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Abstract 
Functional correctness is a technique for deriving a program 
and proving that this program meets its specifications. Both a 
program and its specifications are viewed as &nctions. Using 
techniques based upon symbolic execution and denotational 
semantics, a proof methodology has been developed. This 
current paper extends this theory of functional specifications 
which then permits us to model various life cycle methods in a 
consistent manner. Given several possible implementations for a 
given specification, we then develop techniques for evaluating 
one implementation over another. 

Keywords: Evaluation; Functional correctness; Program 
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1. Introduction 

During the past fifteen years, Mills and others have been 
developing a theory of functional program design [Mills75, 
Mili86, Gannon87, Mills87]. A program is specified as a func- 
tion from one domain to another and a series of steps were 
developed for deriving the source program from this 
specification. A proof methodology was developed for formally 
showing that a given program is correct with respect to its for- 
mally defined specifications. 

The purpose of this current paper is to further extend this 
theory into the realm of requirements analysis. By extending 
the definition of program correctness, we develop a framework 
for discussing life cycle models and then develop an evaluation 
procedure to be able to compare two different program solu- 
tions for a given specification. Although it depends upon the 
designer subjectively assigning weights to certain attributes of 
the specification, it does permit an objective mechanism for 
evaluating competing solution strategies. 

Section 2 of this paper will briefly summarize the impor- 
tant parts of the functional correctness methodology. Section 3 
will describe our extensions to this theory and Section 4 will 
give examples of its applicability. 

2. Functional Correctness 

In this section we briefly summarize relevant parts of the 
theory of functi nal correctness. A speci’cation f is a function. 
A box notation II is used to signify the function a given string 
of text implements. If character string cy represents a source 
program that implements exactly f, then cy Cl =I, and we state 
that cx is a solution to J 
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Sequential program execution is modeled by function com- 
position. If a sequence of statements s = sI;sp; en, then s cl 
= GJ o . . . o L] = E] ( ( L] ) ) ). Using techniques 

from denotational semantics, each statement s is a function 
from a program state to another state. Each program state is a 
function from variables to values and represents the abstract 
notion of data storage. Symbolic trace tables are used to derive 
the state functions for if, while and assignment statements. 
Further details are not relevant here, and the reader is directed 
to [Mills87] for more information on this technique. 

‘P rogram design is accomplished by converting a 
specification function f, written in a LISP-like otation, into a 
source program 0, and then showing that o 21 = f The 
specification J is called the abstract function and the program cy 
is called the concrete design. 

A major task is the creation of data types for these func- 
tions to operate on. The concrete objects that Q manipulates 
consists of the primitives of the source programming language, 
while the specification foperates on an abstract representation 
of that data. Thus part of the process of showing the 
equivalence of f and [] cy must be to show the equivalence of the 
abstract and concrete representation of the data. This is done 
via the commuting diagram. 

Let rd be a representation function, a function that maps 

all objects in a state, except d, into the same object, but maps 
concrete object d into its abstract representation. If a is an 
abstract specification for a function that operates on object d, 
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For example, the concrete realization for the abstract 
notion of a rational number can be a pair of integers z num, - 
and z-denom. The representation function rrolionol would map 

each variable into itself except that it would map the pair 
(z-num,x-denom) into the rational number z-num/z-denom. 
(See [Gannon87] for more details on commuting diagrams and 
representation functions.) 

Given this functional model, we can then prove the basic 
theorem for functional correctness: 

Theorem: Functions/ correctness: Program p is correct with 
respect to specification function j if and only if f c m 

Proof: (See [Mills87, pg. 3361.) 

. 

3. Specification extensions 

An analysis of the commuting diagram of the previous sec- 
tion reveals two aspects in our current knowledge of program 
specifications: 

(1) Specifications are in terms of functionality only. However, 
large systems have other considerations: cost to build, size 
and speed performance criteria, reliability criteria, etc. 
Can the model be extended to include these? 

(2) With functional correctness, we might have several (actu- 
ally many) feasible solutions to a given specification and 
any one of them might satisfy our specification con- 
straints. Generally we usually under specify a set of 
requirements and any program that meets those minimal 
requirements is deemed acceptable. 

