
J. SYSTEMS SOFTWARE 27
1092; lY:27-3Y

An Application of Decision Theory for the
Evaluation of Software Prototypes

Sergio R. Grdenas, Jianhui Tian, and Marvin V. Zelkowitz
Institute for AdLlanced Computer Studies and Department of Computer Science,
Unh lersity of Ma yland, College Park, Ma yland

There is a need to quantify management decision
making in software development. To this end, this

article presents an application of concepts from eco-

nomic decision theory to an aspect of this problem

currently under study by many in the software engi-

neering community- how to prototype a design and

evaluate the effectiveness of this prototype. The role

of prototyping as an experimental tool is analyzed and

techniques for defining what to prototype and when it

is cost effective are introduced. We demonstrate some

of these decision theory techniques to define a model

that management can use to select solutions from a

set of alternative designs.

INTRODUCTION

Good management is often characterized by the
ability to make correct decisions from incomplete
information. A good manager must determine the
most probable future events from whatever informa-
tion is currently available. However, we can never
know the future with certainty, so there is always a
degree of risk in whatever course of action is under-
taken.

Software management is no different. A manager
must determine how best to allocate available re-
sources (e.g., people, equipment), develop schedules
and milestones, and make software design decisions
that will best fulfill some future goals for a project.

Currently there is little in the way of a theory of
software management decision making. Most papers
on the subject give rules of thumb, ad hoc experi-
ences, and general design methods, with a touch of
mythology and the admonition that if you follow
such directions, you will generally succeed. What is
needed is a more scientific basis for decisions con-

Address correspondence IO Prof: Manin B. Zelkowitz, Computer
Science Dept., Unil~ersity of Maryland, College Park, MD 20742.

sisting of scientific principles, formulas, and algo-
rithms that can guide the manager in making such
decisions.

Development of such principles has two beneficial
effects:

For good managers, the quantification of their
decision methods justifies their choices and allows
them to discover new relationships that they might
not have seen.

Alas, not every manager is “good.” Quantification
of these methods permits these managers to make
more reasonable decisions and removes some of
the randomness in the process.

In reflecting on this discussion of decision making
for software, terms such as “probable,” “certainty,”
and “risk” appear. These are all terms that have
been studied within the context of economic deci-
sion theory, and the relationship of such theory to
software management has already been identified [1,
21. We have studied such concepts and believe that
they are applicable to many of the current problems
of software management. In particular, we have
studied the question, “When is it cost effective to
develop a software prototype?” We believe that such
decision theory concepts can be applied to software
management. This article provides an example of
using these techniques for evaluating alternative de-
signs-in particular, in the evaluation of prototypes.

How Does This Relate to Software Management?

Software engineering activities are characterized by
a continuous need for management to decide among
several requirement constraints, design options, de-
velopment strategies, methodologies, and tools. Usu-
ally there is not enough information to guarantee
that the chosen option is the best. Most decisions

0 Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York. NY 10010 Olh4-1212/‘)2/$5.00

28 J. SYSTEMS SOFIWARE
1992; 1927-39

S. R. Cardenas, J. Tian, and M. V. Zelkowitz

are made under explicit or implicit deterministic
assumptions about the client, users and environ-
ment, the consequences of these decisions or ac-
tions, and future development. These assumptions
often stray from reality and the decisions made may
not reflect the best that can be done in these situa-
tions.

A simplistic solution to the problem might be to
optimize, instead, the expected value of the conse-
quence of any decision. This approach can work
under specific circumstances where the risk involved
is not great. However, most major software manage-
ment decisions involve great risk; therefore, an ap-
proach based on expected payoffs is not adequate.

Consider, for example, the following two choices.
The first is to get a guaranteed profit of $1 million.
The second is to have a 50% chance of getting
either a $5 million profit or a $1 million loss. Data
show that about two thirds of all managers would
choose the former with an expected guaranteed pay-
off of $1 million, although the expected value of the
riskier latter choice is $2 million [3]. This kind of risk
aversion behavior is all too common and important
in software engineering to be ignored.

In Section 1 we define the software engineering
application to which we wish to apply this
model-the need to evaluate the effectiveness of
prototyping a software design as part of a software
requirements analysis activity. In Section 2 we sum-
marize the relevant aspects of decision theory, and
in Section 3 we apply this theory to the problem of
software prototypes. The major issues we deal with
include:

l how to perform risk analysis in making decisions;

* whether, when, and how to use prototypes to
extract information;

* an algorithmic description of the decision process.

As a final introductory comment, realize that we
view this process as providing additional information
to the software manager. Our technique is based on
estimations and preferences of the software man-
ager and results from proto~ping experiments. This
process provides additional data points to the deci-
sion maker who must ultimately make such decisions
based on these and other available data.

1. PROBLEM DEFINITION

For decision making under uncertainty, we need (1)
a statement of both objective and subjective prefer-
ences, and (2) a process for obtaining more informa-
tion. In general, perfect info~ation is impossible or

too expensive to get. As a result, some degree of
subjective judgement and preference is usually un-
avoidable.

In software engineering, to extract more informa-
tion, we often need to prototype. Usually there are
several alternatives to choose for a software project.
Each alternative is associated with different out-
comes depending on which operational environment
is ultimately true.

