
USE OF CLUSTER ANALYSIS TO EVALUATE SOFTWARE ENGINEERING ~'TNODOLOGIF~*

E r i c Chen and ~larvin V. Zelkowitz
Department o f Cofaputer Science

University of Haryland
College Park, Haryland 20742

ABSTRACT

The development of quantitative measures to
evaluate software development techniques is
necessary if we are going to develop

appropriate methodologies for software
p r o d u c t t o n . D a t a ~ s c o l l e c t e d b y t h e

Software Engineering Laboratory at NASA
Goddard Space Flight Center on developing
medium scale projects of up to ten m a n
years effort. In this study, cluster

analysis was used on this collected data
and several measures are proposed. These
measurements are objective, quantifiable,
are the results of the raethodology, and
most important, seem relevant.

Introduction

Along with the development of numerous
methodologies to aid in software
development (e. g. , structured programming,
chief programmers, walkthroughs, code
reading, etc.) is a growing awareness of a
need to collect data to be able to quantify

the effects of each new technique. Since
this data is often collected after the
fact, and is therefore often unobtainable
and imprecise, at best, it can only be used
to indicate possible trends and not
specific effects of a given technique.

About five years ago, it was realized
that data had to be collected as a project

developed in order to better quantify a
project's life cycle development. Although
this imposed an additional burden on the
project, it was believed that the cost was
justified - both to give management more
knowledge and control over the current

project, and to allow t h e data to be

* - Research supported in part by grant
YSC-5123 from NASA Goddard Space Flight
Center to the University of Haryland.
Computer time provided in part by the
Computer Science Center of the University
of Haryland.

analyzed later in order to determine tile
impact of the new techniques. Uost of the
recent work in this area has centered on
what to collect - both in deciding what
data is needed, a n d in overseeing t h e
collection process to make sure that the
data is collected (both manually and
automatically) accurately.

This paper describes this process and a
further development in this data collection

trend. Now that sufficient data exists,
tests are being developed to check the
overall validity and value of the data. For

example, if data is collected on two
different projects, is there any bias in
the way the two data sets are created? Can

we a p p l y t h e s a l a e m e a s u r e s o n e a c h a n d
compare them? What techniques c a n be used
on entire collect ions of data? Can we

classify a project (or an attribute of the
project) via measures defined on the data?
These and related questions were behind the
current study.

This paper introduces the concepts of
cluster analysis, a well known technique in
many of the social sciences, into the
software development environment
[Anderberg]. It shows that cluster analysis
seems relevant, and the paper develops
several measures that seem applicable in

predlcting methodologies in this
environment. While the measures are based
upon the data collected by the Software
Engineering Laboratory, they appear to be
generally applicable in a variety of
settings.

At tile NASA Coddard Space Flight Center
in Greenbelt, Maryland, the Software
Engineering Laboratory was organized in
1976 in conjunction with the University of
Haryland and Computer Sciences Corporation.
The purpose was to study software

development within the NASA environment and

develop techniques to improve software
production [Basili - Zelkowitz]. Data are
being collected from certain projects
developed by NASA and are now under study.
At present over 12,O00 forms have been

collected (figure I) on some 30 projects,

1 1 7
• C H 1627-9/81/0000/0117500.75 © 1981 I E E E

Run Analysts Form 1834
Component Status Form 2669
Resource Sulama ry 142
Chan~.e Report Form 4047

C o ~ l p o n e n t S u m m a r y F o r m 3 0 0 3
General Project Suml~lary 62
~la [ntenance Form 33

Figure I. Forms collected by early 1980.

ranging in size from several thousand to

over I00,000 fortran source lines. Effort
for each project varies from a few raan
months to about I0 raan years, and most of
the larger projects take about a year to
complete. The programs generally p r o v i d e
attitude orbit information for unmanned
spacecraft a n d operate on an IBH 360/95
computer; however, we view them simply as
large appllcat~on programs that include
many characteristics of any software
package, such as user interfaces, graphics,
data base accesses, scientific computations
and other characteristics.

Cluster Analysis
The information on software production

is collected on a set of forms. Some forms

are filled out on a regular basis. For
example, the Component Status Report,
filled out weekly by each programmer, gives

the colaponents of the system worked on that
week, hours worked, and phase of
development (e. g. design, code, test).
With this data, a snapshot of the
developing program can be computed, week by

week. The Resource Summary gives the total
hours spent by all personnel on the project
for a given week.

