
IEEE TRANSACHONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 1991 961

A Management Tool For Evaluation
of Software Designs

Sergio CBrdenas-Garcia and Marvin V. Zelkowitz, Senior Member, IEEE

Abstract-The development of quality software depends upon
making appropriate decisions at every stage of the life cycle.
Given a design, many techniques have been developed to produce
quality code from that design. However, ignored so far have
been formal models to help the software manager to make
appropriate implementation decisions. A model for evaluating
software designs has been proposed and is based upon extend-
ing the functional model of program verification with concepts
from economic decision theory. This paper briefly describes the
method, and describes a prototype implementation of a tool,
called Selector, which implements this technique.

Index Terms - Correctness, decision support systems, design
evaluation, prototyping, risk analysis, software reuse.

I. INTR~~XJCTI~N

D EVELOPMENT of software usually consists of a set of
fairly well-established processes. The “waterfall model”

is typical of such tasks where an organization will develop
specifications, build a design from these specifications, im-
plement and test code based upon this design, and then
maintain the resultant system during its lifetime. Much of
software engineering research is concerned about improving
the quality of the product at each of these stages (e.g., use of
formal methods to better refine specifications; top-down de-
sign, object-oriented design, and other methods for improving
the design process; various test methods for improving the
verification and validation of this code, etc.).

However, few models and fewer tools have been developed
to aid the software manager in the decision-making process
of directing such development activities. How does one pick
one design strategy over another? Which design will best meet
management’s objectives with respect to cost, schedule, and
functionality? With increasing emphasis on improving produc-
tivity by reusing software, how to evaluate previously written
components in order to determine whether they meet our
current needs, whether they need to be modified, or whether
they should be ignored and a new component designed?

This paper addresses this issue by describing a design-
evaluation mechanism and a prototype implementation of that

Manuscript received March 19, 1991; revised May 21, 1991. Recommended
by P. A. Ng. This work was partially supported by the US. Air Force Office
of Scientific Research through Grant 90-0031 to the University of Maryland.

S. Cbrdenas-Garcia was with the Department of Computer Science and
Institute for Advanced Computer Studies, University of Maryland, College
Park, MD 20742. He is now with AT&T, Naperville, IL.

M. V. Zelkowitz is with the Department of Computer Science and Institute
for Advanced Computer Studies, University of Maryland, College Park, MD
20742.

IEEE Log Number 9102394.

mechanism that can aid the software manager in making such
decisions. This implementation fits into the general realm of
decision-support systems as a decision aid to management in
deciding an appropriate course of action. This model, derived
originally from studying functional verification [7], includes
an evaluation mechanism for comparing design attributes [2],
with an underlying utility function model for determining the
appropriateness of prototyping [3].

An automation aid can be classified as one that either
lowers the expertise of personnel needed to achieve a certain
level of performance, or one which raises the productivity of
existing expert personnel. It is our assumption that software
design is a complex process. Therefore we are assuming expert
management well familiar with various design strategies, who
can estimate various probabilities of certain events occurring,
and who can make rational decisions based upon that behavior.
Our implementation which selects among alternative designs
(hence is called Selector) depends on a very knowledgeable
user community which would be able to profit from such
a decision-support system. We do not address in this pa-
per mechanisms, such as expert systems, which guide less
knowledgeable users with an appropriate course of action.

In the remainder of this introduction we briefly describe our
implementation of Selector and briefly describe the informa-
tion needed to invoke it. In Section II we review the underlying
evaluation model of the software-development process upon
which the tool is based. In Section III we give an example
of its use.

Overview of Selector

We are assuming that the product to be built can be
described by the specification of a set of attributes like func-
tionality, cost, schedules, and performance. We also assume
that the manager has a set of potential solutions. For each
solution, the manager has an ordinal ranking of how well the
attribute values of the solution meet the required specifications.

What decisions must the manager make? Our implementa-
tion of Selector will aid the manager in the following tasks:

1) By prompting the user as to the effect each attribute
has on the choice of the final product, the system
will evaluate the importance of each overall solution,
generate a figure of merit (called the performance level),
and order the potential solutions from most favorable to
least favorable.

2) Prototyping is used to provide the additional information
that often is needed to make a decision. Selector will
guide the manager in developing appropriate prototypes.

009~5589/91$01.00 0 1991 IEEE

IEEE TRANSACTIONS ON SOFTbARE ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 1991 962

3)

Using techniques from decision theory: (i) the risks
associated with each candidate solution are evaluated;
(ii) attributes which should be tested by a prototyping
experiment to provide the most information are indi-
cated; (iii) the potential payoff from using that prototype
can be estimated; and (iv) the maximal amount to spend
on the prototype (as opposed to making an immediate
design decision with no additional information) can be
computed.
The system can be used to allow the manager to try a
series of “what if” scenarios. The manager can repeat-
edly enter a series of assumptions in order to determine
their effect on alternative design strategies. This might
provide additional data before a complex expensive
implementation or prototype is undertaken.

As stated above, decision theory [4] plays a major role in the
design of our evaluation policies. For example, if the problem
is to travel the 240 miles from Washington, DC to New York
City, possible solutions might be to drive by car, travel by
train, or fly by plane. For each solution, we might have three
attributes: cost of trip, time of trip, and effects of weather.
A traveler could objectively rank each solution, at least with
respect to cost and time, to get the relative value of each
attribute (e.g., for cost we get car < tra%n < plane, and for
time we get plane < train < car).