The relevant aspects of the state of the world are
those related with “software needs.” Any software
product should be built in accordance with the state
of nature in which it is going to work. For example,
in what domain will the program operate? Are big or
small data files appropriate? Are executions long or
short? What is the maximum number of transactions
per second? Depending on which state of nature
holds, the same set of software solutions can be
ranked in different ways, since some alternatives
may be more profitable than others for a given state
and some can even be unfeasible or unacceptable
for other states. When we are interested in a future
state of the world, it is obvious that we cannot know
with absolute certainty which state will hold.

1.1 Prototypes

Building a prototype gives a designer information
useful for larger projects. But we must bear in mind
that extracting this information is not free. We must
weigh the gain versus cost of this new info~ation.

The choice of whether to make immediate deci-
sions or to prototype and then decide depends on
the value of information gained from prototyping
versus the cost of prototyping. If the value gained is
greater, we will prototype and make our decision
later; otherwise an immediate decision should be
made. Naturally, this rule can be used iteratively at
each stage of decision making. It may be necessary
to prototype more than once to reach a final deci-
sion. The termination conditions are that either
further proto~ing costs more than gained value of
the additional information, or we have already ac-
quired (near-)perfect information. Note that this, in
essence, implements a spiral model risk-reduction
life cycle to software development [4].

The likelihood of each state of nature is the major
uncertainty we consider here. To get a better esti-
mate, experimentation in the form of prototyping
may be necessary. Several authors consider prototyp
ing as a technique for providing a reduced function-
ality version of a software system early in its devel-
opment [5--81. We basically agree with this definition
but consider that proto~es should be used not only

Evaluation of Prototypes J. SYSTEMS SOFTWARE 29
1992; 19:27-39

to experiment with functionality, but also to experi-
ment with any desired attribute of the system. We
also consider that prototypes can be used as a source
of information throughout the whole life cycle pro-
cess (e.g., maintenance changes can be first simu-
lated using a prototype).

“To appreciate the rapid prototyping paradigm,
you must view software design as an iterative deci-
sion-making process” [9]. We view software proto-
types as programs that model some aspect of the
final product, but often fail to model others. Follow-
ing the model of (basic) requirements as a vector of
attributes [lo], we see the requirements of the proto-
types as a subset of the requirements (a projection
of the vector) of the desired program. Then, from
the program requirements, it is possible to build
several different prototypes, each satisfying different
aspects (each aspect is specified by a subset of the
requirements) of the program.

We characterize prototypes as providing answers
to the following three questions:

Do requirements reflect client’s needs? In this case,
the experiment involves interaction between the
prototype and the client. This interaction will tell us
if an aspect of the client’s needs is captured by the
corresponding aspect of the requirements modeled
by the prototype. This kind of interaction arises very
often in software projects: “. . . it is really impossi-
ble for a client, even working with a software engi-
neer, to specify completely, precisely, and correctly
the exact requirements of a modern software prod-
uct before trying some versions of the product” [ll].
A prototype will give information of which state of
nature holds: client likes aspect x of requirements r,
or client does not like aspect x and prefers x’. User
evaluations can then be incorporated as feedback to
refine the emerging system specifications and de-
signs.

Do requirements reflect system environment needs?
In this case, the prototype is built to interact with
the environment in which the final system is in-
tended to work. Usually the interaction is simulated;
that is, prototyping includes the construction of a
model of the environment, and the interactions are
only between the prototype and the model. The
different states of nature define the degree to which
the interactions between environment and system
are satisfactory.

Are the requirements feasible? This situation re-
quires an experiment to show if the resources avail-
able to the software developers are enough to build

a product with the specified requirements. The pro-
totype should model the aspect of the requirements
suspected to be unfeasible. In this case, feasibility
information is obtained directly from the possibility
to construct the prototype within some scaled re-
source limits. A prototype will give information of
which state of nature holds: the aspect x of require-
ments r is not feasible, or the aspect x is feasible.

A software tool to build prototypes, or a system
for computer-aided rapid prototyping (fast prototyp-
ing), allows developers rapidly to construct concrete
executable models of selected aspects of a proposed
system. We argue that such a tool must either pre-
dict or bound the time and effort needed to build a
given prototype in order to extract the information
needed.

First, we consider the decision rules when no
further information gathering is allowed. A decision
taken in such situations is called an immediate deci-
sion. For immediate decisions we analyze the case of
complete uncertainty and the case of a known prob-
ability distribution. Later we consider the general
case in which a delayed decision can be reached
after new information is obtained, such as with a
prototype.

2. ASPECTS OF DECISION THEORY

The following briefly summarizes the basic model of
decision theory [12, 131 that applies to our software
prototyping problem.

Assuming several possible strategies (e.g., proto-
typing experiments) with specified probabilities of a
set of possible outcomes (e.g., the possible results),
how do we choose a best strategy (e.g., which proto-
typing experiment provides more information)?

Consider two solutions for a software requirement
named alternative designs A, and A?.

A,: its cost of development is estimated to be 50
monetary units. It is cheap compared with A, but it
involves more risk.

A,: It costs 100 monetary units. It represents a
conservative but more expensive option.

Assume there are three possibilities for states of
nature, labeled S,, S,, and S,, respectively.

S,: This state is more favorable for alternative A2
than for alternative A,. The revenue related to
alternative A, is 150 and to A, is 400.

S,: This state is more favorable for alternative A,
than alternative A,. A, gives a revenue of 550
and A, a revenue of 300.

S,: This state is unfavorable for alternative A,, with

30 J. SYSTEMS SOFTWARE
1992; 1927-39

S. R. CBrdenas, J. Tian, and M. V. Zelkowitz

a revenue of 50 monetary units, but alternative A,
gives a revenue of 300.

