
ConQidm * strrnrns Vol. IO. pp. 3943
@ Paag~l F’mr Ltd.. 1979. Rimed in Great Brian

~EASU~NG SOF?I’WARE DEVELOPMENT C~~CTERISTICS
IN THE LOCAL ENVIRONMENTS

VIC’WR R. i3~~tr.r and hiARViN V. ZILK~WITZ

event of Computer Science, Unive~i~ of Maryland, College Park, MD 20742, U.S.A.

(Recebed 12 Muy 1978)

AMrae&-This paper discusses the characterization and analysis facilities being performed by the Software
Engineering Laboratory which can be done with miaiial effort on many projects. Sume examples aregiven of the kinds
of analyses that can be done to aid in manna, u~ersm~i~ and cbaracterizi~ the development of software in a _ -.

Software development is big business. Estimates on the
actual expenditures for software development and main-
tenance were ten billion dollars in 1973[13 and most
likely 15-25 bag dollars today. These are only esti-
mates because little data is gathered by the software
industry in monitoring itself, analyzing its environment
and defining its terms.

The software product and its developmentlmain-
tenance environments cover a wide range. The product
varies from first time, one d a kind systems, to standard
multi-level run of the mill systems; from krge scale
huudreds of maa-year developments to small scale one
to two man-year developments. The environment varks
from shops dedicated to the development of software to
organizations which simply maintain their existing
software system. A large number of methodologies, tools
and techniques are available to help in the cost effective
~~uction of rn~~k software. However, most of
these techniques involve tradeoffs when applii in actual
practice: some tools are impractical in certain environ-
ments and some techniques may not be applicable in
other environments.

For example, for a new one-of-a-kind project where
some s~c~cations are still unknown or subject to
change (not a rccomme~ed prince), inc~men~
development techniques, such as iterative
enhancement[Zj may be more cost effective than the
more standard top down approach. Some tools, such as
requirements analyzers[31 which are highly effective in
the development of large scale systems, are not effective
when the project is relatively small due to the su~~ti~
overhead in using the tooI. Peer code reading is im-
possible in an environment of only one programmer.

Understanding the characteristics of a particular
software environment leads to more cost effective main-
tainable software. This requires knowledge of the
various parameters that affect the development of
software and its m~nten~ce. U~o~una~ly there is
little effort expended in analyzing this process in local
environments. Most of the data has come from the very
large scale developments, projects like 05860, Sage,
Gemini and Saturn[4].

Although these projects are major contributors to the
software development budgets, they are not necessarily

Sksearch supported in part by grant NSG-5123 from NASA
Goddard Space Flight Center to the University of Maryland.

typical of software development across the industry.
However, they are easiest to secure funding for collec-
ting data and endwing it. For example, if the budget for
a project IS twenty million dollars, then it is easy to add
two hundred thousand for data coRection and analysis, a
mere 1% overhead. However, if the project has a budget
of two hundred thousand dollars, then adding fifty
thousand for data collection imposes a prohibitive 25%
overhead.

What characterizes these large scale software de-
velopment projects? The devel~ment activities usu-
ally involve about 30% analysis and design, 20% coding
and SQ% testing. However, dave#opment costs account
for only 20% of totai system costs on some projects if
maintenance and modification activities are included[l].

These cost characteristics however are different for
different software environments. What characterizes the
projects studkd above is that they are large one time
only systems. Testing is very expensive because it is
di&ult to integrate the various pieces of the system into
a working unit, Ckarly smaller better utukrstood
systems would require a smalkr proportion of the testing
time and possibly less design and analysis time.