This latter property can be made clearer via a simple 
example. A specification function a might say to sort an array 
of up to 100 numbers and a concrete realization A might sort 
up to 1,000 numbers. We would intuitively say that A meets 
the specification a (or is correct with respect to its specification) 
since any data in the input domain of a (i.e., an array of up to 
100 numbers) will be sorted even though A operates on a larger 
domain (i.e., arrays of 101 through 1,000 numbers). The con- 
crete realization A is also specified by a more explicit 
specification that said to sort 1000 numbers. 

Therefore, given a basic specification, there generally exists 
a set of specifications, each being different from the others and 
each satisfying the original basic specification. Each one could 
possibly lead to different correct implementations. We would 
like to be able to understand this set of specifications and to be 
able to compare them in order to determine which one from the 
set actually best meets the user’s needs. 

3.1. Functionality 

Let PU be the problem universe of specification functions. 
That is, if f is a specification function, f E PU. 

Let SU be the solution universe. SU represents algorithm 
designs. For example, if f E PU is to sort an array, then 
bubble-sort, selection-sort and quick-sort would all be members 
of SCJ. The problem is to determine how well each of these 
actually implements a given specification. We will do this by 
extending the defintion of what is a correct solution. We will 
define a scaling function which can be used to evaluate potential 
implementations, show that it includes the previously given 
definition of correctness, and then extend it to include other 
attributes needed by a given program solution. 

Def: Scaling function: Assume there is a function S such that if 
aCPlJ, then S(a)E[O..l]. 

Scaling function S determines how good a specification we 
have. If S(a)=O, then we have a “useless” specification and if 
S(a)=1 then our specification is optimal and cannot be 
improved. Rarely, however, will S have either extreme value. 
For example, in the sorting example given previously, if our 
“goodness” criteria is to sort as large an array as possible, if N 
is the array we can sort by function j, and K is the maximum 

size of memory in our machine, then S(f,) = N/K is one possi- 

ble scaling function. 

For a given scaling function S, we would like to compare 
two different specifications in order to determine (relative to S) 
whether one is better than the other: 

Def: Solves: Let A and B be members of PCJ, and let S be a 
scaling function. We say that A solves$ B if and only if 

S(A)&‘(B), i.e., A is an improved specification to B. S will be 
omitted if it is understood which scaling function is used. 

Given a program p, we would like to determine a 
specification p’that exactly implements p. 

Def: Specifies: Let ~EPU and PESU be the abstract function 
and concrete s lution and let r be the data representation func- 
tion r o p G el P o r. Define the exact specification P’ for P as 
that function such that r o P’ = [A o r. 

In general we cannot explicitly specify for program P the 
exact formulation of P’. However, we do not need its exact 
definition when applying this model in many applications. It is 
convenient, nevertheless, to consider it when we use the model. 

For example, if the representation function r is one-to 
one, as most applications are (e.g., each object transformed by 
the program represents a different abstract object defined by r), 
then we can define P’ as follows: 

P’ = <(x,y)l for all uedomaira( [d ), 
x=f(u), y=r( [FJ (u))3. 

P’ is our required specification as shown by the following: 

Theorem: Given specification f, program PESU and one-to- 
one representation function r such that r o f& [A o r, then 

ro P’=[FJ 0 r. 

Proof: First show r o P’ C [d o r. Let (m,n)E r o P’. Then 
n=r o P’(m =P’(r(m)). But r(m)Edomain(P’) means for some 

C’l @domain( P ) we have r(m)=r(q) and since r is one-to-one, 
we have q=m. Since P’ is a function, n=r( [A (m)). There- 
fore, (m,n)E [A o r or (m,nk [d o r. The proof works simi- 
larly to show that [Id o r C r o P’, 

. 

With our concept of exact specifications, we can now 
extend the previous definition of functional correctness: 

Deli Correctness: Solution X is correct with respect to 
specification function R and scaling function S if and only if X’ 
solvess R. 

It is important to show that we have not deviated from 
the previous definitions in the functional correctness methodol- 
ogy. Therefore, we need to show that our definition of correct- 
ness is consistent with previous formulations. We give this as 
the following theorem: 



Theorem: Given specification function R, and solution P then 
R c [A if and only if f or an appropriate scaling function S, P’ 
sohess R. 

Proof: Assume for specification function R and program P that 
we have R c [a (i.e., th e original functional model definition 
of correctness). Then if we define scaling function S to be: 

S(X)=1 if R C [A else 0 

We then have S(P’)=l and P’ solvess R (i.e., our new definition 

of correctness). Similarly, by our definition of S, the only P’ 
which solves R is one where R c [d and hence is correct with 
respect to the Mills’ theory. 