We can first identify the payoffs for each alterna-
tive under different states of nature. Here the pay-
offs were calculated by subtracting the cost of devel-
opment of that alternative from the revenue related
to the alternative for the state. This information is
summarized in the moneta~ payoff matrix Y (all
entries are expressed in monetary units):

1
150 - 50 550 - 50

y= 400-100 300-100
50 - so

300-100 I

I

100 500 0
= 300 200 200 1 (1)

Entry yi,, in the matrix gives the payoff of the
alternative Ai 6th row) when Sj is the resulting
state of nature. For example, if we choose A, and
the state of nature turns out to be S,, we get a
payoff of $500, or equivalently, y,,, = 500. A partic-
ular combination of alternative and state of nature
is called an outcome.

2.1 Immediate Decision Under Complete
Uncertainty

Often, when the probability for each state of nature
is not known, there are two approaches for decision
making without further information. One is to make
the decision based on a guaranteed lower or upper
bound. The other is to make the decision assuming
that all states have the same probabili~ of occur-
rence. The former approach is often chosen because
the latter is based on a dubious assumption.

We call this the maximin rule. The alternative
picked by this rule is the one that has the greatest
guaranteed minima1 payoff. This guaranteed payoff,
called maximin value LR, can be calculated as fol-
lows:

a=: my(ynYi,j) (2)

In our example, we choose alternative A, because
its minimal payoff is 200, which is greater than the
minimal payoff of 0 for alternative A,.

2.2 Immediate Decision under Known Probability
Distribution

In some situations, probabilities are known or can
be estimated for the different states of nature. Given
the probability distribution vector P, where pi is the
probability that state of nature Sj is true, we must
decide which alternative to choose.

When the difference between the smaller and the
larger payoff for each alternative is relatively small,
a decision rule based on expected payoffs may be
adequate. We denote the expected payoff for alter-
native A, as ~1;:

L’i = CYr,,Pj

The expected payoff decision rule is: choose Ai,
which maximizes u,, or:

max CYi,jPj i i 1 j
or

max (11,)

For example, if we know that the probability distri-
bution for each state of nature in our example is
P = (0.3, 0.5, 0.2), we can calculate the expected
payoffs as follows:

[‘, = 100 x 0.3 + 500 x 0.5 + 0 x 0.2

= 280

I‘?& = 300 x 0.3 + 200 x 0.5 + 200 x 0.2

= 230

We would then choose A, over A, since 280 > 230.
When the stakes involved are enormous (e.g.,

there are significant differences between the small-
est and largest payoffs for some of the alternatives),
the expected payoffs decision rule often is inade-
quate. For example, if the payoffs in matrix Y repre-
sent millions of dollars, afternative A, would proba-
bly be chosen with its guaranteed minimal profit of
$200 million in states S, and S,, although alterna-
tive A, gives a higher expected value but has a
potential of $0 profit if state S, should turn out to
be true.

2.3 Risk Analysis

Risk aversion plays an impo~ant, even dominan,
role in decision making. The technique described
below depends on the following assumption about
reasonable behavior employed in decision making
under uncertainty:

l Decomposition: given three payoffs y, < y, < y,,
there exists a probability p such that the decision
maker is indifferent to the choice of a guarantee
of y,, and the choice of getting y3 with probabil-
ity p and getting y, with probability 1 - p.

For example, say there are two techniques to solve
a problem, one that is fully tested giving a guaran-

Evaluation of Prototypes J. SYSTEMS SOFTWARE 31
1992; 19:27-39

teed payoff of $5,000 and a second new and more
efficient (but not completely tested) technique
promising a potentially larger payoff of $10,000 but
with a chance to give a payoff of only $2,000. Some
software managers will consider using the new tech-
nique only if the chances of getting the payoff of
$10,000 are > 80%. In this case, probability p is
approximately 0.8.’

2.4 Decomposition of Y,,~

Let y, be the minimal value in our payoff Y and let
y* be the maximal value. In our example (section 2,
equation 11, we would choose y* = 500 and y, = 0.
With the selection of y. and y*, we can decompose

each Y,,, of Y as follows based on the decomposi-
tion assumption given earlier:

l What is the equilibrium probability ei,j that makes
you indifferent to the two choices T{,~, or probabil-

ity e,,, of getting y* and probability 1 - e;,, of
getting yo?

The answer to this question is a subjective determi-
nation that depends on current as well as past expe-
riences, and reflects the risk aversion of the decision
maker. Note that if yi, j = y,,,, then e,,i = ek,!, so
redundant entries need only be evaluated once. Any
element e, , _ will satisfy the following inequality:

y. X (1 - o,.,) + Y* X e,,, 2 y,., (5)

The difference between the two sides of equation 5
reflects the degree of risk aversion. If the two sides
are equal, risk analysis reduces to the expected value
approach. That is, when the expected value is the
same, the two outcomes are equally desirable. Also,
we do not model risk seeking as in lotteries, where
one’s expected monetary return (probability to win
X lottery price) is less than the price one pays (e.g.,
the left side of the equation is less than the right
side). However, there is nothing intrinsic in our
approach to prevent one from modeling such behav-
ior.