The attribute of weather is more subjective and gets into the
basis of our evaluation strategy. Assuming a trip is planned
in January when icy or snowing conditions might cause
dangerous driving, long delays, or canceled plane or train
travel, there is no correct solution a priori. We need to plan
a strategy which balances the various requirements of arrival
at the destination at a certain time with the degree of risk the
traveler wishes to undertake for each mode of travel.

Our model is based upon equilibrium probabilities. That is,
the traveler is asked for a subjective determination of choosing
between a guaranteed result and the probability of getting a
better or worse result. In our weather example, we might ask
the following question for each mode of travel:

“For what probability p would you be indifferent to a
trip guaranteed to take 4 hours or a trip of 2 hours with
probability p and probability 1 - p of a trip of 8 hours?”

A high probability (e.g., 0.9 meaning favoring the fixed
4-hr choice) signifies risk averseness and predictability; a
lower probability (e.g., 0.7 leaning more towards the second
choice) signifies higher risk by choosing the 2-hr trip with a
nonzero chance of a truly longer trip.

By asking such questions to an expert manager, who can
answer such questions based upon either objective technical
details of a specification (e.g., known performance behavior of
certain specified algorithms) as well as his own management
style (e.g., conservative predictable behavior versus a risky
high performance style), we can build a model of the decision
process.

It should be emphasized that we are not proposing a
replacement for the need to make technical decisions by using
our risk model. Instead, we are providing a mechanism which
allows the manager to state and record reasons why certain

design decisions are made, and then to clearly evaluate the
effects that those decisions have on the development process.

II. A MODEL FOR DESIGN EVALUATION

Given a specification, how does one choose an appropriate
design which meets that specification? The study of formal
methods and program verification only partially addresses
this issue. We certainly want to produce correct programs.
However, correct functionality is only one attribute our system
must have. We need to schedule development to have the
product built within our budget, within our available time
frame, and not to use more computing resources than we wish
to allocate for this task. However, how do we make such
decisions?

We consider two cases for this problem. In the first, the
manager knows the relevant information about trade-offs and
relative importance for the various attributes of the solutions.
We have developed an evaluation measure, called the per-
formance level, that allows a manager to choose from among
several solutions when the relative desirabilities of the attribute
values are known. We call this the certainty case. We then
extend the model to include the more realistic (and certainly
harder) case where the effects of each decision are not exactly
known, but we can give a probabilistic estimation for the
various possibilities. We call this the uncertuinty case. The
following subsections briefly describe each model.

A. Decisions Under Certainty

We consider correct functionality to be just one of several
attributes for a solution, with multiple designs implementing
the same functionality. Let’s first assume that our needed
functionality is specified by a function (from state to state),
and also that the candidate programs are specified by functions
from state to state. Let X be the functionality of program
Z. Program z is correct with respect to specification B if
and only if X > B [5]. We extend this model to include
other attributes as well. Since these other attributes are often
concerned with nonfunctional characteristics such as resource
usage, schedules, and performance, we will use the term viable
for any solution satisfying a specification, rather than the more
specific term correctness.

Now assume that our specifications (for both our needed
software and the candidate programs) are vectors of attributes,
including the functionality as one of the elements of the
vectors. For example, X and Y are vectors of attributes that
specify alternative solutions to a specification B. Let S be a
vector of objective functions, with domain being the set of
specification attributes and range [O..l]. We call Si a scaling
function, and it is the degree to which a given attribute meets
its goal. We state that XsolvessY if V i, S,(Xi) 2 S;(Yi). We
extend our previous definition of correctness to the following:
design z is viable (i.e., is correct) with respect to specification
B and scaling function vector S if and only if PsolvessB. We
can show that the previous definition of correctness is simply
a one-dimensional example of this more general definition of
viability [2].

CARDENAS-GARCfA AND ZELKOWITZ: MANAGEMENT TOOL FOR EVALUATION OF SOFTWARE DESIGNS 963

TABLE I
ATTRIBUTES AND ORDINAL VALUES FOR FILE SYSTEMS

Attribute Values

1) functionality
2) avg exec-time
3) version-control
4) unit data-access
5) atomic-tra-scope
6) #clients-tram
7) concurr control
8) level-c&urr
9) deadlock-ctrl

10) system-cost

file-server(l0)
in-(40.X0] (2)
sing-version-files(l)
arbgage-subrange(2)
sing-files-only(1)
sing-client-trans(1)
file(l)
s-write or m --- read(2)
no-deadlock-ctrl(1)
deadlockgrev(5)
in-(70..90] (2)

in-(20..40] (3)
mult-version-files(2)
page-(page-m4 (3)
mul-file-l-serv(2)
mul-client-trans(2)
page(2)
s write-and m
ti&estamps(‘S) -

read(3)

dlock-det-andgrev(6)
in-(60..70] (3)

in-(10..20] (4)

arb-file-subrange(5)
mul-file-mul-serv(3)

time-limited-lacks(3)

in-(O.SO] (5)

Each attribute may not have the same importance. Assume
a vector of weights W called constraints, such that each
wi E [O..l] and)‘Jw~ = 1.

Our evaluation measure, the performance level, merges mul-
tiple scaled attributes and their constraints. Given specification
vector X, scaling function S, and constraints W, the perfor-
mance level is given by: PL(X, S, W) = C; (w, x 5$(X,)).

We use the performance level as our objective function:
given a specification vector B, scaling vector S, constraints W,
and potential solutions x and y, X improves Y with respect
to (B, S, W) if and only if:

1) XsolvessB and YsolvessB
2) PL(X,S,W) > PL(Y,S,W).
We use here a very simple weighted sum to compute

the performance level. Our definition of improves depends
only upon an appropriate definition of performance level for
comparing two solutions, not on the details of how the two
vectors are compared. Further details of this model are given
in [2].