The authors have been analyzing development in an
en~o~ent in which the software is of the six-ten
man-year variety kvol~ the development of ground
support software for spacecraft control; a set of prob-
lems whose basic solutions and designs are fairly well
understood. Thus the tailoring of methodoIigks and tools
for this environment would surely be diierent than in
other environments.

rBltWFrwAug B -my

The Software Eng&ring Laboratory began in
August, 1976 to evakate various techniques and
methodoligies to recommend better ways to develop
software within the local NASA environment. Three
groups participate in the Labotatory--the Uuiversity of
~~, whose rok is to develop an operational
measurement environment and analyze the development
process; NASA Goddard Space nit Center, whose
role is to implement the operational measurement en-
vironment and whose goal is to discover ways to develop
more product for the money spent; and the contractor,
C~pu~r Sciences paragon, whose role is to supply
data as they develop software and whose goal is to gain
feedback on project development both for understanding

39

weekly by each person on the project, and it identifies
the components worked on, hours devoted to each
component, and tasks performed (e.g. design. code, re-
view).

40 VICTOR R. BASILI and MARVIN V. ZELKOWTZ

the characteristics of past development and to monitor
software development in real time.

More specif%ly, the goals of the Laboratory are:
1. Organize a data bank of information to classify

projects and the environment in which they were
developed.

Compare what is Henning with what is supposed to
Resource Summary

2.
be happening (e.g. are the proposed methodologies being
employed as they are supposed to be implemented?).

3. Isolate the significant parameters that characterize
the product and the en~o~ent.

4. Test out existing measures and models as they
appear in the literature (usually for large scale software

Change Repon

developments) and develop measures for the local
environment.

This form keeps track of project costs on a weekly
summary basis. It is hlled out by the project manager and
lists for all personnel the total number of hours spent on
the project.

5. Analyze methodologies and their instrumentation in
the local environment.

The change report form is tilled out every time the
system changes because of change or error in design.
code, specifications or requirements. The form identifies
the error, its cause and other facets of the project that
are affected.

6. Discover and recommend appropriate milestones,
methodologies, tools and techniques for use under given
conditions in order to develop more manageable, main-
tainable, reliable, and less expensive software products.

The research objectives. of the Laboratory can be
divided into three basic areas: management, reliability
and complexity. The management study is to analyze
and classify pro&ts based on management parameters,
and ~ves~ bloat Incasures and forecasting
models. The nl&rbiZiry study is to examine the nature
and causes of errors in the environment, And
classification schemes for errors and expose techniques
that reduce the errors that occur in the local environ-
ment. The purpose of the cotnpfuiry study is to gain
insight into the nature of complexity and develop models
that correlate well with those insighta and discover
whether various adds create more systematic and
thus easier to maintain program structures.

Computer Ptvgtam Run Analysis
This form is used to monitor computer activities used

in the project. Entries are made every time a run is
sub~~ for processing. The form briegy describes the
purpose of the run (e.g. compile, test, lile utility), and the
results (e.g. successful, error termination with message).

The primary data gatl&ng technique for the Labora-
tory is a set of seven reporting forms:

This form is used to classify the project and is used in
conjunction with the other reporting forms to measure
estimated vs actual project progress. It is #Ied out by the
project manager at the start of the project, at each major
milestone, and at completion. The final report should
accurately describe the system development life cycle.

DATA COON ON A tSIW&ER SCALE

The research goals of the Software Engineering
Laboratory require the collection of large amounts of
data to make full ~v~~ns into the nature of the
software development process. The information being
collected by the Labofirtory, due to its research nature, is
ambitious and not cost effective for simple management
control; it rquires a major expenditure just for process-
ing and validating data for inclusion into the data base.

However, it is possible to gather less data to get
effective results in analyzing the characteristics of the
local software environment. For example, a subset of the
information contained essentially on only three basic
forms is used for the analysis in the next section. The
three forms are the General Project Summary, the
Resource Summary and the Change Report form.

From the General Project Summary the following in-
formation is used:

ProgrammedAnalyst Swey

1. Project description in&ding the form of input
(specifications), products developed and products
delivered.

This form is fllled out by each programmer at the start
of the project, and is used to classify the background of
all project personnel.

