation for 
HPC productivity as given in Figure 2. Note that our 
equation for relative effort is a variant of the value ρ from 
Kennedy’s model given in equation (2) and speedup is 
simply Kennedy’s efficiency ε from equation (3). The 
difference is that in Kennedy’s case he is using as a 
reference implementation a standard parallel solution to 
the problem. In our case, we want the reference 
implementation to be a serial implementation. 
 

 
Figure 2. Revised HPC productivity 

 
     In order to provide normalization to the values of ε and 
ρ, a good choice for this reference implementation should 
be the best serial implementation in terms of execution 
time that can be written. As stated at the end of Section 
2.3.1, ρ represents the additional effort needed to 
parallelize all solutions to the problem over a good serial 
implementation, and ε represents the ultimate speedup one 
can achieve over the reference implementation. However, 
if no optimal implementation is available, then any serial 
implementation will do, except that the values of ρ and ε 
will have to be interpreted differently. 

 

3. Experimentation 
     As part of our work on the HPCS program, we have 
been evaluating development characteristics for HPC 
programs by studying the development of programs within 
selected high performance computing classes at several 
universities [4]. Each semester 2 or 3 graduate HPC-

related classes at several universities run several 
experiments addressing HPCS development time issues. 
These experiments are done within the context of the 
programming assignments for the course. Typically 
students develop 2 or 3 programs using several standard 
models (e.g., MPI, OpenMP) and we collect all 
compilation and execution time characteristics for these 
programs as well as copies of all source programs 
compiled by the students. In addition the students (are 
supposed to) turn in logs giving the time spent on 
performing the various tasks in completing the assignment. 
From this data we are able to evaluate the various 
workflows used to build those programs. We can use this 
data in order to evaluate our model of productivity 
described in this paper. 
 

 
Figure 3. Simple HPC productivity measure 

 
     Accurate effort data is usually very difficult hard to 
obtain [6].  Programmers are either reluctant or find it 
difficult to keep accurate records on their activities. 
However, we have already shown by equation (11) that 
any measure of relative effort suffices. As long as the 
application domains are similar, SLOC counts are an 
approximation of effort, so within a limited domain, Figure 
3 gives an easily computed formula for productivity. We 
use this as well as effort in our classroom experiment. 
 

3.1. Evaluating productivity measures 
      
     Table 1 presents an initial evaluation of the productivity 
measures from Figures 2 and 3. These represent 5 students 
in one class where we have the relevant data in solving 
Conway’s game of life program in C using MPI as the 
parallelization interface. 
 
     Part A represents the calculations where actual effort 
data is used to compute productivity.  Program 3 was rated 
as the highest productivity. The program with shortest 
execution time (Program 5 with an execution time of 8.5 
seconds) was only the second best in terms of productivity. 
Even though it took 4 seconds longer to run (about 50%), 
total effort to construct the program was only 10 hours 
compared to 22 for program 5. Program 4 which also ran 
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about 10% faster than program 3 took 34.5 hours to build 
instead of the 10 hours of program 3. The other 2 programs 
clearly had lower productivity both in terms of effort to 
complete and in performance. 

 
     Using SLOC counts to estimate effort, we get the 
results in Part B of Table 1. We believe the results are 
similar, but not as accurate. The two programs with highest 
productivity are the same and the bottom 3 are the same.  
In this case program 5 does have the highest productivity, 
due principally to the extreme brevity of the MPI source 
program compared to program 3. 
 
     Applying this analysis to a second program, we get the 
results described by Table 2.  This second problem was the 
Buffon-Laplace needle problem, a Monte Carlo 
simulation, where the value of π can be computed by 
dropping a needle randomly on a grid. In this case effort 
data is mostly missing and several serial executions are not 
available. But using the SLOC counts and parallel 
execution, we can get a representative productivity value. 
 
      In this example, the reference implementation chosen 

was program 18. It had the optimal serial execution time at 
3.17 seconds, but exhibited an all too common 
phenomenon in the HPC domain that the parallel version 
running on 8 processors actually ran slower at 3.42 
seconds (i.e., a speedup of less than 1). 
     
