
Analyzing IVIedium-scale Software Development

Victo~ R. Basili and Marvin V. Zelkowitz

Department Of Computer Science University of Maryland

College Park, Maryland 20742

ABSTRACT

The collection and analysis of data from
programming projects is necessary for the
appropriate evaluation of software
engineering methodologies. Towards this
end, the Software Engineering Laboratory
was organized between the University of
Maryland and NASA Goddard Space Flight
Center. This paper describes the structure
of the Laboratory and provides some data
on project evaluation from some of the
early projects that have been monitored.
The analysis relates to resource
forecasting using a model of the project
life cycle based upon the Rayleigh
equation and to error rates applying ideas
developed by Belady and Lehman.

GOALS ~j~ LABORATORY

A great deal of time and money has
been and will continue to be spent in
developing software. Much effort has gone
into the generation of various software
development methodologies that are meant
to improve both the process and the
product [Myers, Baker, Wolverton].
Unfortunately, it has not always been
clear what the underlying principles
involved in the software development
process are and what effect the
methodologies have; it is not always clear
what constitutes a better product. Thus
progress in finding techniques that
produce better, cheaper software depends
on developing new deeper understandings of
• good software and the software development
process. At the same time we must continue
to produce software.

In order to investigate these issues,
the Software Engineering Laboratory was

This research was sponsored in part by
grant NSG-5123 from NASA Goddard Space
Flight Center, Greenbelt, Maryland to the
University of Maryland.

established,in August, 1976, at NASA
Goddard Space Flight Center in cooperation
with the University of Maryland to promote
such understandings [Basili & Zelkowitz].
The goals of the Laboratory are to analyze
the software development process and the
software produced in order to understand
the development process, the software
product, the effects of various
"improvements" on the process and to
develo p quantitative measures that
correlate well with intuitive notions of
good sof6ware.

The goals of the Laboratory can be
broken down into three major tasks:

I. Provide a reporting mechanism for
monitoring current project progress. This
goal is to provide management with
up-to-date data on current project
development. Better reporting procedures
can pinpoint problems as they develop and
help eliminate their spread and growth.

2. Collect data at as fine a level as
possible that can be used to determine how
the software is being developed, extend
results that have been reported in the
literature about very large software
developments and their characteristics to
medium sized projects (5 to 10 man-years),
help discover what parameters can be
validly isolated, expose the parameters
that appear to be causing trouble, and
discover appropriate milestones and
techniques that show success under certain
conditions.

3. By comparing data collected from
several NASA projects, compare the effects
of various technologies and other
parameters upon system development and

performance.

LABORATORY OPERATION

Projects for the Systems Development
Section at NASA typically are produced by
an outside contractor under supervision by
NASA employees. Most products are in the 5

116

to 10 man-year range in size, and are
generally large batch programs for an IBM
360 system. The programs are almost
always written in FORTRAN.

To evaluate programming methodologies,
a mechanism was established to collect
data on each such project. The initial
goal was to collect as much relevant data
as possible with as little impact on the
projects and software development
practices as possible. It is believed that
although there has been some impact and
interference, it has been minimal. As we
gain knowledge as to what data to collect,
we hope to shorten the manual input from
the project personnel, and to automate
some of the tasks.

Similar to other reporting projects of
this type, the principal data gathering
mechanism is a set of seven reporting
forms that are filled out by project
personnel at various times in the
development life cycle of a project
[Walston & Felix]. Some of these are
filled out only once or twice, while
others are filled out regularly. The seven
forms that are currently in use include:

I. General Project Summary. This form
is filled out or updated at each project
milestone and defines the scope of the
problem, how much has been completed,
estimates for the remainder of the
project, and what techniques are being
used. It is a top level structure of the
overall organization and is filled out by
the project manager.

2. Component Summary. This form is
filled out during the design phase and
describes the structure of each component
(e. g. subroutine, COMMON block, etc.)

3. Programmer Analyst Survey. This
form is filled out once by each programmer
in order to provide a general background
of project personnel.

4. Resource Summary. This form is
filled out weekly by the project manager
and gives manpower and other resources
charged to the project during the week.

5. Component ~tatus ReDor t. This is

the major accounting form that lists, for
each programmer, what activities were
performed on each component for the week.
This is the basic form that lists what
happened and when.

6. Computer Program Run Analysis. This
form contains an entry each time the
computer is used. It beiefly describes
what the computer is used for (e. g.
compile, test, etc.) and what happened (e.
g. error messages).