It should be noted that the model presented in this section
depends upon the solution triple (B, S, W), which is a quan-
titative evaluation of how well each attribute of the proposed
solution meets or exceeds the minimal specification B. We
rarely know this in practice, and this paper only assumes an
ordinal ranking of the attributes-that is, one attribute value is
better than another. In Section III-C we show how to evaluate
(B, S, IV) given only the specification and ordinal rankings
for each attribute. (Table I shows an example of these ordinal
rankings.)

B. Decisions Under Uncertainty

We have so far assumed that the relative importance of each
attribute is known a priori. However, we rarely know this with
certainty. We therefore consider the following model, based
upon aspects from economic decision theory (11. The follow-
ing is a brief summary of our uncertainty model, described
more fully elsewhere (31.

The performance level assumes that the relative importance
of each attribute is a known constant, so that the weight factors
and scaling can be defined. However, this is not generally true.
For example, in a program that includes a sort of a list of
records, the importance of the sort algorithm itself depends

upon how often it gets called and how long unsorted lists get.
That is, if the list of items always remains short, then any sort
algorithm will suffice, since sorting will take a negligible part
of the execution overhead. In this case, any attribute value (i.e.,
specification) describing the sort function will have minimal
effect upon the resulting program and have a very low weight.
Our problem is then to modify the previous model to account
for unknowns in the importance for these attribute values.

Using terminology from decision theory, the potential solu-
tions to a specification are called alternatives, and the various
possibilities that will determine the importance for the attribute
values are slates of nature. Each state of nature is associated
with a fixed set of weights giving the relative importance of
each system attribute.

We can now represent the performance level as a matrix PL,
where PLi,j is the performance level for solution i under state
of nature j. As before, the performance levels give a measure
of how good a system is. We can approximate this by defining
the entries PLi.j of performance level matrix PL as the payoff
(e.g., monetary value) for solution i under state j. For example,
assume that we have two potential solutions X1 and X2, and
assume we have three potential states of nature stl, st2, and
sty, which are represented as the six possible payoffs in the
matrix:

pL 100 500 0 = [300 200 200 1 .

In this example, if we knew for sure that st2 would be the
resulting state of nature, then we would implement alternative
X1 (with payoff 500), and if we knew that either states stl
or sty were the resultant states, then alternative X2 would be
most desirable. However, we may not know this beforehand.

When the probability for each state of nature can be
estimated, we can use expected values to achieve an estimated
performance level. Given probability distribution vector P,
where pi is the probability that state of nature sti is true, the
expected payoff for alternative Xi is given by:

71, = C Pli,jPj.

963 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 1991

Use the decision rule: choose Xi, which maximizes zti, or

max i C Pli,jPj .
i 1 i

(3)

For example, if we know that the probability distribution for
each state of nature in our example is P = (0.3,0.5,0.2), we
can calculate the expected payoffs as follows:

211 = 100 x 0.3 + 500 x 0.5 + 0 x 0.2

= 280

w2 = 300 x 0.3 + 200 x 0.5 + 200 x 0.2

= 230.

We would then choose X1 over X2, since 280 > 230.
Risk Aversion: Risk aversion plays an important role in

decision making. This implies subjective behavior on the
part of the software manager. We assume that the following
reasonable behavior rule (i.e., equilibrium probability given in
the introduction to this paper) is true:

l Decomposition: Given three payoffs a 5 b 5 c, there
exists a probability p such that the decision maker is
indifferent to the choice of a guarantee of b, and the
choice of getting c with probability p and getting a with
probability 1 - p. We shall refer to this probability as
decomp(a, b, c).

For example, assume there are two techniques to solve
a problem. One is fully tested, giving a guaranteed payoff
of $5000, and a second new and more efficient technique
promises a potentially larger payoff of $10 000 (but not com-
pletely tested), with a chance to give a payoff of only $2000.
If a software manager considers using the new technique only
if the chances of getting the payoff of $10000 are larger than
SO%, the probability p is larger than 0.8. In this case the
expected payoff will be 10 000 x 0.8 + 2000 x 0.2 = 8400, so
the given manager is somewhat risk-averse and conservative.

Let plu be the minimal value in our payoff PL, and let pl*
be the maximal value. In our example, the PL matrix (1) we
would choose pl* = 500 and plo = 0. We decompose each
pl;,j as e;,j = decomp(plo, pli,j, pl*). This decomposition
creates an equivalent pair of payoffs {plO.pl*}, with the
probability e;,j of getting the more desirable pl*. We call the
matrix formed by these elements ei,j’s the equilibrium matrix
E.

Any element ci,j will satisfy the following inequality:

$0 X (1 - ei,j) + pl* X ei,j 2 pli,j. (4)

The difference between the two sides of this equation reflects
the manager’s degree of risk-averseness. If the two sides are
equal, risk analysis reduces to the expected value.

C. Value of Prototyping

Given the various unknowns in the states of nature, the
software manager may choose to get more information with a
prototype so that a better final decision can be made. However,
before undertaking the procedure to extract more information,
one should be sure that the gain due to the information will

outweigh the cost of obtaining it. Here, we try to establish an
absolute boundary: what is the value of perfect information?

The best we can expect is that the results of the experiment
will indicate for sure which state of nature will hold. Under
this case we can choose the alternative which gives the highest
performance level under the given state of nature:

@ = Cpj X max pli,j.
i (5)

In our example, we would choose X1 under stz, and choose
X2 otherwise, resulting in performance level a:

@ = 0.3 x 300 + 0.5 x 500 + 0.2 x 200

= 380.