     Program 11 was judged highest in productivity at 5.81 
with program 15 at 4.01 not far behind. Program 11 indeed 
has the least execution time at 0.70 seconds with program 
15 being the second at 0.94. Program 11 also had the 
characteristic of requiring the least lines of code at 43 with 
program 15 only requiring 46.  
 
     Tables 1 and 2 also demonstrate some of the practical 
problems in computing productivity measures. We did not 
obtain the serial effort for program 5, but fortunately it is 

not needed in our calculations of Ψ. Similarly, serial 
SLOC counts for programs 1, 3 and 4 were also missing. 
Almost all effort data for programs 11 through 22 was not 
submitted by the students.  Fortunately, again these are not 
needed to compute our productivity measures. As we’ve 
said previously, obtaining intermediate values (e.g., serial 
effort, serial SLOC count, serial execution times) are very 
hard to obtain and basing our calculations on final values 
greatly increases the usefulness of the formulas, even if the 
precision is not as great. All we need is some reference 
implementation upon which to base our relative measures. 
 

3.2. Discussion 
      
     The productivity measure has an implicit time to 
solution component built in with the calculations of ε and 
ρ. But going back to Table 1, do we want to say that 
program 3 with productivity of 4.11 is always better than 
program 5 with productivity 2.83? If this is a problem 
executed once (what is often called the “lone researcher” 
workflow), then program 3 probably is better since we are 
trading off 12 development hours for a decrease of 4.3 
seconds of execution time. But if this is a problem that will 

Table 1. Productivity – Game of Life program 

Part A. Using effort for productivity 

Program ���� 1 2* 3 4 5 

Serial effort (hrs) 3 7 5 15  

Total effort (hrs) 16 29 10 34.5 22 

Serial Exec (sec) 123.2 75.2 101.5 80.1 31.1 

Parallel Exec (sec) 47.7 15.8 12.8 11.2 8.5 

Speedup 1.58 4.76 5.87 6.71 8.90 

Relative  Effort 2.29 4.14 1.43 4.93 3.14 

Productivity 0.69 1.15 4.11 1.36 2.83 

Part B. Using SLOC as effort measure 

Serial SLOC  161   134 

Parallel SLOC 123 352 300 1827 151 

Relative SLOC 0.76 2.19 1.86 11.35 0.94 

SLOC Productivity 2.07 2.18 3.15 0.59 9.49 

*- Reference serial implementation 

Table 2. Productivity – Buffon Laplace needle problem 

Part A. Using effort for productivity 

Program ���� 11 12 13 14 15 16 17 18* 19 20 21 22 

Serial effort (hrs)       4  4   12 

Total effort (hrs)         7    

Serial Exec (sec) 3.33 5.10 20.00    6.20 3.17 3.90   5.91 

Parallel Exec (sec) 0.70 1.07 2.50 2.97 0.94 4.00 1.95 3.42 1.50 1.98 1.81 1.81 

Speedup 4.54 2.96 1.27 1.07 3.36 0.79 1.62 0.93 2.11 1.60 1.75 1.75 

Relative Effort ---  --- --- --- --- --- --- --- --- --- --- --- 

Productivity --- --- --- --- --- --- --- --- --- --- --- --- 

Part B. Using SLOC as effort measure 

Serial SLOC 32 40 28  36 37 50 55 33   43 

Parallel SLOC 43 52 43 50 46 57 66 92 55 62 42 77 

Relative SLOC 0.78 0.95 0.78 0.91 0.84 1.04 1.20 1.67 1.00 1.13 0.76 1.40 

SLOC Productivity 5.81 3.13 1.62 1.17 4.01 0.76 1.35 0.55 2.11 1.42 2.29 1.25 

*- Reference serial implementation 
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run daily for the next 10 years, then we want to increase 
the importance of execution time over effort in computing 
productivity. Much like the factor r in Kennedy’s time to 
solution equation (4), we need to modify productivity to 
reflect the execution versus implementation tradeoffs in 
computing productivity. In the next section we offer some 
comments on approaching that problem. 
 