7. Change Report Form. This form is
completed for each change made to the
system. The reason for and a description
of the change are given. If the change is
made to correct an error, the method of
detection, effects on other parts of the
system, time to correct and type of error
are noted on the form.

The data that is collected is entered
into the INGRES PDP 11 data base system
[Held]. This process is somewhat tedious
due to the care needed to insure data
validity. Almost all of the errors not
detected by hand checking of the coded
input is detected by the input program.

All projects that are currently being
monitored can be broken down into three
broad classifications:

I. The screening experiments are the

projects that simply have the requirement
to submit reporting forms. They provide a
base line from which further comparisons
can be made, and upon which the monitoring
methodology can be tested.

2. The semi-controlled experiments are
a s~t of relatively similar large scale
developments. While they are different
projects, they are sufficiently similar in
size and scope so that comparisons can be
made across these projects. In this case,
specific techniques are sometimes required b
to be used in order to measure their
effectiveness. These projects are the
standard spacecraft software developed by
the Systems Development Section at NASA.

3. The controlled experiments are a

set of projects that are developed using
different methodologies. These
developments are the most closely
monitored and controlled of the three
classifications so that the effects of
methodology upon these projects can more
easily be measured than in the
semi-controlled experiments.

For each project, a set of factors
that effect software development are
extracted by the forms. Some of the
factors that are of interest include:

I. People factors (size and expertise

of development team, team organization)

2. Problem factors (type of problem to

solve, magnitude of problem, format of
specifications, constraints placed upon
solution)

117

3. Process factors (specification,

design and programming languages,
techniques such as code reading,
walkthroughs, top down design and
structured programming)

4. Product factors (reliability, size

of system, efficiency, structure of
control)

5. Resource factors (target and

development computer system, development
time, budget)

6. Tools (Libraries, compilers,

testing tools, maintenance tools)

Some of these factors can be
controlled while others are inflexible.
Such items as development computer system,
budget, format of input specifications and
type of problem to solve are mostly fixed
and change very slowly year by year. On
the other hand, factors like structured
programming, design techniques and team
organization are much more under the
control of the laboratory and can be
varied across different projects.

For each semi-controlled or controlled
project, a set of these factors is
predetermined. For example, a project may
use a librarian, code reading,
walkthroughs, a PDL and structured
programming. The other factors that affect
development will become apparent through
the information obtained on the general
project summary. In order to enforce these
methodologies on project personnel, a
training period, consisting from a two
hour lecture on filling out forms up to a
week's classroom training, is being
utilized. Every effort is being made to
use methodologies that are compatible with
a project manager's basic beliefs so that
no friction develops between what the
manager wants to do and what he must do.

Much of the early effort in the
Laboratory was expended in the
organization of the operation and
generation of data collection and
validation procedures and forms. We have
reached a point where sufficient data has
been obtained to permit us to evaluate our
operational procedures and to analyze data
with respect to goals one and two in the
introduct$on. In the following two
sections, early evaluation of the
collected data is presented. The major
emphasis in these first evaluations is on
reporting progress and reliability of the
developing system.

PROGRESS FORECASTING

One important aspect of project
control is the accurate prediction of
future costs and schedules. A model of
project progress has been developed and
with it estimates on project costs can be
predicted.

The Rayleigh curve has been found to
closely resemble the life cycle costs on
large scale software projects [Norden,
Putnam]. At present, we are assuming that
this is true for medium scale projects as
well, and are developing reporting
procedures based upon this function. As
data becomes available, we will be better
able to test the underlying hypothesis and
refine it further.

The Rayleigh curve yielding current
resource expenditures (y) at time (t) is
given by the equation:

2
y = 2 K a t exp(-a t)

where the constant K is the total

estimated project cost, and the constant
is equal to I/(Td**2) where Td is the time

when development expenditures reach a
maximum. In our environment ~. and ~ are

measures of hours of effort, and t is

given in weeks.

Estimates on Initial Data

For each project in the NASA
environment, the requirements phase yields
estimates of the total resources and
development time needed for completion.
This data is obtained by the Laboratory
via the General Project Summary form. From
this data, a Rayleigh curve for this
project can be computed.

From the General Project Summary, the
following three parameters are relevant to
this analysis:

I) Ka, total estimated resources
needed to complete the project through
acceptance testing (in hours).

2) Yd, the maximum resources needed
per week to complete the project (in
hours).

3) Ta, the number of weeks until
acceptance testing.