What is the value of this perfect information? Since the
expected value of our performance level was computed previ-
ously as 280, the value of this information is an improvement
in performance level of 380 - 280 = 100. This is the most
that we can expect our prototype to achieve and still have it
cost effective.

Assume we build a prototype to test which state of
nature will be true. While we would like an exact answer,
since a prototype is only an approximation to the real
system, the results from prototyping are probabilistic. Let
Tesultl: Tesultz,... Tesultk be the possible results of the
prototype. This information will be presented in a conditional
probability matrix C, where c,,~ represents the conditional
probability of result resulti given state of nature Sj.

Given the probabilities for each state (vector P) and the
conditional probability matrix C, the marginal probability
distribution (vector Q) for obtaining resulti is given by:

4i = c ci,j x Pj. (6)

We can compute the a posteriori distribution matrix P’. P’ has
as many rows as results from the prototype which are updated
values of vector P. Row i gives the probabilities of the states
of nature, given that the result of the prototype is result;:

Pl>j =
ci)i x Pj

4i
(7)

Following our example, assume that a prototype of alter-
native X2 is planned. The planned prototype can give the
following results:

Tesultl: We are satisfied with the system as presented by
prototype.

Tesult~: We are not satisfied.
Assume that the conditional probabilities are estimated

beforehand. For example, we estimate that if the state of
nature is stz, we have probabilities 0.3 and 0.7 to obtain
results resultl and Tesult2, respectively, from the prototype.
The conditional probabilities appear in the matrix C having
a column for each state and a row for each result of the
prototype:

c = 0.9 0.3 0.4
0.1 1 0.7 0.6 ’

CziRDENAS-GARCfA AND ZELKOWITZ: MANAGEMENT TOOL FOR EVALUATION OF SOFTWARE DESIGNS 965

From this we can calculate the probability qi for each result i
of the prototype, giving Q = (0.5,0.5), and the a posteriori
distribution matrix:

p, =
[

0.54 0.30 0.16
0.06 0.70 1 0.24 ’

If, for example, we get result1 from the prototyping study,
the new expected values for alternatives X1 and X2 are:

2rl = 100 x 0.54 + 500 x 0.3 + 0 x 0.16
= 204

v2 = 300 x 0.54 + 200 x 0.3 + 200 x 0.16
= 254.

In this case; alternative X2 should be chosen, since it gives
the higher performance level.

Similarly, if we should get result2 from the prototyping
study, the new performance levels for alternatives X1 and X2
are:

u1 = 100 x 0.06 + 500 x 0.7 + 0 x 0.16
= 356

w2 = 300 x 0.06 + 200 x 0.7 + 200 x 0.24
= 206.

In this case, alternative X1 is the preferred choice.
Given that our expected performance level with no infor-

mation was 280 (Section II-B), we should only prototype if
we gain from prototyping:

up = 0.5 x 356 + 0.5 x 254 - 280
= 25.

Since there is a positive gain up = 25, prototyping should be
carried out as long as the cost to construct the prototyping
study is less than this. Otherwise, an immediate decision
should be made.

III. EXAMPLE OF Selector

A prototype implementation of our evaluation strategy has
been built in C and runs on SUN 3 and DEC 3100 worksta-
tions. A manager enters a table of attributes and initial con-
straints and then executes Selector. The manager is prompted
for the various equilibrium probabilities, which determine
the risk averseness behavior of that particular individual as
well as objective characteristics of the particular solution
being considered. The tool then computes the performance
level for each potential solution, computes the potential gain
from prototyping, and offers advice on which attribute would
provide the maximum gain if it were investigated.

This example demonstrating Selector is based upon data
presented [6]. The problem is to develop a disk file system,
choosing among four potential solutions. We assume that
the software manager has identified 10 attributes that are
important for a solution. Table I gives the 10 attributes and
their symbolic names and relative ranks-an integer between
1 and 10 in this case.

The only data the system needs initially is the relative
importance of each attribute for each solution and the mini-

TABLE II
SPECIFKATIONS FOR FOUR FILE SYSTEM SOLUTIONS

Attribute Basic Reqs XDFS CFS FELIX ALPINE

functionality 10 10 10 10 10
avg-exec-time 2 3 4 4 3
version control 1 2 1 2. 1
unit data access 2 5 3 2 2 - -
atomic-tra-scope 1 3 1 2 3
#clients-tram 1 2 1 1 2
concurr control 1 1 1 1 2
level-concurr 2 3 2 3 2
deadlock-ctrl 2 3 1 6 5
system-cost 2 2 5 3 2

ma1 acceptable values. For objective attributes (e.g., required
performance times) quantitative values can be used; for other
attributes (e.g., how easy is it to build) more subjective relative
values can be used. Table II presents the data given to Selector.
Basic Reqs refers to the minimal acceptable value for any
solution to be viable and XDFS, CFS, FELIX, and ALPINE
refer to the four proposed solutions.

A. Eliminate Improper Solutions

Selector first checks that each solution is viable, and in this
case discovers that solution CFS is not since it does not solve
the basic requirements:’

>>Option XDFS is a viable solution.
>>Option CFS is not viable because:

its value ‘no deadlock ctrl’ for
attribute ‘deadlock-&l’ is inferior
to the basic requirement
‘timestamps’.

>>Option ALPINE is a viable solution.
>>Option FELIX is a viable solution.