4. Productivity revisited 
 
     The productivity formula of Figure 3 has the weakness 
that it doesn’t address the total lifetime execution behavior 
of an HPC program. In order to address that factor, we 
propose to modify the equation by reducing the impact of 
the cost factor (e.g., relative effort term in Figure 3) when 
a program is repeatedly executed. As in Kennedy’s 
productivity model, we propose a factor r in the 
calculation of relative effort to cause this effect, as in: 

 

(12) 

The value r represents the number of executions of the 
program over its lifetime and varies between 0 and 1. This 
is only a temporary solution. As we show, this 
modification has most of the properties we want, but we 
need to establish it on a better theoretical foundation. 
 
     For the single execution lone researcher type of 
program, r has the value of 0 and equation (12) reduces to 

Figure 3 with productivity given by Tables 1 and 2. 
However, if the program represents one used repeatedly, 
then r is close to 1 and the Relative Effort value 
approaches 1, meaning that the influence of development 
time is less on productivity and the utility of the program 
reduces to just speedup.  
 
     Returning to the example presented in Table 1, there 
was a question of whether program 3 or 5 had higher 
productivity. Program 5 had higher speedup of 8.90 over 
5.87 for program 3, but required 12 more hours of 
development. Our analysis chose 3 as the better program. 
 
     In Figure 4 we plot the values of Productivity for both 
program 3 and program 5 as r varies between 0 and 1. The 
solid line represents program 3 and the dashed line 
represents program 5. For r=0 we get the productivity of 
Table 1 and for r=1 we get productivity as simply the 
speedup of the various solutions with program 5 being 

most productive. At r=0.26 the lines cross, changing the 
answer of which program has higher productivity.  
 
    Since parallel effort (consisting of the total time to write 
a serial then parallel version of the program) is so much 
greater than the serial effort alone in the HPC domain, if 
we assume that the parallel effort is greater than the 
reference effort, Relative effort becomes a monotonically 
decreasing function of r, so productivity is monotonically 
increasing. Because of this, we can always eliminate 
solutions with lower speedup values. So for Table 1, 
programs 1 and 2 can never have highest productivity for 
any value of r. Program 4, with speedup of 6.71 potentially 
has higher productivity than program 3, but by plotting 
program 4 (dotted line) we see that program 3 and program 
4 have the same productivity of 5.59 at r=0.76, but 
program 5 already is higher at 7.73. 
 
     In order to better resolve this issue, we still need to 
evaluate equation (12) so that: 
1. We have a better understanding of the modifications 

of relative effort to better reflect the contribution of 
development time over the repeated execution of the 
program over its lifetime. 

2. We need to correlate the factor r to the number of 
repeated executions of a program. (That is, what does 
r=0.26 mean for the example graphed in Figure 4? 
What is the physical reality expressed by r=0.26?) 

 
     As a final check on our model, we compare our 
productivity results with the results from Kennedy’s 
productivity analysis (Equation (6)). Table 3 presents his 
productivity results for the data in Table 1 based upon the 
value of r chosen. We use the same program 2 as the 
reference P0 of his analysis. 

 
     We get a result similar to his model. For r=1, program 3 
has the highest productivity (in bold in Table 3). But as r 
increases, the execution component of T(P) becomes more 
important and for r=10,000 program 3 and program 5 have 
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Figure 4. Productivity for programs 3, 4, and 5. 

Table 3. Kennedy’s productivity from Table 1 

r Prg. 1 Prg. 2 Prg. 3 Prg. 4 Prg. 5 

1 0.44 0.24 0.70 0.20 0.32 

100 0.52 0.31 0.88 0.26 0.41 

1000 0.95 0.84 2.06 0.74 1.14 

10000 1.45 2.96 4.74 3.29 4.73 

20000 1.51 3.64 5.24 4.39 6.14 
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almost the same productivity. For larger r, program 5 has 
the highest productivity, demonstrating that for large 
number of executions, implementation time is less 
important than execution time speedup. (As with our 
model, Kennedy needs a correlation of the value of r with 
a measure of total execution time.) In both models, the 
limiting value in productivity as execution time increases 
will be the speedup factor. 

 
     Table 4 compares the productivity ranking of the 
programs in the two models for increasing values of r.  
(Remember that r is an integer for Kennedy and a number 
between 0 and 1 for our model.) Both identify the same 
highest ranking program for small r. In our case program 1 
received the lowest ranking because of its extremely high 
execution time compared to the others. In Kennedy’s case 
all 5 programs were ranked the same as their total 
development effort. For our data at least, execution time 
did not play a role in his model until the influence of 
execution time (via increasing r) was significant.  
 