Other forms are filled out when needed.
Each colnputer runs results in an entry in
the Computer Run Analysis form giving

details of the run. Each change or
correction of an error results in a Change
Report Form being filled out giving the
details of the change, its cause, and its
effect. With this data, a complete history
of a developing program can be maintained.

As each form is entered in our data

base, it becomes a vector of numbers. Thus

each project creates a number of data sets,
where each data set can be considered a
multidimensional vector space with

individual forms being points in that
space. Obvious questions that arise from
this view are which points are near one
another, does the location in the space
have any meaning, and do clusters of such
points have any significance?

In order to answer such questions,
cluster analysis is being applied to this
data. The rest of this section will
describe the assumptions that- we have made
and the algorithms that we have used for
creating clusters. The remaining sections

will descibe the various applications that
we have applied cluster analysis to.

In order to cluster data, the following
ali;orithm was used :

(1) L e t x a n d y be t w o p o i n t s (f o r l n s) i n
o n e d a t a s e t a n d l e t d x y b e t h e " d i s t a n c e "
b e t w e e n p o i n t s x a n d y . F o r t h i s s t u d y we
used the similarity between two vectors via
the cosine funct ion [Salton - %long] a s our

distance function since the usual
Eucliddean distance oeasures did not seem
relevant t o components with different

characteristics. Let xi and yi he the ith
selectors (data wllues) of vectors (forms)
x and y. Then

~ x i y
dxy = _

2 2

dxy will have some value between 0 (if x

and y are dissimilar) and I (if x and y are

similar) .

(2) Choose some threshold value B with B
between 0 and I. We assumed that fnr dxy<B,

x is sufficiently dissimilar to y and
therefore x is unrelated to y. If dxy>B, x

and y will be considered to be related.
Later we will describe the various ways of
choosing B.

(3) Compute the connectivity matrix C

such that

Cxy = ~ t r u e i f dxv_>B

f a l s e i f d x y < B

Cxy=true means that nodes x and V are near

one another and are considered to be
connected. Since dxy=dyx, C is a symmetric
matrix. We have now converted the distance
matrix into a graph-structured connectivity

matrix. Cxv=true means that there is an
arc from node x'to node y in some subgraph
of all nodes. It is only necessary to
compute the total subgraph of connected

nodes in order to arrive at the cluster.

(4) The connected subgraph can be
computed by computing the transitive

closure C* of C:

1 2 3 n

C* = C + C + C + ... + C

where addition and multiplication refer to

the logical operations of "or" and "and",
respectively. In this case, C*xy = true if

and only if x and y are in the same
connected subgraph.

The set of subgraphs forms a disjoint
set of clusters. Every point belongs to
one and only one (possibly singleton)

cluster.

118

This algorithm was used to cluster based

upon subsets of the possible selectors for
each vector. Various other criteria (e. g.,
an additional selector not used in
clustering) were used to see if they were
predictors of which cluster a given form
would reside. If so, then this selector is
a dependent variable, and relating back to
the original goals of the research, would

indicate a relationship between the

methodology (as specified in the criteria)
and the data collected on the forms.

Development Histaries

Current software folklore states that
better systems result if a greater emphasis
is placed on design. Each such report gives
its own correct formula (e. g. 40% design,

20% code, 40% test), but very little

quantitative data exists for verifying such
relationships. Host studies basically state
that "we did it this way and the results

look good." As an initial test of cluster
analysis we decided to investigate this

question. This would also be a relatively

easy test on the merits of cluster analysis
itself as a valid measuring tool in our

environment.

In our data base we collect the number
of hours each programmer spends each week

on each component. A component roughly
translates into a Fortran subroutine . The
stage of development worked on (design,

code, test) is also indicated (figure 2).
(The group that we are monitoring at NASA
gets the specifications from another group
and a third group takes over the software
for its operatlonal lifetime. Thus we are
only evaluating the actual development
process.) For this reason, the percentages
that we develop later in this paper dl[fer
from more "classical" life cycle models,
since we are mostly ignoring requirements,

specification and operational phases.

Due to high computer costs, we limited
ourselves to the 50 largest components (out
of about 400) per project assuming that
most of the effort on a project will be
used to build the largest components. These
will have a greater influence on the
overall methodology than the others. The
largest component needed about 400 hours to
complete while the smallest of the 50
required about 25 hours.

Assuming a continuous curve, smoothing
techniques were applied. In order to

compare dissimilar components, the time
axis was converted from weeks into deciles
and the effort (vertical) axis was

converted into per cent of total effort.
Thus any two components were comparable
(figure 3).