2. Resources of computer time and personnel, includ-
ing constraints and usable items from similar projects.

3. Tie including start and end dates and estimated
system lifetimes.

Component Summary
Thii form is used to keep track of the components of a

system. A component is a piece of the system identified
by name or common function (e.g. entry in a tree chart,
COMMON block, subroutine). With the information on
this form corner with the aeon on the
component status report, the struoture and status of the
system and its development can be monitored. This form
is tilled out for each componeat at the time that the
component is identified tiny during the design stage),
and at the time it is completed (usually during
testing). It is filled out by the person responsible for the
component.

4. Size of project including various measures such as
lines of code, source Iines and number of modules.

5. Cost estimates, man-month estimates and sche-
dules.

6. Organization factors, personnel and the kinds of
peopk used (e.g. managers, librarians, priest.

7. Methodologies, tools and techniques used.
Data from the Resource summary includes weekly

charges for manpower and computer time, and other
costs for all categories of personnel. The change report
form supplies data on changes made to the system, when
they were made, what modules were affected by the
change, and why the change was made.

Component Status Reporr
This form is used to keep track of the development of . .

each component of the system. The form IS turned m _.___ __ r__,__..~
One important aspect of project control is the valida-

tion of oroiected costs and schedules. A model of esti-

Measuring software development characteristics 41

mating project progress has been developed and with it vance, there is usually little freedom with total resource!s
estimates on project costs can be predicted. available (K). Also, since a 6xed number of individuals

The Rayleigh curve has been found to closely resem- are usuaUy assigned to work on the project, the maxi-
ble the life cycle costs on large scale software projects& mum resources Yd (at least for several monks) is aiso
61. The curve yielding mnt resource expenditures (y) reiativeiy fixed. Therefore, the compktion date cfa) will
at time (t) is given by the equation: vary depending upon K and Yd.

y = 2K at exp(-a t2)

where the constant J$ is the total project cost, and the
constant 4 is equal to lt(Td**2) where Td is the time
wben ~veiopment expenditures reach a maximum. The
fo~o~~ analysis &rnons~a~ how this data can be
used for management control of a project. The data was
obtained on projects built for NASA and monitored by
the Software Engineering Laboratory.

For each project in the NASA environment, require-
ments analysis yields estimates of the total resources and
development time needed for completion, which is
recorded on the General Project Summary form. The
fo~ow~ three parameters are relevant to this analysis:

1. Ka, total estimated resources estimated to be
needed to complete the project through acceptance tes-
ting (in hours).

As stated above, 54 is the total estimated resources
needed to develop and test the system through the ac-
ceptance testing stage. For each environment, the actual
resources K must be obtained from this figure. There are
several methods for e&mat& K. Gne approach is by
the empirical data avaiIabk on past projects. By safe
past projects as NASA, this figure is 12% greater than
estimated expenditures (hence K= Ka/.@). The
remaining 12% is for last minute changes after accep-
tance testing. Siie maintenance costs are not covered,
this &ure seems quite low when comm to other
programming environments-the corresponding figure in
other organi2ations that do in&de maintenance costs
wiu probably k: correspondingly higher.

2. Yd, the maximum resources estimated to be needed
per week to complete the project (in hours).

3. Ta, the number of weeks estimated until acceptance
tiXti!lg.

Give & 4 was computed by assuming different vahtes
of T@ to yield the given v&e of YQ on the General
Pro&t Summary. Then given constant 4, the estimated
date of acceptance testing T4 can be comput as follows:

The integral form of the Rayleigh curve is given by:

E = K(1 - exp(- at”))

Since the Rayleigh curve has only two parameters (IL
and a), the above system is over specified and one of the
above values from the General Project Summary can be
determined from the other two. Thus the consistency of
those estimates can be validated. Alternatively, by esti-
mating two of these parameters (e.g. total cost and
maximum weekly expenditures), then the third value
(e.g. completion date) can be calculated.