     As r increases the two rankings converge. Both will 
have the same rankings for extremely large r, being just 
the speedup factor. 
 

5. Conclusions  
 
     In this paper we have addressed the issues of 
productivity in the high end computing domain. Although 
measures such as source lines of code per day or function 
points per day are traditionally used in the software 
engineering world as measures of productivity, these 
measures are not applicable in all domains. In the HPC 
world, time to solution counts as well or may be even more 
important. 
 
     We have been working on a productivity model that 
uses relative speedup and relative costs as the primary 
drivers of the model.  What still needs to be developed is a 
relationship of the parameters of our model and real world 
characteristics of HPC programs. Can we use our 
productivity measure to create an absolute measure of 
productivity rather than simply a relative measure among a 
set of implementations? This requires an understanding of 
the constant 1/k we dropped from equation (11). While k 
was not important in the analysis performed here, it is 
necessary in order to compute an absolute value for 
productivity. Also, the factor r introduced in Section 4 

needs a relationship with physical reality and measures the 
relative costs of development time versus repeated 
executions.  
 
     In our HPCS project, we have been investigating 
productivity via a series of experiments in student classes. 
Our initial productivity measure, given by Figure 2 seems 
appropriate and its modification using SLOC counts in 
Figure 3 gives results that are generally available and easy 
to compute. Looking at the effects of repeatedly executing 
a given program with a long lifetime, the effects of 
development time diminish in importance. We therefore 
get the tentative absolute productivity formula given in 
Figure 5. (We put back the constant k we dropped 
previously in evaluating the class experiments in Section 
3.) (While actual effort is the preferred measure, SLOC 
counts instead of actual effort may also be used. In this 
case, k would be the cost to produce 1 line of code.) As 
given in the previous section, we need to better understand 
and evaluate the Relative Effort term in this formula. 

 
Figure 5. Modified Productivity 

  
     The major weakness in using the formula in Figure 5 is 
in capturing actual effort data. SLOC counts do not give as 
accurate a result. This data has been difficult to capture 
accurately in our experiments, and from 30 years 
experience with industrial projects (such as the NASA 
Software Engineering Laboratory), it is just as difficult to 
capture accurately in industry [3]. This is something we 
are well aware of and have been addressing it. In our 
experiments, effort time is captured in 3 ways: 
1. Student logs.  This is the method reported in this 

paper and the one we believe is most accurate, when it 
can be collected. Students turn in web-based forms 
periodically on the effort spent on various activities. 

2. Instrumented compilers. We have implemented 
scripts that students use to compile and execute their 
programs. These capture machine times quite 
accurately. However, it doesn’t capture think time 
when the student is thinking about the problem or in 
evaluating changes to make in the source program 

Table 4. Rank of each program by each model 

r Model 1 2 3 4 5 

Kennedy 2 4 1 5 3 small 

Our model 5 4 1 3 2 

Kennedy 5 4 2 3 1 large 

Our model 5 4 1 3 2 

Very large Both 5 4 3 2 1 
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while editing the program. This is a significant part of 
the total effort. 

3. Instrumented environment. We have also been 
using Johnson’s Hackystat system to automatically 
extract information from the computer system as 
students work [8]. Hackystat works by plugging in to 
an editor, listening for edit events, and recording the 
activity the student is working on and what file is 
being manipulated. This gives an indication of what 
computer resources are being used, but doesn’t 
address the same “think time” problem of the 
instrumented compiler solution. 

 
     For now we rely mostly on student logs, but are 
investigating ways to automate the process better. For 
Tables 1 and 2 we chose those classroom projects where 
we believed we had the most accurate effort data. One idea 
we have been looking at is integrating Hackystat with the 
Eclipse environment [2] to make the process more 
transparent to the student and we hope more accurate. This 
and other approaches are being studied. 
      
     The major impact of this work is the realization that 
productivity may have different meanings in different 
application domains. Source lines of code per day works in 
traditional software development environments, but for 
other applications, such as the HPC domain discussed 
here, we need to go back to the original economic 
definition of productivity as value divided by cost and 
define each of these in the context of that environment. 
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