UEEK DESIGN CODE TEST
1 3 3 . 0 0 . 0 0 . 0
2 4 0 . 0 0 . 0 0 . 0
3 42.0 0.0 0.0
4 89.0 0.0 0.0
5 1 . 0 0 . 0 0 . 0
6 i0.0 0.0 0.0
7 7.0 0.0 0.0
8 l O . O 2.0 0.0
9 0.0 2.0 0.0

lO 0.0 8.0 6.0
11 4 . 0 6 . 0 1 . 0
12 1 . 0 2 . 0 4 . 0
13 0 . 0 6 . 0 4 . 0
14 0.0 5.0 2.0
15 0 . 0 0 . 0 0 . 0
16 1 . 0 1 . 5 7 . 0
17 0 . 0 0 . 0 6 . 0
18 0 . 0 3 . 0 1 8 . 0
19 0 . 0 0 . 0 4 0 . 0
TOTAL 2 3 8 . 0 3 5 . 5 8 8 . 0

(a)

A So] :t,i--+i~.+~+i+:4J, r+{h:+~:+t~,
I | L.(ll.+ ,++i+++,b-de,'+elo:.:.+ta+,,L ~-~f+ic++se

1 Shc,'~ I. ,,~t'++h .-+ t c+c+.;L i +,.: >+h+:;!+,o

(b)
Figure 2 . Error% (in hours) l o develop a t y p i c a l
component (by week)

FiKure 3- Smoothed and sca led data of fiKure 2.

!19

Module Modifiability

In order to pick an appropriate B,
various values were tested on five projects
(figure 4). As B varied between 0 and 1, 4
of the five tested project had similar
~umber of clustered components. Only
project ~ differed and project ~ was the
only one of the five that consisted mainly
of reused modules from similar previous
projects. Thus the number of clusters,
relative to B, may be an invariant that can
be used to measure the "newness" of the
source code. Such a measure can be
objectively applied to a given project to
determine the degree to which previous
source code has been modified for this new
project.

We used a B that forced the largest
cluster to be under 20 components in size.
A smaller B caused many of the clusters to
merge into one large cluster while any
larger B caused cluster size to drop
rapidly.

%,_i a •

4,: ,?

r ,~ 5J,

0

'2

J

r

7-

Z'q

C

:" E

,$

y

/

- - - r - - ) Y - - - 7

. 5 0 , 3 . : DO . 7 0 3 .~:D[;

Figure 4. Number of clusters as B varies (for
projects A, B, C, D, and E)

Project A

UNCHANGED CHANGED
6 2
0 5
0 2
0 3
0 i0

0 2

Unchanged: I0

Project C

UNCIIANGED CHANGED

3 t
2 0
2 0
i I
0 2
0 2

Unchanged: 32

P r o j e c t E
UNCt tANGED CHANGED

3 1
I 15
0 3

0 3
0 2

Unchanged: 8

Project B

UNCHANGED CIIANGED
2 5
1 5
I 2
1 1
1 i
0 2
0 2
0 4

Unchanged: i0

Project D

UNCHANCED CIlANCED

3 0
2 0
I 1

0 2
0 2
0 2
0 2
0 5

Unchanged: 12

Figure 5. Clusters. Each line represents
one cluster of changed and unchanged
components

Module Correctness

Each component's development history was
now reduced to 30 values (3 at each 10
percentile), and these 30 values were used
to cluster the 50 components in each
project. As an independent variable we

considered whether a component had been
modified via a change or error. This would
be a measure of }low effective the process
had been. Once unit testing is completed, a
component is added to the project's
library. If it ever changes after that date
(due to further testing), then a change
report form is submitted. We simply looked
for change report forms that had been
filled out for the 50 components under
study.

Approximately 80% (about 40) of the 50
components for each project are eventually
altered (figure 5). However, in 4 out of 5
projects, all of the unaltered components
seem to merge into a few clusters that
contain few (if any) altered components.
Thus the shape of the development history
curve seems to be an indicator of component
reliability (as measured by the absense of
any changes during testing). The physical
significance of each "error free" cluster
is now under study.

120

P r o j e c t s A B D E

U 1,]C IIA I~(; l:~ 1) CtIARGI~I)
4 1
4 o
2 2
1 9
1 1
1 1
1 6
1 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
o 2
0 3
0 3
0 3
0 3

Figure 6. Clustering 4 projects

i

The reliability of this conclusion was
enhanced somewhat by merging all four
projects and clustering the 200 resulting
c o m p o n e n t s . In this case the e r r o r f r e e
clusters did seem to merge (figure 6).