B. Eliminate Useless Attributes and Inferior Candidates

The second stage of analysis is to determine if all of the
attributes can be used to distinguish among the potential
solutions. In this second step, the attribute functionality is elim-
inated from the computation of performance level, since each
potential solution has the same minimal required functionality
of 10 (i.e., is a functionally correct solution). Only the other
nine attributes will be used to evaluate the three remaining
proposed solutions in order to simplify the number of possible
states of nature:

>>Attribute ‘functionality’ is useless
because all candidates have equivalent
values for it.

C. Determine Performance Level for Each Solution

This next step is the heart of the decision process. Given
the basic specifications and ordinal ranking for each solution,

‘Output from the program will be shown with the same
font style as this footnote.

966 IEEE TRANSACTIONS ON SOFlWARE ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 1991

TABLE III
VALUE OF SYSTEM COST ATTRIBUTE

Consider requirements B and Xmax:
B has the minimum acceptable attribute values.
Xmax has the maximum attribute values.

ATTRIBUTE VALUE

B
M-VAL

Xmax

VALUE M-VAL

system-cost
avg-exec-time
version control -
unit data-access
atomic-tra-scope
#clients-trans
concurr control
level-concurr
deadlock-ctrl

*in-(70..90]
in-(40..80]
sing-version-files
page-(page-run)
singl-files-only
sing-client
file
s write-or m read
timestamps- -

* 2.00
2.00
1.00
2.00
1.00
1.00
1.00
2.00
2.00

in-(60..70]
in-(lo..201
mult version-files
arb-page-subrange
mu1 file-mu1 serv - -
mul-client-trans
page
s-write-and-m-read
dlock-det-and-prev

3.00
4.00
2.00
5.00
3.00
2.00
2.00
3.00
6.00

If we modify B by replacing its value for attribute system-cost (marked with *) to have value ‘in-(60..70]‘, what is the PERCENTAGE of improvement?:

we need to compute the scale factor and weight functions of
Section II-A. The following subsection describes this process.

Computing the Requirements: We defined software re-
quirements as the triple: (B, S, W). A program X is con-
sidered a viable alternative if and only if it has the property:
V i(Si(xi) 1 Si(bi)). H owever, all we have is a vector M that
orders the attribute values ordinally, with the property:

v i(M(Xi) 5 Mi(yi) -3 S,(X,) 5 Si(y,)).
We present a method to compute S and weights W, given

M.
Maximum value of an attribute: Let X,! be any attribute

value that maximizes Mi.
Value substitution of B: Let Bitr be equal to basic

requirement B, with the ith attribute value B substituted by
IC. Then the elements of BitZ are defined as follows:

BY = “B’ ifi=j
3, otherwise.

We modify our basic requirements B by replacing one of its
attribute values by value 2. The modified vector is later used
to obtain the degree of desirability of that change in attribute
values.

Cakulation of (S, W): 1) Obtain X”, the vector with
elements X,? for all i. X’ is the specification of the best
solution we could expect. 2) Using equilibrium probabilities
to determine the improvement of using X8: for attribute i in
B to obtain S,!(Z) = decomp(B, Bit”, X*) for all values z
of attribute i and for all attributes i. 3) Let w: = Si(X$) for
all i. This gives us the importance of each maximum attribute
value. 4) Calculate the vectors W and S as follows:

w; = &

Si(X) = y
z

This algorithm works by deriving 5’: from the equilibrium
probabilities between the minimal requirement B and maxi-
mum ordinal value for any attribute X,7. The weights are just

the value of this maximum ordinal value, and S is derived from
S’ by appropriate scaling. It is easy to verify that S;(X,*) = 1;
Si(&) = 0 for all i and also that c wi = 1.

Returning to our example, we apply this algorithm by ask-
ing, for each of the nine remaining attributes, what percentage
improvement we would get by replacing one basic requirement
with an improved value. For example, we get the following
output for the system-cost attribute, as given in Table III.

The percentage improvement permits us to compute
decomp(B, Bit”, X”). This requires that the user truly
understand the effect of each design decision. Although
subjective probabilities are used, it does provide a formal
model of the process of making such decisions without
resorting to relatively informal guesses.

After the user enters all such estimates, (S, W) is computed
and the performance levels are displayed (Scaled val. is the
computation of S, and Importance is our constraint W) in
Table IV.
With an estimated performance level of 0.6667, the XDFS
solution is the preferred choice.

D. Prototyping Potential Solutions

If the manager is able to estimate the equilibrium probabili-
ties, it is possible to state the trade-offs, the relative importance
of the attribute values, and compute the performance levels.
If there is uncertainty in some of these, then prototyping
to achieve more information might be advisable. In order
to simplify our analysis, we view prototypes as providing
information to the manager in one of three areas:

1) The system that is prototyped provides information
on how good a candidate software is from the user
perspective in terms of functionality, user interface, and
other user concerns. We call this a client prototype.

2) The software prototype provides information of how
well a candidate software solution would behave in an
operational environment, the performance of the inter-
actions system/environment, the use of the environment
resources, etc. We call this an environment prototype.