Since the Rayleigh curve has only two
parameters (K and a), the above system is
over specified and one of the above

118

variables can be determined from the other
two° Since NASA budgets are generally
fixed a year in advance, there is usually
little that can be done with total
resources available (K). Also, since the
contractor assigns a fixed number of
individuals to work on the project, the
maximum resources Yd (at least for several
months) is also relatively fixed.
Therefore, the completion date (Ta) will
vary depending upon K and Yd.

As stated above, Ka is the total

estimated resources needed to develop and
test the system through the acceptance
testing stage. By analyzing previous NASA
projects, this figure Ka is about 88% of
total expenditures K. The remaining 12%
goes towards last minute changes. The
seemingly low figure of only 12% to cover
everything other than design, coding, and
testing can be explained by the following
two facts local to our NASA environment:

I) the initial requirements and
specifications phases are handled by
different groups from the development
section, and thus this data does not
appear, and

2) shortly after acceptance testing, a
third group undertakes the maintenance
operation, and so the full maintenance
costs also are not included in the
estimates.

For this reason it should be clear
that we have no actual data to match the
Rayleigh curve in the early stage
(requirements) and late stage
(maintenance). However, the major central
portion of the curve should be a reliable
estimate of the development costs, and it
is here that we hope to prove consistency
between the data collected on these medium
scale projects and the large scale
projects in the literature. Besides, on
the large scale projects, the Rayleigh
curve also acts as an accurate predictor
of the design, coding, and testing stages
both combined and individually [Putnam].
(In the future we expect to obtain some
data on the long term maintenance phase. A
Maintenance Reporting Form has been
developed, and the maintenance section has
agreed to fill out this form and report
back the data. Due to the lifetimes of
these spacecraft related software systems,
the data will not be available for about
another year.)

Thus given the estimate of project
costs Ka in hours, the total resources
needed is given by:

Ka = . 88 K

or

K : Ka/.88

The raw data for personnel resource
estimates are not directly usable in our
analyses since they include individuals of
varying functions and salaries and
therefore varying costs. The following
normalization algorithm has been applied
to the resource data in computing Ka: Each
programmer hour is given a weight of I, an
hour of management time costs 1.5 while a
support hour (secretary, typing,
librarian, etc.) costs .5. This is a
reasonable approximation to the true costs
at NASA.

Then given constant a, the date of

acceptance testing Ta can be computed as
follows. The integral form of the Rayleigh
curve is given by:

2
E : K (I - exp(-a t))

where!is the total expenditures until
time t~ From the previous discussion, we
know that at acceptance testing, E_~ is
.88K. Therefore,

2
.88K : K (I - exp(-at))

Solving for t yields:

t = sqrt(-in(.12)/a)

Putnam [Putnam2] states that for
development efforts only, acceptance
testing (Ta) is related to the time of
peak effort (Tp) by the relation:

o

i ~ • .

! . -

o o i . .

o . O * O O .

o .

" o . " - . ° .

o 0 . ' o ° o "Oo . . o .
o • " o

• o

° " o • ° ; ° ° . ' • . o

• o . °

°o ° . • o
° Oo•

• . - ; •
°OOo

" ° ° O o ° ° . °

* - Estimst ln S curve with Yd (m a x i m u m resources) f ixed

÷ - Est~sat lng curve with Ta (~ompZetion date) f ixed

• - Actual data

F i g u r e I . P r o j e c t A - EsClmaced r e s o u r c e e x p e n d i t u r e s c u r v e

119

.•.'•..
• ":.. o °

• :• •.

. :- : : : . . .
~i .'" • " ' . .

.

ii "
~ . . . " °

~ ! • ° jr • " . . " " .
• ". " "%

• . " - . .

~i": " ' " . . .
.

VEE~

• - E s c l m a c l r t g c u r v e w:Lch Yd (m a x i m u m r e s o u r c e s) f~ J ced

+ - E a t l m s t i n 8 curve wEth Ta (complec£on dace) f L x e

• - A c t u a l d a t a

F £ g u r e 2 . F r o J e c C B - E s t i m a t e d r e s o u r c e e x p e n d l c u r e s c u r v e

or

Tp = Ta
sqrt(6)

Ta = Tp * sqrt(6)

From our own smaller projects, we found
that this gives answers consistently
higher by about 8 to 10 weeks, therefore
we are using our own .88K rule to
determine acceptance testing. Why our
projects do not agree with the empirical
evidence of large scale projects in this
area is now under study.