. 

Thus for simple scaling functions, we have a theory con- 
sistent with the existing model of functional correctness. How- 
ever, by extending the concept of correctness, our scaling func- 
tions allow greater lattitude in determining characteristics we 
want in “correct” solutions. 

3.2. Other attributes 

As stated previously, functionality is insufficient as the 
only specification criterion. There are at least three other 
classes of attributes: performance (e.g., size, execution speed, 
disk usage), reliability (e.g., fault tolerance, accuracy, safety) 
and developmerat (e.g., cost to build, time, personnel costs). We 
extend the definition of a specification function to include a vec- 
tor B of basic specifications, each Bi is an attribute of the 

specification. Thus PU is a set of vectors. 

Similarly, we extend S to be a vector of scaling functions. 
If XEPU and yEPU then z solvess y if and only if, for all i, 

si(xpi(yJ. 

Given a specification vector f, a scaling vector S and feasi- 
ble rograms P and Q such that both r o fC [d o r and r o f 

c I3 o r, we would like to determine which solution is prefer- 
able. Obviously, if P’ solves Q’, or if Q’ solves P’, then our 
choice would be obvious. However, such choices rarely occur in 
practice. All too typically, one solution might excel on some 
attribute (e.g., execution speed) while the other might excel on 
another (e.g., low cost to build). Comparing the relative impor- 
tance requires a further extension to this model. 

Def: Constraint set: While there are many ways to compare 
two vectors of values, we will initially use a relatively simple 
sum of weights measure. If we have n attributes, let S be a vec- 
tor of scaling functions. Consider a third vector of weights W 
such that each wiEIO..l] and Cwi = 1. We will call <S, W> 

the constraint set for a specification. 

Def: Performance level: Given a basic requirement B and con- 
straints <S, W> where S is a vector of scaling functions and W 
is a vector of weights, define the performance level PL of B rela- 
tive to <S, W> as PL(B,S, W) = C (wi * Si(BJ). 

Given a basic specification B and a constraint set 
<S, W>, we can now discuss the relative merits of alternative 

solutions. If z and y are both to be feasible designs, then, at 
the least, they must both satisfy the specifications i.e., we must 
have both z’ solvess B and y’ solvess B. In addition we would 

like to use the solution with the greater performance level. We 
call this the improves relation. 

Def: Improves: Given a basic specification B E PU, constraint 
set <S, W> and designs z and y such that z,y E SU, we state 
that 2’ improves y’ with respect to <B,S, W> if and only if 

(1) x’ solvess B and y’ solvess B and 

(2) PL(x’, s, W) > PL(Y? S, WI. 

Note that in this paper we are using a very simple sum of 
weights measure in order to compute the performance level. we 
recognize the simplicity of this approach; however, even with 
such a simple model we believe that we can achieve interesting 
results. We plan to investigate other definitions later. For exam- 
ple, we can plot each of the attribute values on a circular graph 
and then look at the area covered by each potential solution 
(e.g., similar to Kiviat graphs for system performance evalua- 
tion). This and other approaches will be studied. 

What is important to realize, however, is that our 
definition of improves depends only upon a definition of perfor- 
mance level to compare two solutions, not on the details of how 
the two vectors are compared. What follows will remain true 
regardless of the underlying metric used in the comparison. 

3.3. Properties of these relations 

Using the previous set of definitions, we can prove several 
properties of these functions. Their proofs follow easily from 
previous definitions. 

1. B solves B. 

2. B improves B is false 

3. If A solves B and B solves C then A solves C. 

4. If A improves B and B improves C then A improves C. 

It should be noted that if A improves B, it is not necessarily 
true that A solves B. 

An important point to make here is that PU, the problem 
universe, is just the set of basic specifications. The constraint 
sets <S,W> are not part of PU. Given a specification in PCJ, 
many other specifications (which map to specific solutions in 
Su) have similar attributes, and depending upon need (as 
defined by the user via the constraint set) different basic 
specifications might be optimal. 