3) The prototype provides information concerning the de-
velopment plan, e.g., can it be built on time, within

CARDENAS-GARCLA AND ZELKOWITZ: MANAGEMENT TOOL FOR EVALUATION OF SOFTWARE DESIGNS 961

TABLE IV
OPTIMAL PERFORMANCE L

The candidates in order of decreasing PL are:

Place 1, Performance Level of 0.6667 is:
XDFS with attributes:

NAME

system-cost
avg-exec-time
version control -
unit data-access
atomic tra scope
#clients-Gans
concurr control
level cG~curr
deadlock-&r1
>>>>press return

Place 2, Performance level of 0.6396 is:
FELIX with attributes:

VALUE Rank Scaledval. Importance
in-(70..90] 2.00 0.0000 0.0901
in-(20..40] 3.00 0.6667 0.1351
mult version files 2.00 1.0000 0.0901
arbqage-subrange 5.00 1.0000 0.0901
mul~file~mul~serv 3.00 1.0000 0.1351
mul-client-trans 2.00 1.0000 0.1351
file 1.00 0.0000 0.0901
s write and m read 3.00 1.0000 0.0901
time-li&te”locks 3.00 0.2500 0.1441

System displays other solutions and performance levels

budget, and with available resources like people, tools,
and computers. We call this the feasible prototype.

Using these three categories, the following subsection de-
scribes how we identify the potential states of nature we can
evaluate by prototyping a solution.

I) Classijication of Prototypes: As stated above, we can
characterize a prototype as providing information about the
client’s need, the execution environment, or the feasibility of
the development plan. What we need to do is determine what
are the possible outcomes, or states of nature, that may result if
we use the prototype. We then have to evaluate how closely the
state of nature we get by using the prototype reflects the actual
state of nature we would get by building the final product.

A first approximation for defining the states of nature is
to consider for each alternative (i.e., solution) that the world
will be in only two possible states: it will be favorable or
unfavorable for that alternative. Then for alternatives X1 and
X2, we can define four states of nature: stl favorable for
both X1 and X2; stp favorable for X1, but unfavorable for
X2, etc. We make a more realistic approach by defining three
predicates for each alternative solution.

For each alternative solution Xi we define three different
predicates: (i) clii. True if solution Xi is satisfactory for
client; false if is marginally acceptable for client; (ii) enu,.
True if solution Xi is satisfactory for environment; false if is
marginally acceptable for environment; and (iii) fea;. True if
solution Xi is satisfactory for feasibility; false if is marginally
acceptable for feasibility.

A state of nature is defined as one of the 2n possible com-
binations for the values of all the predicates. For the example
in this paper, we have 3 viable solutions with 3 predicates for
each resulting in 2’ = 512 possible states of nature. The goal
is to identify the state of nature which really holds. We first
try to reduce the number of states as follows:

1) Identify which predicates are relevant (e.g., if feasibility
is assured and no feasibility attributes are considered,
then only predicates for client and environment are

considered).
2) Construct the basic set of states of nature where each

state is a different combination of the values of the
predicates.

3) Identify dependencies between predicates of the form:
Predicate predi (pred denotes either cll:, env, or fea)
of alternative Xi is true if predicate predj of alternative
Xj is true. For example, we may know that if the client
likes alternative Xi, it is sure to like alternative Xj.

l The dependency pred; + predj holds iff:

=+ (M&-i) i Al,)) (10)

where setpred is the set of attributes associated to
a predicate type pred. If a solution has satisfactory
values for some attributes, a second solution having
greater or equal metric values for the same attributes
is also satisfactory for these attributes.

4) Delete impossible states from the set. For each relation-
ship found, delete the states violating this relationship.

By applying the preceding algorithm, Selector first asks for
the potential payoffs (e.g., our elements of matrix PL) for
8 potential scenarios for each candidate solution. We use our
previous classification of prototypes to define the scenarios.
We consider that a candidate is marginal or satisfactory for
each of client, environment, or feasibility. The states of nature
are defined in terms of combinations of the possible scenarios
for each candidate solution. (Numbers following Payoff :
refer to user input.)

There are 8 scenarios for each candidate.
Enter a payoff for each combination candi-
date/scenario

If you build XDFS and this happens:
Scenario 1:

marginal to user

IEEE TRANSACTIONS ON SOF-IWXRE ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 1991

marginal for development process
marginal for environment

What is the payoff for candidate XDFS/
scenario l?: Payoff: 200

Scenario 2:
marginal to user
marginal for development process
satisfactory for environment

What is the payoff for candidate XDFS/
scenario 2?: Payoff: 300

. . .

. . . other 6 scenarios for XDFS

. . .

. .
. . . 8 scenarios for each of other
. . . 2 solutions

To make an initial estimatibn of the probability for each
state of nature, Selector asks for the probability that each
candidate will be either satisfactory or marginal for each
user,environment,andfeasibility. Selector computestheinitial
probabilities for the states from the information supplied:

There are 3 probabilities to ask for each
candidate. If you build a candidate, what
are the chances that the system will be
satisfactory or marginal to user, for de-
velopment and to environment?

If you build XDFS, probability that it is
satisfactory to user.

PROBABILITY: .25

If you build XDFS, probability that it is
satisfactory for development process.

PROBABILITY: .45

If you build XDFS, probability that it is
satisfactory for environment.

PROBABILITY: .93
. . . similar questions for other

2 solutions

Some consistency checking is provided:

>>>Warning: The probability that candidate
XDFS

is satisfactory to user (0.250)
is smaller than the same probability
for candidate FELIX (0.300).
This contradicts the fact that candidate
XDFS has attributes with better values to
user than candidate FELIX.
>>>>press return

Based upon this data, Selector uses equilibrium probabilities
to determine the risk averseness of the user (Fig. 1). For
“neutral” users, the perceived value of a solution and the

seeking

wofl

perceived neutral
payoff P&f

Fig. 1. Risk aversion curve and payoff.

expected value will be the same; however, for risk averse
users, the higher curve will result (i.e., the perceived value
of a solution will be less than the actual value), while for risk
seeking users, the perceived value will actually be higher than
the expected value.