Taking the given value of K, two
different Rayleigh curve estimates were
plotted for each of two different projects
(referred to as projects A and B) by
adjusting the constant _~a. For one
estimating curve it was assumed that the
estimate for maximum resources per week Yd
was accurate and that the acceptance
testing date Ta could vary, while in the
other case the assumed acceptance testing
date Ta was fixed and the constant a could
be adjusted to determine maximum weekly
expenditures Yd needed to meet the target
date. These plots for the two different
projects are shown as figures I and 2.

The curve limiting maximum weekly
expenditures might be considered the more
valuable of the two since it more closely
approximates project development during
the early stages of the project. In both
projects A and B, the maximum resource
estimate Yd was predicted to be
insufficient for completing acceptance
testing by the initially estimated
completion date Ta. In project A the
Rayleigh curve prediction for acceptance

testing was 58 weeks instead of the
proposed 46 weeks. The actual date was 62
weeks - yielding only a 7% error (Figure
3). The prediction for project B showed
similar results.

INITIAL ESTIMATES FROK GENERAL PROJECT SUMMARY

Ka, R e s o u r c e s needed (h o u r s) 1 6 , 2 1 5 1 2 , 9 9 7
T a , Time t o c o m p l e t i o n (w e e k s) 46 41
Y d l Maximum r e s o u r c e s / w e e k (h r s) 350 3ZO

COMPLET%ON ESTIMATES USING RAYL~XGH CURVE

K~ R e s o u r c e s neeOeQ (h g u r s) 1 6 , 1 5 1 1 4 , 7 7 ~
Estimateo Yd =ith Ta f i x e d (h r s) 440 456
E s t i m a t e o Ta w i t h Yd f i x e d (h r s) 5~ 5~

ACTUAL PROJECT DATA

K, R e s o u r c e s n e e d e o (h r s) 1 7 , 7 ; 2 1 6 , 5 4 ~
Ydt Maximum r e s o u r c e s (h r s) 371 4~2
T a t C o m p l e t i o n time (w e e k s) 62 5&

Tar estimated usin~ actual
v a l u e s o f K a n t ¥d (w e e k s) 60 43

F i g u r e 3 . E s t i m a t i n g Ta and YO f r o s G e n e r a l P r o j e c t
Summary data .

As it turned out, both projects used
approximately 1600 hours more than
initially estimated (10% for A and 12% for
B), and maximum weekly resources did not
agree exactly with initial estimates• If
these corrected figures for Ka and Yd are
used in the analysis, then Ta, the date
for acceptance testing, is 60 weeks
instead of the actual 62 weeks for project
A - an error of only 3% (Figure 3).

Note however that the corrected
figures for project B yield a Ta of 44
weeks instead of the actual 54. This
discrepancy is due in part to the extreme
variance in actual development hours
allocated to the project each week,
especially towards the latter period (See
figure 2). If an average maximum value of
425 hours per week is substituted for the
absolute maximum, the projected completion
date becomes 49 weeks, yielding an error
of only 5 weeks.

It is clear from the analysis of this
last data, that due to the size of the
project and the effect small perturbations
have on the prediction of results, that
there is definitely a difference in the
analysis of projects of the size being
studied by the Laboratory and the large
scale efforts reported in the literature.
To demonstrate this point even further,
consider the actual data in the curve in
Figure I. The significant drop in
development activities during the weeks
21, 26 and 34 can be attributed to
Thanksgiving, Christmas and Washington's
Birthday, all holidays for the contractor.
Thus our data is quite sensitive to
holidays, employee illness, and project
personnel changes.

Predicting Progress

In order to test the predictability of
the model, curve fitting techniques to the
actual data were used. The Rayleigh curve
can be rewritten as:

120

2
i n (_y) : in c - a*t

t

where
C

K = e
2*a

. . . o

o:
• • ° " ° . • ° .

° . • . . : . o " ' . • • • ° • ° • . • " ° , • o

~i " ~ ' " " " " " "" " ' : ' .
• : . . ° . • . .

. ' : , . . : . . •

i oO " * " .
~ i ' " "- ". .o • . • f i - .

i . " . %'.

, • "°o " .~° .o

o ° . . "
I°
I

d~f~

* - L ~ s t s q ~ r e l ~ i t £or a l l da ta po in ts

+ - Leas t s q u a r e s f l t u s i n g o n l y p o £ n t s up t o I n l t l a l dace
of accep tance tes t ing

• - Actua l da ta

F isure 4 , P ro jec t A - Least squares f i t fo r resource da ta

This equation can be used to derive the
equation y=f(t) for the collected data
(yi/ti, ti) using least squares
techniques.