An example using sorting explains this better. In order to 
sort an array, there are a sequence of potential specifications B,, 

Be, B,, where Bi specifies a sort of i elements. If the require- 

ment B is to sort 100 numbers, but the user allows for solutions 
up to memory size (e.g., up to k elements), the user can define 
the scaling function S to be: 

S(B,) = i/k for ie(lOO..k] 

S(B,) = 0 for ie[1..99, k+l,k+2, . ..] 

Given any two solutions z and y in SU that satisfies this 
requirement, if z sorts m elements and y sorts n elements and 
m>n with m, n E [lOO..k], then 2 solves B, y’ solves B, and z’ 
improves y’. Of course, this simplistic example ignores impor- 
tant attributes such as execution time or memory usage which 
must also be considered and might affect which solution is actu- 
ally more desireable, but it does show the relationship among 
an entire family of similar basic specifications. In Section 4, 
more realistic examples are given. 
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4. An Evaluation Framework 

The extensions to the functional correctness theory of the 
previous section permits us to apply it to various specification 
problems. In this paper we give three different examples of its 
use in order to show the different classes of problems that this 
method can be applied to: (1) We use it to define the concept of 
a software prototype, and then define a life cycle model to sup- 
port prototyping. We can define other life cycle processes simi- 
larly. (2) We give an example of a specification and give alter- 
native feasible designs. We use our performance level criteria to 
determine the best solution from among the available ones. (3) 
We apply the methodology to a systems engineering problem 
where we determine which hardware/software solution best 
meets some given constraints, 

4.1. Prototypes 

A prototype is a preliminary development of a product for 
the purpose of evaluation. In order to be effective, it must 
model some aspect of the final product, but often fails to model 
others. For example, a software prototype will often have func- 
tionality inferior to the final product, but will be constructed at 
greatly reduced cost. 

We can model a prototype from our basic specification 
methodology by considering the projection of our k-length scal- 
ing function to a lesser-dimensioned scaling function of fewer 
attributes. 

Def: Projections: Let v be an n element binary vector of O’s 
(false) and l’s (true), and let X be an n-element vector. Define 
a projection P”(X) to be those elements in X corresponding to 

l’s in v. The dimensionality of the projection (and hence the 
number of attributes we are considering in our prototype) 
corresponds to the number of l’s in vector v. 

Def: Prototype: Let B E PU be a basic specification and let 
<S,W> be a constraint set. XESU is a prototype of B if and 
only if there is some binary vector v such that P,(X’) solvespls, 

P”(B). We write this a.s X’ prototypesus B. 

Note that the essential part of this definition states that 
X’ solves B for some subset of attributes, so that the prototype 
excels at some attribute needed in the final product, but other 
attributes probably fail. The need to satisfy some specification 

attribute is an important property of prototyping, which we 
characterize as the feasibility property. 

Def: unfeasible: We state that an implementation is unJeasible 
if and only if for a given specification and constraint set 
<B,S, W>, there is no XESU such that X’ prototypes B. That 
is, if we cannot solve B on a subset of its attributes, there is no 
way to solve it on all its attributes, 

Given this definition of prototyping, we can now define a 
method of software development based upon prototyping. The 
spiral model [Boehm88] is one such example. 

Def: Spiral model life cycle: The spiral model is based upon the 
following process algorithm: 

(1) Develop an initial requirement and constraint set 
<B, s, w> 

(2) using some method, find some B, such that BI’ prototypes 

B. 

(3) Apply risk reduction in order to determine whether to 
continue development or terminate the project. If the result 
is to continue, then: 

(3a) Generate a new Bj+, such that Bi+, ’ prototypes B. 

(3b) Check if P(B,+, ‘) improves P(B,‘). 

(3~) If (3b) is true, set i:=i+f else discard prototype Bi+,. 

The algorithm works by generating successive prototypes, 
and ideally, each one is an improvement over the previous one 
with the process converging on a solution. If not, then step (3~) 
says to ignore that prototype and try an alternative strategy at 
that point. The crucial part of the algorithm is step (3). The 
system architect needs to know when to continue or terminate 
the process (e.g., out of funds, development time excessive, solu- 
tion is unfeasible). Since the unfeasibility of any solution is 
generally unknown, the risk reduction heuristic is not an exact 
algorithm. 