Answer the following question to test if the
differences among payoffs are big enough to
produce risk effects.
What is the equilibrium probability E that
makes you indifferent to the two options:

a) Guaranteed payoff 6.5.
b) Probability E of getting payoff 13 and

probability 1-E of getting payoff O?
PROBABILITY (0.5000): .8

User input of 0.8 shows that there was a risk effect,
so additional probabilities are needed to produce the curve
represented by Fig. 1:

Answers to the following questions are
needed:What is the equilibrium probability
E that makes you indifferent to the two
options:

a) Guaranteed payoff X.
b) Probability E of getting payoff 13 and

probability 1-E of getting payoff O?
Enter probability E for each payoff X:
Payoff X is: 1
PROBABILITY (0.0769): .05
Payoff X is: 2
PROBABILITY (0.1538): .lO
Payoff X is: 3
PROBABILITY (0.2308): .15
Payoff X is: 4

. . . others

Selector will then determine: (a) which solution should be
prototyped; (b) which attributes, if prototyped, are most likely

C~DENAS-GARCfAANDZELKOWITZ:MANAGEMENTTOOLFOREVALUATIONOFSOFTWARE DESIGNS 969

to provide the most information; and (c) how much should be
spent on the prototype. (In parenthesis is the expected value,
meaning no additional risk. Null input from the user means
that Selector uses this default value.)

CANDIDATE THEORETICAL PERCEIVED PAYOFF
EXPECTEDPAYOFF (with risk)

XDFS 3.58 3.12
ALPINE 8.50 6.95
FELIX 8.67 6.90

Candidate ALPINE has the best perceived
payoff.
The expected payoff for this candidate is
8.50
The expected payoff with perfect informa-
tion is 9.90
The amount already invested in prototyping
is 0.00
Any future prototype should cost less than:

9.90 - 8.50 - 0.00 = 1.40

In the following section we introduce a technique to deter-
mine what to prototype. This technique optimizes prototyping
by suggesting a minimum sequence of prototypes (minimizing
prototyping costs) to make a maximal reduction of uncertainty
after each prototyping iteration.

2) Choice of Alternatives: The following process is used
to determine for which attributes the greatest gain can be
achieved by prototyping:

a) Obtain the state of nature Sth that has the highest
probability, that is:

ph = max pi

b) State sth is represented by a Boolean expression of the
form:

predh,o A predh,l A.. ’ A predh.,-1.

For each of the n predicate values predh,k (that repre-
sents a client, environment, or feasibility predicate for a
candidate under state sth), calculate the probability that
predh,k holds:

Probability p&hi is the sum of the probabilities of the
states consistent with predicate value predh.k.

c) Obtain the predicate predicate,,, to prototype. It is the
predicate that has the lowest probability for its value
Pre&,pro; i.e.,

pvalh,,, = min pvalh,.

When there is a unique predicate having this property,
that predicate is the one to be prototyped. If there are
several predicates and none of them occur in a depen-
dency (predicate; + predicatej), then any of them can
be suggested to be prototyped. For the case of several
predicates occurring inside dependencies, it is necessary
to test what would happen if any of them would be

prototyped. Then in a breadth first search we will choose
the predicate that starts a path of prototyped predicates
having minimum probability after n prototypes. For
example, if our initial set of predicates having minimum
probability is {predicatel, predicatez} we compute for
predicatel:

pvalhl,j = min c Pi

4

If pva1hl.j < pvalhz.,, we choose predicatel as
predicate,,,. We choose predicate2 if pvalh2.j <
pva1hl.j. If the values are equal we have to continue
to consider what would happen by extending the paths
another level in a similar way.
The kind of prototype is determined by the predicate
in position pro. Each predicate belongs to one of the
categories: cli, env, fea. Therefore the prototype is
going to be presented to client, to environment, or will
be a feasibility prototype according to the category
of predicate,,,. Each predicate is associated to an
alternative. The alternative associated to predicate,,,
is the one that is going to be prototyped. A creative
(nonmechanical) decision remains. It consists to decide
which attributes of the alternative (functionality, perfor-
mance, reliability, etc.) have to be prototyped in order
to decide the validity of predicate,,,.

Selector will now evaluate which attributes provide the most
information and will suggest a potential candidate to prototype.
In this example, build a prototype to see if ALPINE provides
satisfactory or unsatisfactory information on environment at-
tributes:

Define a PROTOTYPE to check if candidate
ALPINE is

marginal or satisfactory for environment.
The attributes are:

avg exec time, value: in (20..40] - -

version control, -
value: sing-version-files

#clients-trans,
value: mu1 client trans

concurr-controi, value: page
level concurr, -

value : s write or m read
deadlock-ctrl, value:

--
deadlock-prev

At this point, the user defines his own prototype and can
override the Selector suggestion, if desired:

Select a number:
(1) XDFS.
(2) ALPINE + SUGGESTED.
(3) FELIX.

selection (2): 2
The prototype is going to test if ALPINE is:

and for predicatez:

pvalh2.j = min c Pi.
p~4,,zAp~ed~,,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 1991 970

(1)
(2)

(3)

marginal or satisfactory to user.
marginal or satisfactory for devel-
opment process.
marginal or satisfactory for environ-
ment t SUGGESTED.

selection (3): 3
Maximum allowed prototyping cost: 1.40

Enter estimated COST for prototyping exper-
iment to test if candidate ALPINE is
satisfactory or marginal for environment:

1.00

We now need to estimate how well we wouldtrustthe results
of this prototype:

How good is the prototype?
Under the condition that the prototyping

experiment answers 'candidate ALPINE
satisfactory for environment', give the
PROBABILITY that the result is correct.
PROBABILITY (0.9000): .88

Under the condition that the prototyping
experiment answers 'candidate ALPINE

marginal for environment', give the
PROBABILITY that the result is correct.
PROBABILITY (0.9000): .88

The user now builds a prototype and determines how well
it worked. The system can also be used to answer a series of
“what if" scenarios to plan for possible contingencies.