Phase effort
We were now ready to test one of our

original hypotheses - per cent of effort in
each phase. Project D had to be eliminated
since the data collection began when this
project was mostly complete with design.

For project A, the cluster with 6 out of
8 unchanged components turned out to have:
Design: 64.1%, Code: 14.4%, and Test:
21.4% l while the five clusters with errors
broke down as follows:

DESIGN CODE TEST
4.5 53.3 42.1
0 78.7 21.2

7.3 51.7 40.8
0 34. I 65. 8
O 35.4 64.5

which clearly shows the value

design efforts.

of good

The data for projects C and E have similar
results :

PROJECT C
UNCHANGED CLUSTERS CNANGED CLUSTEBS
DES CODE TEST DES CODE TEST
8 3 . 6 16.3 O 37.3 40.2 22.3
50.9 45.O 3.9 21.4 50.0 28.5
81.7 ,]~4 14.8

i00.O* O 0

*- This showm that while we believe that the data is
a c c u r a t e ~ , some e r r o r s m u s t exist.

PROJECT E
UNCNANGED CLUSq-qgRS CHANGED CLUSTERS
DES CODE TEST DES CODE TEST

97.5 2.4 0 7.3 83.5 9.0+
25.2 67.5 7.2
1.5 82.6 15.8

24.0 7 5 . 9 O

further strengthening this result.

F o r project B, where clustering was not
as effective, tile breakdown was as follows.
F o r clusters with at [east one unchanged
c u m p o n e n t :

D E S I G N COI)E T E S T
2 2 . 0 66.2 1 1 . 3
2 7 . 6 5 2 . 8 1 9 . 3
26.0 3 9 . 7 34.2

94.9 5.0 0

and for clusters with changed components:
I) I ; S I C N CODE T E S T

7 8 . 9 1 5 . 3 5 . 6
6 . 2 b 6 . 7 2 5 . 9

2 2 . 4 2 4 . 1 5 3 . 4

and do not seem to have much significance.
Project B, interesting enough~ w~s the one project
that had the hardest time meeting its objectives.

In order to put these numbers in
perspective, for the NASA environment, the
per cent design, code and test effort was
computed. If tile data is displayed in the
conventional manner using official
milestone dates for each phase (figure 7a),
then design accounts for about one quarter
of the effort, and code for about one half.
I l o w e v e r , if the actual phase effort is
computed independent of the date the task
is performed, then the percentages change
significantly. Design increases about 10%
and coding drops about 5%. Thus in the NASA
environment, simply using milestone dates

results in:
(I) Underestimating the actual design

effort, and
(2) Overestimating the actual code

effort.

One other aspect of this data can be
seen by col•paring the per cent of a task
that was performed after its official
milestone date (or before in the case of
testing) (figure 7b). Note that a
consistent 23%-25% of the design occurred
during the coding phase and up to half of
the testing occurred before tile official
test phase. Since module unit testing was
considered to be part of the development
phase (for figure 7), this seems
significant. In addition, since project B
was the most behind schedule, the 38% of
design that occurred during coding might
indicate a too early design milestone which

i

+ - The c l u s t e r with o n e unchmnged and 15 c h a n g e d
c o m p o n e n t s w a s c o n s i d e r e d • c h a a g e d c l u s t e r f o r t h i s
c h a r t .

121

caused other problems later. Thus using
milestone dates for phase determination
must be viewed with caution.

Error Histories

A second test of cluster analysis was
performed by analyzing the change report
form, mentioned previously. Unlike the
previous study on component development
histories, where each data point
represented 30 related attributes (per cent
effort), the change report form consists of
approximately 50 items that seek to
identify a source program error, its cause,
effects, and effort used find and correct
the error. Figure g lists the selectors we
used to cluster each form.

It was assumed that each set of
responses on one form indicated a technique
used to debug a system. Therefore the set
of forms could be as a measure of the
methodology used. It was assumed that
different projects using different
methodologies would have different clusters
of change report forms.

In one run the programmer was the
independent variable (i. e. , not used in
cluster analysis). Thls was to determine
any blas in the way different programmers
filled out the forms. However, to the .05
significance level, all programmers were
uniformly distributed in all clusters. The
conclusion therefore seems to be that in
our environment, all programmers are doing
essentially the same Job. This would
indicate that there is no real chief
programmer/programmer dichotomy in the
tasks we measured. Thls agrees wlth the
subjective conclusions about these
projects.

I

PROJEC~ BY DATE I BY PIIASE , , .

