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Abstract

I n devel opi ng i nformati on technol ogy, you want assurance that systens are secure
and reliable. Correctness is an attribute that one strives for in order to

achi eve those goal s, but you cannot have assurance or security w thout
correctness. W discuss nmethods used to achi eve correctness, focusing on
weaknesses and approaches that managenent m ght take to increase belief in
correctness. Formal nethods, simulation, testing, and process nodeling are
addressed in detail. Structured progranmng, life-cycle nodeling |like the spira
nodel , use of CASE tools, use of formal methods applied informally, object-
oriented design, reuse of existing code, and process maturity inprovenent are

al so mentioned. Reliance on these nmethods involves sonme el enent of belief since
no validated netrics exist. Suggestions for using these nmethods as the basis for
manageri al deci si ons concl ude the paper

1. Introduction

"Engi neers today, like Galileo three and a half centuries ago, are not

super human. They nake nistakes in their assunptions, in their calculations, in

their conclusions. That they make m stakes is forgivable; that they catch them
is inmperative. Thus it is the essence of nbdern engineering not only to be able
to check one's own work, but also to have one's work checked and to be able to

check the work of others." [Petroski, 1985]

Assurance is definedl as "the confidence that may be held in the security
provided by a Target of Evaluation." Informally, assurance is a "warm fuzzy
feeling" that the systemcan be relied upon to reduce residual risk to the
predeterm ned |l evel. Wthout delving into psychol ogy, we observe that
effectiveness and correctness both contribute to assurance. Effectiveness is
determ ned by anal ysis of the specifications of the functional requirenents; the
environnent in which the systemwi |l be used, the risks, threats, and

vul nerabilities; and all the countermeasures, including physical

adm ni strative, procedural, personnel, and technical. The systemis considered
effective if the result of this analysis is an acceptabl e residual risk.
Correctness is deternm ned by comparing the inplenentation of the counterneasures
with their specification. The systemis considered correct if the inplenentation
is sufficiently close to the specification. Note that this definition of
correctness is conpatible with the concept of risk nanagenent and is closer to
the concept of trustworthy than to error-free.

Thi s paper shows how correctness can be established. Al known met hods
contributing to correctness have shortcom ngs that nake it inpossible to
establ i sh correctness beyond reasonabl e doubt. That is, establishing correctness
is a natter of belief, not proof. Under conditions of belief, we caution fisca
prudence in resources invested in assuring correctness. The naj or nethods
addressed in this paper are mathematical nodels, sinulation, testing, process
nodel s and procedures. M nor nethods, called silver bullets, include structured
progranm ng, the spiral nodel, Conputer Aided Software Engi neering (CASE) tools,



formal net hods applied infornmally, object-oriented (OO progranm ng, reusing

exi sting code, and process maturity. Cost benefit is offered as a nmeasure for
sel ecting which belief systemto enbrace. W recommend hedgi ng one's investments
by using nore than one net hod.

Security-critical information technology (1 T) systens2 are extrenely dependent
on correctness. In systens involving human |ife and safety, correctness is
paramount. A security-critical |IT systemnust do exactly what is identified in
its specification and not do anything that is not so specified. Correctness of
software always has to be with respect to a specification

Various nethods nay be used to denonstrate correctness, but all are less than
perfect and involve sonme elenent of belief in relying on the results of using
that method. That is, it cannot be proven that a method is "good" or "better."
The net hods are conpl enentary in contributing to correctness itself as well as
in contributing to belief in correctness. There is a growi ng consensus that, to
say the least, no one technique can provide adequate assurance (see, for
exanpl e, [Butler, 1993]). David Parnas [Parnas, 1990], anong others, has
suggested that an "assurance tripod" is required: the conbination of rigorous
testing, evaluation of the process and personnel used to develop the system and
a thorough review and anal ysis of various products produced during devel oprent.
In the pragnatic end, managerial judgnent determ nes resource allocation to
correctness and assurance. In this paper, we focus on practical product
correctness and the various problenms one has in achieving this correctness.

We should learn from branches of natural science and engi neering that have been
trying to understand conpl ex systenms far |onger than computers have existed. One
i mportant objective is to recogni ze when sinplifying assunptions are valid and
when they are dangerous. One of the authors |learned as a sophonore that "the
essence of engineering is to nmake enough assunptions so that you can solve the
problem w thout assunming the problem away."