For example, since budgets are generally fixed in ad-

where E is the total expenditures up to time 1. From the
previous bison, we know that at acceptance testing,
B is .88 K (for NASA). Therefore,

.88 K = K(l - exp(- at”,,.

Solving for t yields:

t = sqrt(- ln(. 12)/a).

42 WTOR R. BASILI and MARVIN V. ZELKOWITZ

Also, in a second analysis, the estimated acceptance
time Tg was gxed in order to yield a value of a (and
hence Y@) that represents the manpower needed to finish
on schedule.

activities not directly accountable. This “loss” of time is
a sign&ant overhead item which must be considered in
developing accurate project budgets.

If the original estimates from the General Project
Summary are accurate, then the estimated and calculated
values should be comparable. If the maximum manpower
estimate was reasonable, then the predicted date for
acceptance testing should be similar to the estimated
date on the General Project Summary. if this acceptance
date is reasonable, then maximum manpower estimates
should be similar to the calculated values.

ERRoR ANALYgfs

Fii 1 represents data from one actual project. Ac-
cordimg to the above analysis two different Rayleigh
curve estimates were plotted. The curve limiting maxi-
mum weekly expend&es (Yd) might be considered the
more valuable of the two since it more closely ap
proximate8 project development during the early stages
of the project. In this case, the weekly expenditures from
the General Project Summary were insufIicient for
c~pk~ acceptance testing by the initially estimated
compktion date Ta The mode1 predicted acceptance
testing in 58 weeks instead of the proposed 46 weeks.
The actual date was 62 weeks-yielding only a 7% error
(Fig. 2).

The correction of errors in a system is the major task
of integration testing. Even a simple counting of errors
can be useful as a management estimating tool. Figure
4(a) represents the number of error reports reported per
week on one NASA project. It remained surprisingly
constant over the testing stage. However, the more in-
teresting measure is the ~a~d~~g rute(7f, or the num~r
of different components altered each week (Fig. 4b).

Consider the following set of assumptions:
1. The number of errors in a system is finite, but

unknown.
2. The probability of finding an error is proportional to

the number of individuals working on the problem.
3. The probability of finding an error is random and

u~o~y distributed.
These three ~sumptions lead to a Poisson dis~bution

y =e-"

In order to complete the project in 46 weeks, up to
44Ohr per week (rather than the estimated 350 hr per
week) would have to be spent.

As it turned out, the project used approximately
16Whr more than initially estimated and maximum
weekly resources were slightly more than origmal esti-
mates (371 hriweek instead of 35Ohrlweek). If these
corrected figures for Ka and Yd are used in the analysis,
then Ta, the date for acceptance testing, is 60 weeks
instead of the actual 62 weeks-an error of only 3%.

as the probability of an error remaining after time t.
Furthermore, if we include the assumption that the
probability of fixing a found error (as opposed to creating
a new error by fixing the previous enor) is the function
a = bt (e.g. errors are “easier” to find as you get “good at
it”), then the restthing gibbon is the same Raykigh
curve descrii previously (Sy .

Therefore, if N is the total number of errors in a
system, and if h is a measure of the maximum number of
errors found per week, then the number of errors found
per week agrees with the curve:

OMBW y = 2Nht exp(- ht*).
Overhead is often an elusive item to pin down. In our

projects three aspects of deveIopment have been
identified: programmer effort, project management, and
support (librarians, typing, etc). In one project (Fig. 3),
programmers accounted for about go% of total expen-
ditures with the support activities taking about one third
of the remainder. In addition, only about 60% of all
programmer time was accountable to explicit
components of the system (as reported on the
Client Status Report). The rem~ time inchtdes
a&v&es like meeting, travel, ~mg sessions, and other

A preliminary eviction of the data of Fig. 4 (and
other projects) seems to bear out these assumptions.
Therefore, by using least squares techniques, the follow-
ing algorithm can be used to measure testing progress:

1. Collect data on errors reported for several weeks.
2. Use least squares to fix a curve to this data. This

gives a measure of N (modules handled) and h (a
measure of maximum errors found).