Modified improves relation 

It is practical to distiguish between two kinds of attri- 
butes: critical and non-critical. The non-critical attributes are 
those which can be absent of a solution to the problem. That is, 
if position i of basic requirement B corresponds to a non-critical 
attribute, then the vector B (basic requirement) is defined such 
that Si(BJ = 0. It should be pointed out that non-critical 

requirements can still make a solution more desirable. Consider 
solutions z and y and assume that both are identical except that 
z provides non-critical attribute i in some degree and y does 
not. That is: 

Sj(XJ > 0 
S;(yJ = 0 

Clearly, since both are solutions, we have that x improves y. 

A critical attribute has an associated critical value. Any 
proposed solution should have at least this critical value for the 
attribute. Again, the critical values are stored in the basic 
requirement, and then, if position j of basic requirement B 
corresponds to a critical attribute, 0 < Sj(Bj) < 1. Any pro 

posed design is considered as a solution if it provides this criti- 
cal value for the attribute. (This is guaranteed from the 
definition of relation solves.) In general, apart from this distinc- 
tion, critical attributes will have a larger weighting factor in its 
performance level than non-critical attributes. 

A modification to the relation improves allows a greater 
distinction between critical and non-critical attributes. Let v be 
a projection vector with l’s corresponding to the critical attri- 
butes. 

Def: Modified improves relation. Given a basic specification 
BEPU constraint set <S,W>; projection vector v of critical 
attributes; and designs z and y such that z,y E SU we state that 
2’ improvesv y’with respect to <B,S, Ii’> if and only if 

(1) x’ solvess B and y’ solvess B 

(2) PL(x\S,W) > PL(y’,S, W) 

(3) 5’ prototypes” s , Y’. 

4.2. Software design example 

As shown previously, given a basic specification, there are 
usually multiple programs that can implement that 
specification, but from the user’s perspective, some solutions 

29 



may be more desireable than others. In the example that fol- 
lows, a basic sort function is specified. Five alternative applica- 
tion areas are given (labeled P,, P5), each one specifies a sort 

program under slightly different constraints. Simply by chang- 
ing the constraint set, we can show that different solution algo- 
rithms are more optimal for each such problem specification. 

Basic Specification 

The following vector (B,, . . ..B.) defines the attributes we 

want all 5 solutions to possess. These can be considered to be 
the minimal set of attributes we need. The constraint set will 
define an evaluation procedure to show how each feasible 
algorithm meets or exceeds this specification: 
attribute1 - Functionality- What the program is to compute. 

B,(z)=y. Ordered(y) and y = Permutation(z). 

attribute2 - Average execution time. B,=50 N IogN for sort 

input of size N. 

attributes - Worst case ezecution time. B,=20 N ‘. 

attribute4 - Space used for data. B4=.2N. 

attribute, - Stability Is the data reordered for equal keys?. 

B5= false. (Stability is not required.) 

attribute6 - Source program size- Basic algorithm size. 

B,=50. 

Problem specifications 

Given the above basic specification, we now give 5 similar 
applications of sorting. The 5 application areaS are: 

P,. Execution times are most critical and space is somewhat 

important. Stability and source code size do not matter. 
P,. This is similar to PI except stability of the algorithm is 

somewhat important. 
P,. Average execution time is quite important and all other 

attributes have equal weight. 
P,. This might represent a solution for a small machine. Space 

and source program size are critically important and average 
execution time is ignored. 
P,. All attributes have equal weights. 

We will show that by using different constraint sets, we 
can obtain a different optimal solution for each of the above 5 
problems. 

Constraint Sets 

In considering the constraint set <S, W>, to simplify the 
analysis we will use the same scaling function S for all 5 prob- 
lems. Changing W will enable us to choose among feasible 
designs. 

Scaling Functions 

The choice of scaling function is a subjective choice of the 
system architect. The following scaling functions have been 
chosen to give higher weights to more optimal values for each 
attribute. The following six scaling functions will be used: 

S1 - Fzlnctionality. Function either works or doesn’t work. 

s&d= 1.00 x=B, 

0.00 otherwise 

Minimize average execution time. 

S2(x)= 0.00 x E [40N2...) 

.25 x E [40Nlog2N..40N2) 

.50 x E [35Nlog2N..40Nlog2N) 

.75 x E [20Nlog2N..35Nlog2N) 

1.00 x E [O..SONlog,N) 

Minimize worst case execution time. 

SB(x)= 0.00 x E [100N2...) 

.25 x E [i0N2..i00N2) 

.50 x E [2N2..10N2) 

.75 x E [40Nlog2N..2N2) 

1 .oo x E [0..40Nlog2N) 

Minimize space used. 