Let us consider whether formal theories of progranm ng are good approxi mations
of real programs executing on real conmputers. Although the theories are
relatively sinple, applying themto realistic prograns vastly conplicates the
nodel . You cannot even assune sinple axions |ike "For all integers i, i+1>" on
fixed wordsi ze conputers since integer i may "overflow' and have an unspecified,
negative, zero, or the sanme val ue, depending upon the particul ar hardware
executing the program Mathematical nodels of conputer prograns generally do not
accurately represent the subtlety of prograns in an environnent (i.e., execution
on real hardware). In sonme sense, the nmathenmatics of conputer nodeling bel ongs
in the real mof applied rather than pure mathematics. Wen we use Chnls | aw,
Kirkoff's rules, etc., to design an electronic circuit or use Newton's laws to
predict the orbit of a satellite, no one is saying that they have "proved" that
the circuit works or that the satellite will be exactly where they said it would
be. By the sane token, when we nobdel a conputer program usi ng sone nethod such
as Hoare's [Hoare, 1969] we then have sonme confidence (nmaybe little) that the
program when executed wi |l behave nuch as we predict (but perhaps not exactly
like we predict-e.g., integer overflow). This requires that even sinple prograns
have conpl ex proofs in order to show that the mathematical properties of the
program behave as desired. Sinple formalisns for prograns are too conplex to
accurately represent nost programs in execution on physical nmchines.

This insight shows that formalisns in programm ng are very different from
formalisms in the natural sciences. In the natural science, you have a theory
(e.g., Laws of Mdtion) that is a good approximation to the physical interactions
anong objects. In physics, a sufficiently accurate approximation gives usefu



results. In contrast, for progranm ng, you rust approximate the program and the
hardware (e.g., assune integers are infinite) in order to have any relationship
to the formal nodel. A key difference is lack of continuity. In programm ng

di sastrous exanpl es of integer overflow and other discontinuities show that the
supposed approxi mations are not necessarily close. Use of discrete logic to
nodel these | eads to expressions of enornous conplexity [Parnas, 1985].

Al ternatively, nmodels could incorporate known characteristics and Iimtations of
the conputer to increase their veracity. W do not wi sh to conpare good nodel s
of physics with bad nodels of computers. Newton's |laws do not work well for
objects at near the speed of light or for objects that are not in inertia
frames of reference. Likew se, a Hoare nodel of conputer system behavior is a
poor representation if the integer values are at or near the overflow. One would
need to nodify the nodel to accommpdate the overfl ow behavi or. Once havi ng done
so, the nmodel would be better.

Several nethods have been devel oped and been accepted over tinme to denonstrate
the correctness of conmputer programs. None of these heuristics are true in the
sense that they portray absolute infallibility of the method. Each has
proponents and detractors. In the next section, we describe these nethods,

expl ore ways in which each acconplishes its task, and draw sone concl usions from
thi s anal ysis.

2. Correctness nethods

Several techniques are regularly enployed to show that a conputer program does
exactly what it is supposed to do and nothing else. The first two descri bed

bel ow, formal nethods and sinul ation, anal yze the program and derive properties
about it. The third, testing, experinents wth program behavi or, perhaps using
some information derived by application of the first two techniques. The fourth
techni que, process nodels and procedures, |ooks at the devel opnent process
itself under the assunption that good devel opnent practices result in good
sof t war e.

Each nethod is described briefly, enphasizing its advantages, disadvantages, and
contributions to our belief system A comon distraction with all nmethods is the
conpl exity of execution. The steps, processes, or nmanipul ations that constitute
the practice of the nmethod can be so overwhel mi ng that perspective is lost. W
agree with Hamm ng [ Hamm ng, 1962] that "the purpose of computing is insight"
and that it is difficult to retain perspective and insight in the face of
conplexity. It is very easy to get caught up with all the mechanics of enploying
a nethod so that in practice the nechanics get enphasized at the expense of
under st andi ng.

"When you can nmeasure what you are speaki ng about, and express it in nunbers,
you know sonet hi ng about it; but when you cannot neasure it, when you cannot
express it in nunbers, your know edge is of a neager and unsatisfactory kind"

[ Kel vin, 1881]. Metrics of correctness need to be devel oped and applied to

i ndi vi dual met hods and conbi nati ons of nethods. W need to replace belief with
analysis if at all possible. Wiile early work on the Capability Maturity Mode

[ Paul k, 1993] and the Experience Factory [Basili, 1992] show that we may devel op
such netrics, nore needs to be done.

2.1 Formal Methods
The use of fornalisns stens fromtwo rel ated observations: natural |anguage

tends to be inmprecise, and in achieving precision, there is the potential for
aut onmati on. Mathematical notation has the advantage of precision and is



associated with rigorous, |ogical thinking that assists in reducing anmbiguity.
In principle, formal nodels of IT systens can support all phases of the system
devel opnent process -articulation of policy for use, high-level architecture,
design, and inplenentation. Today, fornmal nodels of security policy help perfect
under st andi ng and devel opnent, especially of new policies. Wile fornal
specifications are used in Europe, they have not nade nmuch of an inpact in the
United States. No language is likely to be a cure- all in achieving higher

| evel s of abstraction, and nore natural nodels of problem spaces, for al

pr obl em spaces.