From this solution, figure 4 was
plotted for project A. The * represents a
best fit using all of the collected data
points while the curve plotted with +
represents a best fit based upon points up
to the original point assumed to be
acceptance testing (46 weeks for project
A) to check the model's ability to predict
completion.

Figure 5 summarizes the results. These
are not very good, and Figure 6 is a
possible explanation. On projects this
small, the resource curve is mostly a step
function. Thus assuming a Rayleigh curve
estimate at point x results in an earlier
sharper decline while an estimate at y
results in too little a decline. Starting
with Norden's original assumptions that
led to the Rayleigh curve as a predictor
for large scale developments, current
research is investigating variations to
the basic curve so that it is "flatter" in
its mid-range, and better approximates
projects of this size.

LEAST SQUARES F I T THROU6H ALL PGZNT$

K , i n h o u r s 2 0 , 0 ~ 7 1 7 , 9 6 ~
Ta t in weeks 57 61

LEAST SQUARES f Z T US IhG POZNT$ bP TO
£$T IMATED ACCEPTANC£ TESTZNG DATE

K, in hours 16,827 25,71~
T a , in weeks 69 61

ACTUAL PROJECT DATA

K , ~n h o u r s 1 7 t 7 & 2 1 6 i S & 3
Ta t in reeks 62 54

F igure ~) , Es t ima t ing ; K and Ta us in~ [eas t squares
f i t .

, , s %

o s B i

• ¥

B e s t f i t b a s e d upon p o i n t s up t o t / ~ e X

o ~ o B e s t f l t b a s e d upon p o i n t s up t o t i ~ e Y

WIsure 6 . R a y l e l s h c u r v e e s t i m a t i o n on medluw s c a l e p r o j e c t s

Forecastin~ of Components

As part of the reporting procedure,
the Component Status Report gives manpower
data on each component of the system, and
the Component Summary gives the necessary
size and time estimates. Therefore
equations can be developed for each
component in the system. Thus we are able
to estimate whether any piece of the
system is on schedule or has slipped.

At the present time, summary data can
be printed on expenditures for each
component in a project. In figure 7, CM is
a subsystem of the project, and the other
listed components are a sample of the
components of CM. The above algorithm is
now being investigated to see whether all
components should be checked and some
indication (such as a * next to the name)
made if a component seems to be slipping
from its estimated schedule. In the
future, more accurate predictions of K~
from Ka will be investigated. How well the
basic Rayleigh curve fits this data is
also being studied. In addition, we would
like to collect data from the analysis and
maintenance sections at NASA to include
the requirements, specifications and
maintenance phases in the lifetime of each
project.

1 2 1

HOURS OH EAC~ ACTIVITY DATE LAST ESTIMATED .
COMPONENT DESIGN CODE TEST TOTAL REFERENCED HOURS COMPLETION

CM 79 79 9116177

O~,ARRO 12 9 21 71 8177 15 7/18/77

Of, ARIUP 6 3 9 5118177 14 6/30/77

Q'/ASP 7 1 8 2/18177 5 51 1177

0/041' 8 10 18 2111177 15 8/30/77

O~)RZV 2 3 5 3/11/77 10 6/19/77

(~SYrCT 1 10 11 22 4/ 1/77 5 4/15/77

Figure 7. Resource data by components (Data c o l l e c t l o n on th i s project
began a f t er design phase completed, so l l t t l e des ign t i ~e i s shown.)

Putnam lists only two parameters
affecting overall system development:
total manpower needs and maximum manpower.
What effects do other programming
techniques have (if any) on the shape of
this curve? For example, proponents of
many methodologies, such as structured
programming, predict a slower rise in the
curve using the proposed techniques.

OTHER INVESTIGATIONS

Besides project forecasting, several
other areas are under investigation. Some
of these are briefly described in the
following paragraphs.

Overhead

Overhead is often an elusive item to
pin down. In our projects three aspects of
development have been identified:
programmer effort, project management, and
support items (typing, librarians,
clerical, etc.). In one project
programmers accounted for about 80% of
total expenditures with the support
activities taking about one third of the
remaining resources. In addition, only
about 60% of all programmer time was
accountable to explicit components of the
system. The remaining time includes
activities like meetings, traveling,
attending training sessions, and othe-r
activities not directly accountable. As
others have shown, this figure must be
included in computing effective workloads
in hours per week.