3. N gives the near of modules in error in the
system, however, this value can never be reached

INITIAL EWMATES PROM GENERAL PROJECT SUMMARY
Ka, Resources needed (hours)
Ta, Time to completion (weeks)
Yd, Maximum resources/week (hrs)

COMPLETION RSTIMATES USING RAYLEIGH CURVE
K, Resources needed (hours)
Rstimated Yd with Ta fixed (hrs)
Estimated Ta with Yd fixed (b-s)

ACTUAL PROJECT DATA
K. Resources needed (hrs)
Yd, Maximum resources (hrs)
Ta, Completion time (weeks)

Ta. &mated usiag actual
values of K aad Yd (weeks)

fig. 2. using Ta and Yd from General Project ~~ data.

14,213
46

350

16,tSt
440

58

17.742
371
62

60

Measuring software deveIopment characteristics

Fig. 3. Resources expended on various deveiopmen~ a&&es. + , darner effort. - , M~~rnent effort. 0,
Support effort (Iib~~s, typing, clerical, etc.).

(a)

;
:

::
:: . *
:: . .
:: . . . I

::
a t

--.

l :

: : i i
: : . .
: :
II .
*

:

: .

: :

: :;

i ;;
l . . .
. * . *
. I) * .
. . . .
*,..
1.‘.
. ..*

. . , .

..,.

. . . .

..(I.
.*..
.**.
. l . *

mm*-

:
: *.*

-__.s.._

(b)
Fig. 4. Handling and report rates on one project. (a) Report rate by week. fb) Handling rate by week.

exactly. Compute the time needed to get the number of
remaining errors to an “acceptable” level[Q

The project represented by Fig. 4 shows the practi-
cality of this measure. This project has a total of I115
components that were handled. A least squares fit yiei-
ded an N of 1024.9 and an h of .0009024 with a cor-
relation of .7264. This figure of 1024 was only an error of
I3% in the true humid rate. Current research is studying
this aspect of errors in order to refine this measure
further.

Acknowkdgemmfs-We would like to acknowledge tbc contri-
butions and cooperation of Mr. Frank McGarry, head of the
Systems Deveiopmeat Section of NASA Goddard Space Fiight
Center. He has been Freon in organ&g the Laboratory
and in interfacting with the contractor in order to see that the
data is collected reliably aod timely. We would also like to thank
Computer Sciences Corporation for their patience during form
development and tbeii con~butions to the or~n~tion and
operation of the Laboratory.

RmmmJc!m

I. B. Bahm, Software and its impact: a quantitative assessment
mromfstiwt 97-103 (July 1977).

2. V. Basili and A. 3. Turner, Iterative eo~~ment: a practical
technique for software &v~~. IEEE Ttolwecfionf
Sofrwaru &ptg l(4), 390-396 (1975).

3. D. Teicbroew and E. A. Hershey, PSUPSA: a computer aided
technique for structured documentation and anaiysis of in-
formatinn processing systems. IEEE T~~a~t~s Software
Ensns Xlh 414 (1877).

4. R. Wolverton, The cost of developing large state software.
IEEE ~s~~~ Cornput. u(6), 615-636 (June 1974).

5. P. Nordon, Use tools for project mmmgoment. Mutmgemcnt of
Prodvcrfon. (Ed&J by hf. K. Starr) pp. 71-101. Penguin
Books, Baftimore, Maryfand (1970).

6. L. Putnam, A macrcmtimatfng methodology for software
devefopment. IEb% conrprlier sociery compcim, pp. 138-143,
Washington, DC, (Sept. 1976).

7. L. A. Belady and M. hf. Lehman, A model of huge program
development. IBM Sysrems 1: 15(3), 225-252 (1976).

8. I. D. Must+, A theory of software reliablility and its ap-
plition. IEEE T~saff~o~~ Soffwan Ekgng f(3), 3I2-327.
(Sept. 1975).