Depending on e,,i, we decompose the payoff y,, j
into an equivalent pair of payoffs {y,,, y*}, with prob-
ability e,:, of getting the more desirable y*. We call
the matrix formed by these elements ei, j the equilib-
rium matrix E. The probability ei,j captures the

’ Utility functions are used to address the same problem. A
utility function maps payoffs to numbers (not necessarily proba-
bilities). The numbers give the degree of desirability of the
payoffs. Here we do not define a function from payoffs to num-
bers; instead, we obtain the decomposition probability only for
the payoffs in matrix Y.

desirability of payoff y,,, in terms of boundary pay-
offs.

Following our example (section 2, equation I), we
need to ask the above question for the payoffs $100,
$200, and $300. For example, we might reply with
the following possible result based on our own risk
aversion behavior:

2.5 Decomposition and Comparison of
Alternatives

We next evaluate the desirability of different alter-
natives. Essentially they are also a decomposition in
terms of the boundary payoffs. The desirability for
an alternative A,, denoted as d,, can be calculated
as follows:

The comparison of different alternatives boils down
to the comparison of their desirabilities. The rule
can be simply stated as:

maxd, (7)
I

The alternative Ai with the maximal desirability d,
will be selected. In our example, we have:

d, = 0.3 x 0.3 + 1 x 0.5 + 0 x 0.2

= 0.6

d, = 0.8 x 0.3 + 0.6 x 0.5 + 0.6 x 0.2

= 0.7

The values d, and d, can be interpreted as de-
composition probabilities. Instead of having differ-
ent values of desirability (decomposition probabili-
ties) for each alternative, one for each state of
nature, we derive the expected desirabilities d, and
d?. We choose A2 because d, is larger than d,.

2.6 Value and Usage of Extracted Information

When faced with decision making under uncertainty,
we may choose to get more information so that a
better final decision can be made. If this option is
available, the decision can be delayed after the
extraction of information, allowing the decision to
be based on a more accurate information base.
However, before undertaking the procedure to ex-
tract more information, we have to make sure that
the gain achieved by more information will outweigh
the cost of obtaining it. Here, we try to establish an
absolute boundary: what is the value of perfect
information?

32 J. SYSTEMS SOFTWARE
1992; 19:27-39

S. R. Cardenas, J. Tian, and M. V. Zelkowitz

The best we can expect from experimentation is
that the experiment results will indicate for sure
which state of nature will hold. Under this case, we
can choose the alternative that gives the highest
payoff under the given state of nature. However, this
information cannot be obtained a priori to the ex-
periment. Thus, we have the expected payoff of
perfect information @:

@ = CPj x maY,,j (8)
j I

In our example, we would choose A, under S, and
choose A, otherwise, resulting in optimal payoff a:
@ = 0.3 x 300 + 0.5 x 500 + 0.2 x 200

= 380

What is the value of this perfect information? This
depends on what we were committed to originally.
For example, if we were committed to the maximin
rule with a payoff of 200, the value of this informa-
tion is 380 - 200 = 180; if the expected payoff rule
(of 280) was used, we value perfect information at
380 - 280 = 100. The value of perfect information
is the maximum we could spend to obtain the infor-
mation using a prototype.

3. APPLICATION TO SOFTWARE PROTOTYPES

Let us now consider the issue of applying the previ-
ous economic model to the problem of evaluating
the effectiveness of a software prototype. Assume
we experiment (prototype) to determine which state
of nature holds.

An ideal experiment would be like a “state-meter”
that indicates with perfect accuracy which state is
really true. On the other hand, the worst experiment
is one having results that are independent of the
state of nature. Real experiments (prototyping) fall
between these extremes. The results from prototyp-
ing depend on the state of nature, but the depen-
dency is probabilistic. Let result,, result,, . . . result,
be the possible results of the prototyping experi-
ment. Each dependency between state and result is
expressed as the conditional probability that the
result will be result, given that the state of nature is
sj.

This information will be presented in a condi-
tional probability matrix C, with a row for each
different result of the prototype and a column for
each state of nature. Each entry citj represents the
conditional probability of prototypmg result result,
given that state of nature S, holds.

Since we have the probabilities for each state
(vector P) and the conditional probability matrix C,
it is possible to calculate the probability for each
result result, of the prototype. The probability distri-

bution for prototyping results is summarized in vec-
tor Q (marginal probability distribution), where qi
represents the probability of getting result,.

4, = cc,., x P,
i

(9)

Taking into consideration the results of the proto-
type, it is possible to obtain better estimates for the
probabilities of each state (update vector P). Using
Bayes rule, we get the a posteriori distribution ma-
trix P’, having elements calculated as follows:

Note that while P is a vector, P’ is a matrix. P’ has
as many rows as results from the prototype. Each
row is an updated version of vector P. Row i gives
the probabilities of the states of nature given that
the result of the prototype is result,.

Following our example, assume that a prototype
of alternative A, is planned. The planned prototype
can give the following results:

result,: client is satisfied with the system as pre-
sented by prototype.

result,: client is not satisfied.