S4(x)= 0.00 x E [3N...) 

.25 x E [2N..3N) 

.50 x E [1.5N..3N) 

.75 x E [l.lN..1.5N) 
1.00 x E [O..l.lN) 

Stability. 

S&x)= 1.00 x is stable. 

0.00 x is not stable. 

Minimize source program size. 

S&x)= 0.00 x E [200..) 

.25 x E [70..199] 

.50 x E [40..69] 

.75 x E [30..39] 
1.00 x E [0..29] 

Weights 

For each of the five problems previously specified (e.g., P,, 

“‘> P5), weights for each scaling function must be specified. 

These are sumarized by Table 1 and reflect the relative impor- 
tance for each attribute given in the statement of the 
specification. In all cases, correct functionality (attributeI) will 

have a comparable weight of .50. These different weights will 
result in different algorithms as being most appropriate. 

Feasible Designs 

Five feasible sorts are given as potential solutions to the 
basis specifications (from [Knuth73, pg. 3811). Their charac- 
teristics are given by Table 2. The five sorts are: Straight 
insertion, Quicksort, Heapsort, List/Merge sort and Distribution 
Counting sort. 

Table 1. Weights for 5 Problem Specifications 
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1 Str. 1nsrt.l Quicksort 1 Heapsort 1 List/Merge 1 Dist. Coun 

attribute. sort sort sort sort sort 

attribute,, 2N2+9N 16.8NlogN-1.7N 33.3NlogN+.2N 20.8NlogN+4.9N 22N+10010 

attribute, 4N2 2N2 <37.5NLogN 20.8NlogN 22N+lOOlO 

attribute, N N+2e IogN N N(l+c) 2N+lOOOe 

attribute, 12 63 30 44 26 

attribute, True False False True True 

Table 2. Characteristics for sort algorithms (from [Knuth73, pg. 3811) 

Analysis 

BY applying the scaling functions Si to each of the 5 fessi- 

ble algorithms of Table 2, we get the matrix of Table 3. 

** - Fails solves relation 

Table 3. Scaled values for each specification 

We would like to choose that algorithm that solves the 
basic specification and has the highest performance level for 
each of our 5 problem specifications. From Table 3, we note 
that all algorithms, except Distribution Counting, solvess the 

basic specification B (i.e., in Distribution Counting SI=.25 

which is less than the minimal .50 requirement in attributed of 

B). Therefore we can compute the performance level for each of 
the remaining 4 algorithms for each of the 5 problem areas; as 
given in Table 4. 

Table 4. Performance Level for each solution. 

For each column of Table 4 (e.g., the problem 
specification), the maximum value corresponds to that algo- 
rithm that best meets the specification according to the given 
constraint set. We can therefore read off the appropriate solu- 
tions directly from Table 4: 
P,. Heapsort is the appropriate solution. 

P,. List/Merge is correct. 

P,. Either Quicksort or List/Merge should be used. 

P,. Either Straight insertion or Heapsort is correct. 

P,. List/Merge is appropriate. 

Thus, given the same basic specification, we get 5 similar 
problem statements that lead to quite different solution stra- 
tegies 

4.3. System design example 

As a second more complex design example, we use this 
evaluation methodology for the determination of an appropriate 
file system for a computer system. The goal is to specify a sys- 
tem as a series of attributes (10 in this case), rate the impor- 
tance of each (the weights) and then give four proposed solu- 
tions, Our evaluation methodology will be used to choose 
among the four feasible designs. 

The 10 attributes are as follows. The basic requirements 
and weights for each attributes are given in Table 5: 

Attribute 1 (Functionality). Data sharing among multiple 

machines. The system provides a full-scale file system. It con- 
trols concurrency accesses to files, determines access rights, 
enforces access restrictions and provides directory structures 
that recognize textual names and support grouping of files. It 
provides recoverable files. It allows the use of diskless worksta- 
tions. 

Attribute 2 (Average execution time of elementary operations). 
The elementary operations considered are: create-file, read- 
data, write-data, delete-file. 

Attribute 3 (Version control). Possibility to handle committed 
versions of a file (e.g, for auditing purposes). 

Attribute 4 (Size of unit of data access). Fraction of a file that 
can be transferred to and from clients as a result of a single 
read-data or wite-data operation. 