B 2 6 8 . 2 9 . 5 34 1 4 5 . 6 2 0 . 2
C 4 6 1 . 6 1 1 . 0 3 6 . 8 4 8 . 7 1 4 . 5
E 2 5 2 . 3 1 7 . 4 4 2 . 0 5 0 . 4 7 . 6

(a) P e r c e n t d e s i g n , c o d e a n d t e s t by
m i l e s t o n e d a t e a n d a c t u a l t a s k

%DESIGN DURING %CODE DURING|%TEST DURING
CODE TEST | D E S I G N & CODE
A 23 27 | 49
B 3 8 4 | 67
C 25 8 I 56
E 25 21 | 24

i
(b) Per cent effort during another phase

(Data collection began a f t e r the d e s i g n
phase of project D, so it is omitted here.)

Figure 7. Project task breakdown by date
and phase

Dates (time error found, fixed)
Type of e r r o r
Time to make and fix change
Causes of error
Tools to flnd error
Was error related to other errors
Time to locate error
Clerical error

Figure 8. Sample data used in change report

m i

Methodology Signatures

The set of clusters for an entire
project define the basic methodology for
developing a software project. We call this
set of clusters its methodology signature.
Two similar projects using similar
techniques should have similar signatures.
That is, they should find each type of
error in approximately the same ratio using
similar techniques for the discovery.

To test this we clustered the change
report forms of several projects, t h e n we
combined the forms for two of them and
clustered the merged set. Each cluster in

the merged set represented two clusters -
one from each set. We counted the number of
components in each cluster and graphed
these (figure 9). Note that large clusters
tended to merge with large clusters and
small clusters wlth small clusters. The
merged set of clusters had a correlation
coefficient of .32 with respect to the
clusters that make up the set.

This leads to an interesting methodology
measure. First cluster two of the sets of
change forms and then look at the clusters
formed by clustering the combined set of
forms. If they have similar patterns and
similar clusters merge together, then they
indicate similar development structure and

1 =

10 .i

I I I I I I

w I

I

10 15

FJ4Bure 9 . Ntunber o f componen t s f rom p r o j e c t A
(h o r i z o n t a l) and p r o j e c t B (v e r t i c a l) i n j o i n t
cluster8.

122

probably similar methodologies. It not,
then further study is indicated. Either the
methodologies differ, or the class o f
errors f o u n d differ for some reason.

An interesting i d e a (although only
speculation at this time) would be to

generate a set of benchmark projects each
representing a different methodology. An
unknown project could then be clustered
with each, and the one for which the merged
graph generates the highest correlation
would represent the unknown methodology. If

this turns out to he true, then this
technique would represent a quant [tat ive
method to measure a software methodology.

R e f e r e n ¢ e ~

[Anderberg] Anderberg H. A. , Cluster
AnalYsis f o r aDplicatinn.~, Acadetlic --~,3"-r-e-ss--,-
New York. 1973.

[Basili - Zelkowitz] Basili V and I1
Zelkowitz, Resource estimation for medium
scale projects, Third international
Conference on 3oftware Engineering, Atlanta
Georgia, 1978.

[Salton Uong] Salton G and A Wong,
Ceneratlon and search of clustered files,
ACH Tr;~n~,~etions on Database Systems 3. Po.
'~~. - 1 9 7 8 - - ~ - p p . 3 2 1 - 3 - ~ 6 , - .

Cone1 us ions

Cluster analysis has been applied on

data collected by tile Software Engineering
Laboratory on several projects. The
preliminary results should that the
technique is effective in determining
characteristics about the projects and the

underlying methodology used in their

development. Several measures seem
interestlnp and are now under study:

(I) The threshold value in determining
c o n n e c t e d n e s s o f t h e u n d e r l y i n g g r a p h
structure (called B in this report) seems

to have significance and seems to be a
measure of the "reusability" of the
existing source code in a new project.

(2) The development history is an
indication of probable program
reliability.

(3) The methodology signature developed

from analyzing the change report forms
looks like an effective measure of t h e
techniques used in developing projects.

(4) Iiore complex measures of distance
between points are being considered. The
current one has tlle virtue of being easy to

program but has the disadvantage that long
threadlike "snakes" of points will be in
~he same cluster, rather than some central
"cent roid" with only points near than
centroid being in the cluster.

The entire software development

methodology area is often filled with vague
statements, folklore, a n d lack of

quantifiable data. It is h o p e d that
techniques such as described here can he
used to give this important topic a more
quantifiable, exact and scientific
footing.

Acknowledgement

We would llke to acknowledge the
contribution of Hr. Warren Ililler in
computing many of the values that are
described herein.

123