We first estimate the probabilities ci,, that the
results of prototyping are consistent with the true
states of nature before the prototyping experiment is
performed. For example, we estimate that if the
state of nature is S, (favorable for alternative A,
and unfavorable for alternative A,) we have proba-
bilities 0.3 and 0.7 to obtain results result, and
resuftz, respectively, from the prototype. The condi-
tional probability conditioned on states of nature is
given below:

c =
[

0.9 0.3 0.4
0.1 0.7 0.6 1

From this we can calculate the probability qi for
each result i of the prototype Q = (0.5, 0.5) and the
a posteriori distribution matrix as:

/,, =
[

0.54 0.30 0.16
0.06 0.70 0.24 1

For example, if we get result, from the prototyping
study, the new expected value and desirability for
the alternatives Al and A, are:
11, = 100 x 0.5'4 + 500 x 0.3 + 0 x 0.16

= 200
c z = 300 x 0.54 + 200 x 0.3 + 200 x 0.16

= 250
d, = 0.3 x 0.54 + 1 x 0.3 + 0 x 0.2

= 0.46
d, = 0.8 x 0.54 + 0.6 x 0.3 + 0.6 x 0.16

- 0.71

Evaluation of Prototypes

In this case, alternative A, should be chosen, since
it gives both the higher expected payoff and higher
degree of desirability.

Similarly, if we should get result, from the proto-
typing study, the new expected value and desirability
for the alternatives A, and A, are:

0, = 100 x 0.06 + 500 x 0.7 + 0 x 0.16

= 360

I' 2 = 300 x 0.06 + 200 x 0.7 + 200 x 0.24

= 210

d, = 0.3 x 0.06 + 1 x 0.7 + 0 x 0.2

= 0.72

d2 = 0.8 x 0.06 + 0.6 x 0.7 + 0.6 x 0.24

= 0.61

In this case, alternative A, is the obvious choice.
Thus the expected value and expected desirability

gains of prototyping study are:

op = 0.5 x 360 + 0.5 x 250 - 230

= 75

d, = 0.5 x 0.71 + 0.5 x 0.72 - 0.7

= 0.02

If the cost of performing this prototyping study is
less than cp = 75, this study should be carried out.
Otherwise, an immediate decision should be made
(see sections 2.1 and 2.51.

3.1 Other Decision Rules

Choice under uncertainty is currently a field in flux.
Economists, decision theorists, and psychologists are
trying to develop better models for this important
area. Several decision rules (usually very complex)
have been defined; see reference [14] for an account
of problems and proposed solutions.

We do not define an automated process to mimic
the behavior of a human being when faced with a
decision. Our approach is more prescriptive (we
suggest a software alternative in terms of some
criteria) than descriptive (we do not claim to suggest
the same alternative that a given person will pick).

Our goal is to provide support to the decision
maker. The support comes in the form of informa-
tion: the expected payoff for each alternative; the
expected utility for each alternative; the probability
for each state of nature and the ranking of the
alternatives defined for each state of nature; what to
prototype to reduce uncertainty.

J. SYSTEMS SOFIWARE 33
1992; 19:27-39

3.2 Decision Process Algorithm

To summarize, we state our design approach via the
following steps:

Identify alternatives A;.

Identify states of nature S,.

Evaluate the monetary payoff for each alternative
under each state of nature. Build the matrix Y =

[Yi, jl.

Use the decision process as a tool to select an
alternative (Figure 1.1

There are three major issues to be resolved in
deriving the payoff matrix Y: (I) we must identify all
possible alternatives; (2) we must identify all possi-
ble states of nature; and (31 we must evaluate the
payoffs of choosing each alternative under each state
of nature.

A first but crude approximation for defining the
states of nature is to consider for each alternative
that the world will be in only two possible states-it
will be favorable or unfavorable for that alternative.
Then if we have alternatives A, and A,, then we
can define four states of nature: S, favorable for
both A, and A,, S, favorable for A, but unfavor-
able for A,, etc.

When each alternative defines a different soft-
ware solution, it is convenient to consider some
basic predicates that define the states of nature. We
have already classified prototypes as falling into three
categories: client needs, system needs, and feasibil-
ity. Then, for each solution i we will assume the
predicates:

cli,: is the client willing to pay for the software
product?

env,: are the interactions between system and envi-
ronment satisfactory?

feai: is the software concept feasible with the avail-
able resources (people, time, tools, etc.)?

A state of nature is defined as one of the possible
combinations for the values of all the predicates. A
methodology to identify the relevant states of nature
can be summarized as follows:

1.

2.

Identify which types of predicates are relevant
(e.g., if feasibility is assured, then only predicates
for client and environment are considered).

Construct the basic set of states of nature in
which each state is a different combination of the
values of the predicates.

34 J. SYSTEMS SOFTWARE
1992; 19:27-39

S. R. Chdenas, J. Tian, and M. V. Zelkowitz

Input:

M:Payoff matrix of alternatives X states of nature

output:

win:Natural, represents the index of winning alternative

Constants:

alte = number of alternatives, number of rows in Y

stat = number of states of nature, number of columns in Y

Q = max(minyi,j)
i j

yo = min Yi,j
If

Y* = ~j maxYi,j

mpc = minimal prototype cost

Variables:

risk

resu

p r
act

pay

X

c

E

Q
P

P’

sav

0

Boolean, true if risk aversion is significant

Natural, number of results for current prototype

Natural, result of prototype experiment

Natural, accumulated cost from prototyping

value expected from alternative

Prototype definition

Matrix resu x stat of probabilities

Matrix alte x stat of probabilities

Vector resu elements, of probabilities

Vector stat elements, of probabilities

Matrix resu x stat of probabilities

maximum savings due to the use of prototype

optimal payoff

Functions:

Proba(x:payom = Decomposition probability of x in terms of yo and y*

Experiment(x :prototype) = Result of the prototype x (index of result)

Defineproto = Prototype to help to determine state of nature

Cost(x : prototype) = Cost of prototype 2

Numres(x : prototype) = No. of different results of prototype x

Figure 1. Decision process(Data).