Attribute 5 (Atomic transaction scope). Number of files that an 
atomic transaction can access in one or multiple servers. 

Attribute 6 (Number of clients per transaction). Degree of distri- 
butivity of a transaction in the system. 

Attribute 7 (Concurrency control). Granularity of concurrency 
control. 

Attribute 8 (Level of concurrency). Number of readers and writ- 
ers allowed for individually controlled items. 

Attribute 9 (Deadlock control). Degree of control of the deadlock 
problem. 

Attribute 10 (Relative cost). Estimated cost to build the system. 
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Table 5. Attributes, weights and basic requirements 

Functionality was considered the most important attribute 
(weight of 0.5). A performance index (execution time of elemen- 
tary operations) was considered the next most important. Other 
attributes were considered less important and received lower 
weights. 

The scaling functions determine how each proposed solu- 
tion meets each attribute’s goal. The scaling functions we use 
for this example are: 

Sr (Functionality). Function either works or doesn’t work. 

S1(x)= 1 .oo, x=B, 

0.00. otherwise 

Se (Minimize average execution time). 

Se(x)= 0.00, xE[SO..) ms 

25, xE[40..80) 
.50, xE[20..40) 
.75, xE(10..20) 
1.00, XE [O.. 10) 

Ss (Version control) 

S&x)= 0.00, x=single-version files 

1.00, x=multiple-version files 

S, (Unit oj data access). 

S4(x)= 0.00, x=file 

.25, x=page(page run) 

.50, x=arbitrary file subrange 

.75, x=arbitrary page subrange 
1.00, x=record 

S, (Concurrency control). 

S7(x)= 0.00, x=file 

.50, x=page 
1.00, x=dynamically variable 

Ss (Level of concurrency). 

S*(x)= 0.00, x=single writer or single reader 

.50, x=single writer or multiple readers 
1.00, x=single writer and multiple readers 

Sg (level of deadlock control). 

Sg(x)= 0.00, x=no deadlock control 

.20, x=ordering by timestamps 

.40, x=time-limited locks 

.60, x=deadlock detection 
230, x=deadlock prevention 
1.00, x=deadlock detection and prevention 

SIo (Relative system cost). 

S1*(x)= 0.00, XE[90..) 

.25, XE[70..90) 

.50, x~[60..70) 

.75, xE[50..60) 
1 .oo, xE’[O..50) 

The next step is to consider alternative solutions. In this 
example, four solutions are proposed and are nominally based 
upon four published algorithms [Svobodova84]. Solution 1 
corresponds to XDFS (Xerox distributed File System), Solution 
2 corresponds to CFS (Cambridge File System), Solution 3 to 
FELM (file server developed at Bell-Northern Research) and 
Solution 4 to ALPINE (file system developed at Xerox Palo 
Alto Research Center). Some of the attributes were fixed arbi- 
trarily only for illustration of the evaluation technique. The 
evaluation of the scale functions for each one of the solutions 
appears in Table 6. 

S5 (Atomic transaction scope). 

S&)= 0.00, x=include single files only 

.50, x=multiple files and one server 
1 .oo, x=multiple files in multiple servers 

S, (Clients in a transaction). 

SJx)= 0.00, x=single-client transactions 

1 .OO, x=multiple-client transactions 

Table 6. Scale function values for file systems 

In order to determine an appropriate solution, use the per- 
formance level computation in the original improves relation to 
determine that Solution 1 is most appropriate for this applica- 
tion, with Solution 3 a close second (See Table 7). 
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Table 7. Weighted sums for each solution (performance 
level) 

5. Conclusions 

In this paper we have looked at an aspect of functional 
specifications and developed an evaluation criteria for compar- 
ing solutions to a given set of requirements. Using this model 
we can also develop a framework for classifying and describing 
various life cycle models. 

The ability to formalize these concepts is crucial for 
analyzing software requirements quantitatively. We must be 
able to classify accurately various strategies before the science 
of requirements analysis progresses as far as other program 
development concepts - such as compiler design and program- 
ming methodology - have progressed. 

While the work is still preliminary, we believe that we 
have an interesting model that can easily be expanded upon. 
Various definitions of performance level need to be studied in 
order to best approximate true system design. In addition, as 
shown by the various examples, the model is applicable in vari- 
ous application domains. Other such examples need to be 
developed. 
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