In discussing formal nethods, we have to be sure to differentiate them from
formalized nethods, such as Conputer Assisted Software Engi neering (CASE) tools,
structured anal ysis, and ot her mechani zed net hods for devel opi ng source prograns
[ Rushby, 1993]. In using formal methods, one traditionally begins with a formnal
description of the specification of a software system according to sone
under|ying mat hemati cal nodel and the realization of that specification as a
concrete design or source code inmplenmentation. (Qther possibilities are to start
with a description of how the systemis to be used, or to |l et an automated
deduction system participate directly in the construction of |ater design and

i mpl enentati on stages.) Using mathematical principles, one shows that the
program agrees with the nodel. For exanple, axiomatic verification, perhaps the
ol dest of the formal techni ques, assunmes we have a programsS, a precondition
(specification) P that is true before the execution of S, and a postcondition
(out put specification) Q W need a proof that denonstrates: (1) the
relationship anong S, P, and Qthat determi nes the effect programsS has on P to
assure that Qwill be true after execution term nates, and (2) program S does
indeed terminate if Pis true initially [Hoare, 1969]. If we derive a set of

axi ons for each statement type in our |anguage (e.g., rules for describing the
behavior of the if statement, the while statement, the assignment statenent),
then we have tied program correctness to the problens of generating correct

mat henati cal proofs. But we still have not proved that the program when executed
on a specific conputer is correct because of the very problens raised earlier

At best we have shown that the fornmal description of the programsatisfies its
specification (i.e., produces the given post condition when the precondition is
true) [Fetzer, 1988]. Qur confidence in the correctness of the programis
dependent on our confidence that our formal nodel is an accurate representation
of the target conputer.

As described previously, when we use formal nmodels we need to suppress details
to make the nodels tractable. Unfortunately, many of the details suppressed in
the formal nodels are inplenentati on dependent and security rel evant. Forma
nodel s are | osing ground to the conplexity of networked and distributed systens.
It is difficult to scale up the traditional use of formal nethods to |arge
conpl ex systenms. \Wile they may appear to work satisfactorily on small "toy"
probl ens, there has been little evidence that they scale up very well [Parnas,
1985] .

"Larger exanples are necessary to denpnstrate how these concepts scal e up"

[ Youngbl ut, 1989, p. 58]. Formal nodels are often applied to conplex systemns
conbined with other belief systems. For exanple, variants of the Bell-LaPadul a
security policy nodel [Bell, 1974] are often cited as the basis of operating
system security, but the actual inplenentations also include security- relevant
processes, called trusted or privileged, that are not formally nodel ed. Beli ef
that security is preserved after introduction of these processes is often
establ i shed by non- formal nmeans. Practitioners of fornmal nodeling sonetines
appear to forget about the assunptions and sinplifications that were nade to
nmake their nodels tractable and fail to caveat the applicability of their



results to the real world. This is an error on the part of the practitioners. A
great deal of the sinplifying assunptions are nade because the nodelers sinmply
do not know how to nodel some of these features (although many are certainly
susceptible to being nodel ed), or the resources avail able do not permt npdeling
the necessary details. Perhaps the practitioners are not experienced enough in
this kind of mathenmatics.

Wthin the imts inposed by the sinplifications and assunptions nade for the
sake of tractability, formalismcan be used both to determi ne correctness of the
i npl enent ati on and adherence of the systemto certain properties. W can prove
that a given procedure nust return a certain value and al so show that certain
policies are never violated. Many observers believe that formal policy nodels
have their maxi mum benefit in removing inconsistencies, anbiguities, and
contradictions in the natural |anguage policy statenent. The process of
formalizing the policy aids in clarifying the policy. This process then has the
secondary benefit of making a clearer statenent of policy to the inplenentors.

Al t hough formal nethods are based on nmat hematical proofs, we must realize that
even mat hemati cal proofs may have flaws. "Qutsiders see mathematics as a cold,
formal, |ogical, nmechanical, nonolithic process of sheer intellection... [but]
Stani sl aw U am esti mates that nmat hematici ans publish 200,000 theorens every
year. A nunber of these are subsequently contradi cted or otherw se disallowed,
others are thrown into doubt, and npst are ignored. Only a tiny fraction cone to
be understood and believed by any sizable group of mathematicians” [DeMIIlo
1979, p. 272]. Although mat hematicians do not like to admt it, correctness can
be likened to a social process-it is only the test of time where no flaw has
been di scovered that builds our confidence in the ultimate truth of a theorem
Al'l scientific processes have flaws. Petroski [Petroski, 1985] argues that
failure is an inmportant part of engineering design. It is only when things fai
that we understand how to make them better. How well would we be desi gning
bridges if none ever collapsed? Either we have overbuilt themto a point of
econom c stupidity, or we have never stressed themsufficiently. W hope that by
our continuing (unsuccessful) attenpts to nodel conmputers, we are |earning
somet hi ng.