Error Analysis

One early investigation using the
collected change reports, was to test the
hypothesis of Belady and Lehman [1976]. By
studying several large systems, they
determined that for each release of a
given system, the per cent of modules
altered since the previous release was
constant over time ("handling rate").
Since our own data was mostly data
collected during integration testing, the
extension of their results were tested in

our own environment. In addition, besides
the handling rate, we also wanted to
investigate the report rate, or the rate
at which changes were reported over time
on the developing system.

Figure 8(a) shows this early
evaluation, which clearly does not
represent a constant handling rate. The
maximum rate of handling modules occurs in
the middle of the testing period.

One result which was surprising,
however, is is the report rate of figure
8(b). This represents the number of change
reports submitted each week. This figure
did remain constant for almost the entire
development time.

In order to test this second result
further, data from a second project was
plotted. It too had handling rates and
report rates similar to the above
project. This phenomenon will be studied
in greater detail in the future.

SUMMARY

The major contribution of the
Laboratory to the field of software
engineering is the ability to collect the
kind of detailed data currently
unavailable, and collect it for a class of

projects (medium scale) that has not yet
been well analyzed. The finer level of
monitoring and data collection can yield
better analysis and understanding of the
details of the development process and
product. The medium scale size of the
projects permit us to study more projects
although it is clear that good data
collection techniques are more important
here than in larger projects because
mistakes can have a much stronger impact.
The large number of projects being
compared also permit various software
development parameters and techniques to
be analyzed and compared with quantitative
assessments by correlating data across
several projects.

The current status of projects in the
Laboratory have permitted us to begin
reporting back to management the status of
projects and to begin analyzing individual
aspects of projects, checking their
relationships to large scale project
results found in the literature. The
model of resource utilization via the
Rayleigh curve is an important idea that
is being investigated. Error rates and
their causes are also under study. Since
the Laboratory only started to collect
data in December of 1976, and since most
projects take from 12 to 18 months to
complete, the first few projects are only
now being completed; however, within the
next 4 to 6 months, about four more

projects will be ready for analysis. This
will allow for more careful comparisons
with the data already collected.

ACKNOWLEDGEMENTS

We would like to acknowledge the
contributions and cooperation of Mr. Frank
McGarry, head of the Systems Development
Section of NASA Goddard Space Flight
Center. He has been instrumental in
organizing the Laboratory and in
interfacing with the contractor in order
to see that the data is collected reliably
and timely. We would also like to thank
Computer Sciences Corporation for their
patience during form development and their
contributions to the organization and
operation of the Laboratory.

! !i ~ . : :
: :: :: : :
: :: :: : :

~::!~.!~ ~:: : !~
: : : : : : : : : : : : : : : . : : : :

: : : : : : : , : : : : : : : : : : : : : . : : : : :
: : : : : : : : : : : : : : : : : : : : : : : : ; : . : : .
: :: ::::::::::::::::::::::::::::: : •
:

....... ~'. ;--'7 ~ ~ Y-'-
(a) Handl£ng Rate by week

[Held] Held G., M. Stonebraker, E. Wong,
INGRES - a relational data base system,
National Computer Conference, 1975,
409-416.

[Myers] Myers G., Software Reliability
through composite design, Mason Charter,
New York, 1975.

[Norden] Norden P., Use tools for project
management, Management of Production, M.
K. Starr (ed), Penguin Books, Baltimore,
Md., 1970, 71-101.

[Putnam] Putnam L., A macro-estimating
methodology for software development, IEEE
Computer Society Compcon, Washington, D.
C., September, 1976, 138-143.

[Putnam2] Putnam L., Private
communication.

[Walston & Felix] Walston C. E. and C. P.
Felix, A method of program measurement and
estimation, IBM Systems Journal 16, No. I,
1977, 54-73.

[Wolverton] Wolverton R. W., The cost of
developing large scale software, IEEE
Transactions o_~n Computers 23, No. 6, June,
1974, 615-636.

(b) Report rltte by week

Yisure 8, Handl£n8 and report ra te of projec t A.

REFERENCES

[Baker] Baker F. T., Structured
programming in a production programming
environment, International Conference on
Reliable Software, Los Angeles, April,
1975 (SIGPLAN Ngtices 10, No. 6,
172-185).

[Basili & Zelkowitz] Basili V. and M.
Zelkowitz, The Software Engineering
Laboratory: Objectives, Proceedings of the
Fifteenth Annual ACM Computer Personnel
Research Conference, Washington D. C.,
August, 1977.

[Belady & Lehman] Belady L. A. and M. M.
Lehman, A model of large program
development, IBM Systems Journal 15, No.
3, 1976, 225-252.

123