Enter

(1)

(2)

Enter

RESULT of the prototyping experiment
Candidate ALPINE satisfactory for
environment.
Candidate ALPINE marginal for
environment.
result (1 or 2): 1

Using this information, Selector modifies the conditional
probabilities and computes new performance levels for each
candidate solution. This then becomes an iterative process with
the system keeping track of how much we spent on each
prototype and what our changing performance levels become.
At some point, either the cost of the prototype is greater
than any potential gain or the user believes he has enough
information for an appropriate decision,

Candidate ALPINE has the best perceived
payoff.
The expected payoff for this candidate is
9.10
The expected payoff with perfect informa-
tion is 10.18
The amount already invested in prototyping
is 1.00
Any future prototype should cost less than:

10.18 - 9.10 - 1.00 = 0.08

IV. CONCLUSIONS

The ability to make appropriate design decisions depends
upon explicit knowledge of the product to be developed as
well as more subjective knowledge of how the product will
be used. We addressed this duality by introducing a formal
framework that includes risk analysis and techniques from
decision theory into the software design process. The emphasis
in this paper is on a quantitative measure for estimating the
potential worth of prototype implementations and a prototype
implementation of the mechanism. This provides the software
manager with information needed to make rational decisions.
Few decision support aids are currently available for this type
of development environment.

We believe that a system like Selector can be used in two
ways:

1)

4

As a decision support system for management to be
used in the process of making choices among various
alternatives, and
As a prototyping investigative system for proposing and
answering a series of “what if” scenarios. This permits
various choices to be followed to their (hypothetical)
conclusion before any costly implementations-either
through a prototype or the full implementation-are
undertaken. While the decisions generated by this tool
are by no means certain, they do provide a mechanism
for intelligent “guessing” the outcomes from various
strategies.

Our model depends upon a risk analysis of each potential
solution and aspects of decision theory to modify our evalu-
ation strategy. The model heavily depends upon equilibrium
probabilities for generating answers.

Our implementation of Selector hides most of the details of
the model with the user simply having to estimate his own risk
behavior by evaluating the equilibrium probabilities among a
series of choices. While this still is far from completed, we
believe we have made some first steps in bringing an algorith-
mic process to the top-level software decision maker. Rather
than basing important decisions only on intuitive criteria, we
have a formal model that can be studied and that allows for
rational decision making.

Since good management consists of the ability to make
choices among a set of conflicting options, there will always
be a subjective component in any management model of
the development process. We believe that a purely algebraic
mathematical model can never accurately portray this process.
Therefore the inclusion of risk analysis into the model pre-
serves this important aspect.

[II

PI

[31

REFERENCES

B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.
S. Cardenas-Garcia and M. V. Zelkowitz, “Evaluation criteria for fnnc-
tional specifications,” in Proc. 12th IEEE/ACM Znt. Conj Software Eng.
(Nice, France), 1990, pp. 26-33.
S. Cardenas-Garcia, “A formal framework for evaluation of multiattribute
specifications,” Ph.D. dissert., Dept. Computer Sci., Univ. Maryland,
College Park, 1991 (Dept. Computer Sci., Univ. Maryland, College Park,
Tech. Rep. 91-99, 1991).

CARDENAS-GARCfA AND ZELKOWITZ: MANAGEMENT TOOL FOR EVALUATION OF SOFIWARE DESIGNS 971

[41

PI

[61

[71

R. Charette, Software Engineering Risk Analysis and Management. New
York: McGraw-Hill, 1989. -
H. Mills, V. Basili, J. Gannon, and R. Hamlet, Principles of Computer
Programming: A Mathematical Approach. Newton, -MA: - Ally; and
Bacon, 1987.
L. Svobodova, “File servers for network-based distributed systems,“ACM
Computing Surveys, vol. 16, no. 4, 1984.
M. V. Zelkowitz, “A functional model of program verification,” IEEE
Comput., vol. 23, pp. 30-39, Nov. 1990.

Marvin V. Zelkowitz (M’72-SM’78) obtained the
B.S. degree in mathematics from Rensselaer Poly-
technic Institute, and the M.S. and Ph.D. degrees in
computer science from Cornell University.

He is a Professor of Computer Science at the
University of Maryland, College Park, with ap-
pointments in the Department of Computer Science
and the Institute for Advanced Computer Studies.
He also has a faculty appointment with the Soft-
ware Engineering Grout of the Comuuter Svstems
Laboratory at the National Institute’of Standards

and Technology, Gaithersburg, MD. His research interests include software

Sergio R. Chdenas-Garcia received the B.S. de-
engineering, programming environments, and measurement and compiler

gree in computer engineering in 1985 and the M.S.
design.

degree in computer science in 1986 from the Uni-
Dr. Zelkowitz is a member of ACM and is a past Chairman of ACM SIGSoft

versidad National de Mexico (UNAM). He received
and of the Computer Society’s Technical Committee on Software Engineering.

the Ph.D. degree in computer science from the
University of Maryland, College Park, in 1991. His
current research interests are in software evaluation,
formalization of nonfunctional requirements, and
software processes based on prototyping.

Dr. Cardenas-Garcia is a member of the Asso-
ciation for Computing Machinery and the IEEE
Computer Society.