Evaluation of Prototypes J. SYSTEMS SOFTWARE 35
1992; 19~27-39

BEGIN
/* If no further information is affordable since any experiment will be more expensive than
the information obtained, use mazimin for an immediate decision. *I

if y* - R < mpc then win c- alternative i, where Vj(yi,j 2 n>;
else

P + lpi] where pi is first estimation for probability of state i;

mid+- 9;

/* Check if the difference between the largest and the smallest payoffs is significant

enough to make risk aversion important */

if Proba(mid) x 0.5 then

risk + false;

win * i, where rnaxi(z_+ yi,j x pj);

pay +-- Cj Ywwin,i X Pji

else

risk c trzle;

E + [ei,j], where ei,j = ~ra~a(yi,~);
D +- [di], where di = cj pj x ci,j ;
win +- j where dj = maxdi;

pay - Cj Ywywin,j x Pj ;

x +- Defineproto;

act t- Cost(x);

G? i- Cj Pj X maxi Yi,j ;
sav +-cP--pay-act;
/* Cost/benefit analysis: While the cost of prototyping is less than the value of the

extracted information, obtain new information defining and using prototypes */

while sav > 0 do

rem +- Numres(x) ;

C + Ici,j] f where ci,j cond. prob. of result i given state j;

Q + [%I, where Q; = Ci G,j X pj ;
P’ s-- Cp:,j], where pi,i = ci,j x pj/qi ;
pr + Ezperiment(z);

P + [pi] where pi = P;?,~;

x +- Defineproto;

ace 4-- act + Cost(z) ;

Tft,i% PP&maxi W,j ;

D +- idi], where di = cj pj x ei,j ;
win + j where dj = maxd; ;

pay + xi &in,j X Pj ;

else

win e i, where max;(xj y;,j x pj);

pay + Cj Ywin,j X Pj ;

sav +Q-pay-act;

END.

Figure 2. Decision process (Algorithm).

36 J. SYSTEMS SOFTWARE
1992; 19:27-39

Identify dependencies between predicates. The
dependencies are of the form predicate xi of
alternative i is true if predicate yj of alternative j
is true. For example, we may know that if the
client likes alternative i, it is sure that the client
also likes alternative j.
Delete impossible states from the set. For each
relationship found, delete the states violating the
relationship.

Example. Assume that there are two alternatives
A, and A, for the software that implements a user
interface. Assume that we are sure that our pro-
gramming team can build each of them within the
time and resources available (e.g., feasibility is as-
sured for both alternatives). Therefore, the only
predicates remaining are:

cli,, cli,, enLll, em2

The possible states of nature are:

BS, = cli, A cl, A em, A em2

BS, = cli, A cli, A enu, A 7 em2

BS, = cli, A cli, A 7 em, A em2
. . .

BS,, = 7 cli, A 7 cli, A 7 em, A 7 em’,

Since the alternative A, is similar but more “user
friendly” than A,, we consider the following depen-
dency:

cli, * cli,

We also consider that the performance characteris-
tics of A, are inferior to those of A,; therefore, we
add the dependency:
em2 - em,

The resulting set of states (after deleting the states
violating the dependencies) is:

s, = c/i, A cli, A em!, A em2

s, = cli, A cli, A em?, A 7 em,

s, = c/i, A c/i, A 7 em, A 7 eni?2

s, = -T cli, A c-ii, A em, A em2

s, = -T cli, A cli, A erw, A 7 enLlz

s, = 7 cli, A cli, A -I em,>, A 7 em2

s, = 7 cli, A 7 cli, A em, A encz

S, = 7 di, A 7 cli, A em!, A 7 enu2

s, = 7 cli, A 7 cli, A 7 enu, A 7 entt2

3.3 Derivation of Payoff Matrix Y

Typically, each alternative will be associated with
the construction of a different software solution.
Depending on the state of nature that holds, the

S. R. Cardenas, J. Tian, and M. V. Zelkowitz

software product will become an effective solution.
This degree of effectiveness determines the payoff
associated with the combination alternative/state of
nature. Then the questions that determine the nu-
merical values are: How much does it cost to con-
struct each different software solution (each alterna-
tive)? Assume we are in situation x (or in other
words, assume that the state of nature is x1, then
how much is the client going to pay for the software
solution? How much is it going to cost to adapt it to
the environment? How much is going to cost to
choose and build another solution if the solution we
picked initially was unfeasible?

In general, the assessments we made above may
not be very accurate or precise. Iterative procedures
may be taken to improve the estimate. But to make
the description of the decision process simple, we
assume that these are accurate.

Note that if there are dominated alternatives, they
should be deleted in our initial analysis. An alterna-
tive Ai is dominated by another alternative A, iff
for all states of nature Sj:

y1.1 5 Yk., (11)

(i.e., the payoffs for A, are greater than those for Ai
for all states of nature). For example, if there were
another alternative A, in the example of section 2,
equation 1, with payoffs of (200, 200, 1001, it would
have been eliminated because it is dominated by A,.

3.4 What to Prototype

The decision process function Defineproto defines a
prototype according to the probability distribution of
the states of nature. Here we give some guidelines
for what to prototype to obtain the desired informa-
tion.

Each state of nature si is represented by a boolean
expression of the form:

pred,,,, Apred,,, A . . . Apred,,.-,

where each predi, j is the value of a predicate j for
state of nature i. Examples of predicates are client
likes alternative 2, alternative 3 is feasible, alterna-
tive 4 interacts properly with environment.

Each state of nature has values true or false for IZ
predicates.’ Each state of nature can be represented
as a binary number, where each bit corresponds to a
predicate (1 for true and 0 for false). We translate
the question of “what to prototype?” to “what bits
to ask for in order to know which state of nature

* Therefore, the maximum number of states of nature is 2”.

Evaluation of Prototypes

holds?” Making the simplification that the cost to
ask for any bit is similar, the following methodology
can be used:

Calculate the probability that the bit position i
will have a 1:

JfU,
one, = c ph x b,,,

h=l

where pk is the probability for state of nature S,,

and b,,, = 1 if pred,, i = true and b,,i = 0 if

pred,, I = false.
For each bit position i calculate the absolute
difference between 0.5 and one;.

IO.5 - one, I

This number gives a measure of the information
obtained by asking for bit position i. Differences
close to 0.5 correspond to positions of which
values are almost known (a high probability ei-
ther of 1 or 0). Differences close to 0 correspond
to positions of which we are more uncertain,
since the bit has almost equal chances of being 1
or 0.
Obtain the bit position with the minimum value
of the difference calculated in the previous step.
Call that position pos. We gain more information
asking for this bit than for any other one.
The kind of prototype is determined by the predi-
cate in position pos. Each predicate belongs to
one of the categories: cfi, mu, fea. Therefore, the
prototype is going to be presented to client, to
environment, or will be a feasibility prototype
according to the category of the predicate in
position pos. Each predicate is associated with an
alternative. The alternative associated to predi-
cate in position pos is the one that is going to be
prototyped. A creative (nonmechanical) decision
remains: which attributes of the alternative (func-
tionality, performance, reliability, etc.) have to be
prototyped in order to decide the validity of the
predicate pos?

A prototype defined using this methodology has
two results: the predicate pos is true, or it is false.
The designer of the prototype must estimate the
probability that the prototype will answer according
to the actual value of the predicate. This probability
will be used to construct the conditional probability
matrix C (see section 2.6).

Let probtrue be the probability that the prototype
experiment answers “predicate true” given that the
predicate is true. Let probfalse be the probability that
it answers “predicate false” given that the predicate
is false.

J. SYSTEMS SOFTWARE 37
1992; lY:27-30

If Sj is a state in which the predicate is true, then
the values of C are defined as follows:

cz.1 = 1 - prob,,uc

If Sj is a state in which the predicate is false, then

Cl., = 1 - probfa,,c

c2,, = probfa15e

Example. Assume that the vector P for the states
of nature of the example of section 3.2 is:

P = [0.3 0.2 0.1 0.1 0.08 0.07 0.05 0.05 0.051

The values one, for each bit position are:

one, = (p, +p2 +p3) x 1 + (p4 + .” +pq) x 0 = 0.6

one2 = (p, + .‘. +ph) x 1 + (p, + p8 + p,,) x 0 = 0.75

one3 = pI + pz + p4 + ps + p7 + px = 0.78

one,=p, +p,+p,=O.45

The differences 10.5 - onei are (0) 0.1, (1) 0.25,
(2) 0.28, and (3) 0.05. The predicate with smallest
difference is position (31, that is enz’,. From this
predicate we know that the alternative to prototype
is A, and what is needed is to test the interactions
of A, against the environment.

Assume that a prototype definition was designed,
and the designer estimated that the prototype will
determine the value of predicate erzlr, with an accu-
racy of 95%. Now, we assign values to the elements
of matrix C. For S,, S,, S, the predicate enLlz is true
and we have for j = 1,4,7 as follows:

Cl., = 0.95; C?,, = 0.05

for the rest of the states em:, is false, therefore for
j = 2,3,5,6,8,9:

Cl,, = 0.05; Cl,, = 0.95

3.5 First Estimation of the Vector P

In an earlier section we defined a state of nature as
one of the possible combinations for the values of a
set of predicates. A first approximation to derive the
probabilities for the states of nature is based on the
assumption that the predicates are essentially inde-
pendent. We only consider the dependencies be-
tween predicates identified during the definition of
the states of nature (step 3 of the methodology in
section 3.2). With this simplification we define the
following methodology:

1. For each predicate used in the definition of the
states of nature, estimate the probability that the
predicate will be true.

38 .I. SYSTEMS SOFTWARE
1992; 192-39

2. Each state of nature Si is represented by a
boolean expression of the form:

pred,,, Apred,,, A . . . r\pred,,.-,

Assign a probability to each predj,j as follows:

Look for a dependency of the form
predicate, =. predicatej

from the dependencies identified during the defi-
nition of the states of nature. If a dependency is
found and we have that
pred,, k = true

then the probability associated to pred,,, is 1.

if pred,, j = true, then use the probability esti-
mated m step 1.

if pred,. j = false, then use l-probability estimated
in step 1.

-. The probability pi of state of nature Sj is the
product of the probabilities associated with each
predi, ;.

Example. Apply the methodology to estimate P

for the states of nature defined in the example of
section 3.2. The probability that each predicate will
be true was estimated as 0.7 for cli,, 0.8 for c/i,, 0.9
for enu,, and 0.6 for enuz. To calculate the products
we must consider the dependencies
cli, * cli,; envz * em,

The values for each pi are:
p, = 0.7 x 1 x 1 x 0.6 = 0.42

p2 = 0.7 x 1 x 0.9 x (1 - 0.6) = 0.252

p3 = 0.7 x 1 x (1 - 0.9) x (1 - 0.6) = 0.028

p4 = (1 - 0.7) x 0.8 x 1 x 0.6 = 0.144

ps = (1 - 0.7) x 0.8 x 0.9 x (1 - 0.6) = 0.0864

ph = (1 - 0.7) x 0.8 x (1 - 0.9) x (1 - 0.6) = 0.009

p, = (1 - 0.7) x (1 - 0.8) x 1 x 0.6 = 0.036

p8 = (1 - 0.7) x (1 - 0.8) x 0.9 x (1 - 0.6) = 0.021

pg = (1 - 0.7) x (1 - 0.8) x (1 - 0.9)

x (1 - 0.6) = 0.002

Note that Cp, = 1. This estimation of P may be
used as input for the decision process (section 3.2).
It is important to take into account that this first
estimation will be perfected iteratively by using pro-
totypes.

The first step of the methodology derives the
probabilities for each predicate to be true. A mini-
mum constraint that those probabilities must follow
is: If there is a dependency of the form:
predicate, = predicate,

then the probability that predicate, is true is greater
than or equal to the probability that predicate, is
true.

S. R. Cardenas, J. Tian, and M. V. Zelkowitz

4. CONCLUSION AND PERSPECTIVE

To reduce the risks of software development, risk
techniques for assessment and reduction from other
disciplines can be applied. The adaptation and re-
finement of these techniques form an integral part
of a quantitative theory of software management. In
this article we briefly surveyed some concepts from
decision theory, defined a model for a software
prototype, and presented a method for applying de-
cision theory to the problem of evaluating such
prototypes.

The goal is to provide support to the software
manager. The work presented here is an attempt to
describe the decision process in a way that clearly
separates the mechanical activities from the ones
that require subjective judgement. While we have
presented a mathematical model of the process, its
application still depends on some subjective risk
determinations by management in order to deter-
mine the appropriate probabilities that are needed
by the model. We have introduced methods to help
generate the input data for the decision process,
namely the states of nature, their probabilities, the
payoff matrix, and the prototype definitions.

In addition, we have proposed a method that
helps the manager determine which form of proto-
type might provide the maximum information for
making a decision. We have classified prototypes
according to what kind of uncertainty they help to
reduce-client needs, environmental needs, or pro-
ject feasibility.

This model needs further refinement and evalua-
tion of its practicality. While we believe that the
overall approach of applying risk reduction strate-
gies to software management is sound, the exact
details need to be worked out. To that end, a proto-
type tool that applies the model developed here has
been implemented and is being evaluated experi-
mented with [151.

ACKNOWLEDGMENTS

This work was supported by Air Force Office of Scientific

Research grant So-0031 and National Science Foundation

grant CCR-8819793 to the University of Maryland.

REFERENCES

B. W. Boehm, Software Engineering Economics, Pren-
tice-Hall, Englewood Cliffs, New Jersey, 1981.
R. Charette, Software Engineering Risk Analysis and
Management, McGraw-Hill, New York, 1989.
M. Willis, The 10 Common Mistakes to Avoid with
your Money, Money Magazine 19, 84-94 (1990).
B. W. Boehm, A Spiral Model of Development and
Enhancement, Software Eng. Notes 11, 22-42 (1986).

Evaluation of Prototypes

5.

6.

7.

8.

9.

10.

R. Balzer, N. Goldman, and D. Wile, Operational
Specifications as the Basis for Rapid Prototyping,
ACM Sof&lare Eng. Notes 7, 3-16 (1982).
I3. W. Boehm, T. Gray, and T. Siewaldt, Prototyping
vs. specifying: A multi-project experiment, in Proceed-
ings of the 7th ACM/IEEE international Conference on
Software Engineering, Orlando FL 1984, pp. 433-484.
R. Buddle, K. Kuhlenkamp, L. Mathiassen, and H.
Zallighoven, Approaches to Profo~pi~g, Springer-
Verlag, New York 1984.
S. Hekmatpour, Experience with Evolutionary Proto-
typing in a Large Software Project, ACM Software
Eng. Notes 12, 38-41 (1987).
M. M. Tanik and R. T. Yeh, Rapid Prototyping in
Software Development, IEEE Comp. vol. 22, No. 5,
9-10 (1989).
S. Crirdenas and M. Zelkowitz, Evaluation criteria for

11.

12.

13.

14.

15.

J. SYSTEMS SOFTWAKE 39
1992; 19:27-39

functional specifications, in Proceedings of the 12th
ACM/IEEE International Conference on Software Engi-
neering, Nice, France 1990, pp. 26-33.
F. P. Brooks, No Silver Bullet, Essence and Accidents
of Software Engineering, IEEE Comp. vol. 20, No. 4.
10-19 (1987).
W. Nicholson, Microeconomic Theory, 3rd cd., The
Dryden Press, Orlando, FL 1985.
J. W. Pratt, H. Raiffa, and R. Schlaifer, ~~froduct~on to
Stat~.~tical Decision T~ze~~, McGraw-Hill, New York,
1965.
M. J. Machina, Choice Under Uncertainty: Problems
Solved and Unsolved, J. Econ. Perspec. I, 121-154
(1987).
S. Cgrdenas and M. Zelkowitz, A Management Tool
for the Evaluation of Software Designs, IEEE Trans-
actions on Software Engineering, 17,9 961-971 (1991).