2.2 Simulation

Simul ation is the devel opnent of a sinplified version of a systenis
specification by elimnating non-critical attributes to devel op a systemthat
exhibits relevant properties. By ignhoring certain properties, it is often
possi bl e to quickly and i nexpensively build sinpler versions of a system Using
this simulation, security-related principles can be nore readily devel oped and
exam ned. This increases our belief in the ultimte specification since we have
denonstrated the exi stence of an inplenentation that already has the desired
properties.

While we can simulate a systemto test the security policies, the interaction of
these policies with the assumed-away specifications of the conplete system
severely lowers our belief in the correctness of the overall systemw th respect
to security. By definition, one is "abstracti ng away" non-essential aspects of

t he system when doing sinulation and nodeling-yet it is very hard to devel op
"non-interference proofs" for those nissing aspects, so that you have confidence
that they really won't change the behavior of interest in the "real" system It
is only by testing (and/or formalism applied to the conplete systemthat adds
to our belief in this product-although the existence of a sinmulation that

i mpl enents our security policy does provide a sort of existence proof on policy



and increases our confidence (i.e., belief) in a conplete inplenentation. (See
spi ral nodel discussion, bel ow)

2.3 Testing

Testing denonstrates behavior by executing a systemusing a selected set of data
points to show that the system executes correctly on those points. The
assunption is made that if the set of data points is chosen appropriately, then
t he behavior of the system for nost data points will be anal ogous to the

sel ected data points. If we believe that the selected data points are
representative of the dommin of data in which we interested, we have confidence
in the correctness of our inplenentation. Choosing the selected data points and
t he best nethod of testing our program are our major decision steps toward
determ ning our belief in the correctness of this system Know edge gained from
formal mnet hods, code anal ysis, and sinulation can help focus the selection. As
poi nted out by Leveson [Leveson, 1992], "testing researchers have defined

t heoretical ways of conparing testing strategies both in ternms of cost and

ef fecti veness (for exanple, [Wyuker, 1991]), formal criteria for evaluating
testing strategies (for exanple, [Goodenough, 1975]), and axi onms or properties
that any adequacy criterion (rule to determ ne when testing can stop) should
satisfy (for exanple, [Wyuker, 1986])." Analytic results can also indicate when
statistically significant measurenment results have been obtai ned [ Manrak, 1979].

Testing methods can be divided into functional, performance, failure-nbde, and,
for security, penetration. Functional testing includes testing against a catal og
of flaws previously discovered in this or other systenms. The major thrust of
security testing is in penetrating (i.e., violating the security policy),

t hereby measuring the resistance to anticipated threats. The presence of
anticipated threat actions, possibly by a malicious adversary, distinguishes the
security concerns in a system

Testing functional specifications is usually achieved by black- box testing, in
which the tester only has access to the specifications of the program while
testing specific program behavi or by understandi ng the design is achi eved by

gl ass-box (a.k.a. white-box) testing, in which the tester has access to the

i nternal source code of the program Security testing of high-assurance systens
proceeds with extensive docunentation of design and inplenentation. Varying
degrees of assurance are obtained according to the information available to the
testers, including security kernel code, design docurmentation, and formal
nodel s. The val ue of penetration testing depends on the experience of the
testers and the nethodol ogy enpl oyed. |1V&V (Il ndependent verification and

val idation), where a group independent fromthe devel opers is charged with
testing a system is sonetines effective in finding errors that devel opers who
"know' the source program sonetimes overl ook. However, |V&V is expensive and
many applications, especially ones without high reliability requirenents, do not
benefit fromthis added | evel of assurance [Page, 1985].

The cl assical exanple by Dijkstra shows that exhaustive testing cannot prove
correctness of any inplenmentation. To prove the correctness of "a+b=c" on 32-bit
conputers woul d require 232x232 = 264 or over 1019 tests. At a rate of even 108
tests per second, that would require 1011 seconds or over 3,000 years. Perhaps
we shoul d ask oursel ves whether we really have so little understandi ng of the
operation of a conputer that we have to test addition, for exanple, for al
possi bl e addends to be convinced that the addition function is working
correctly? Under what conditions can we state a general argument that works in
the face of overflow? Although it is recognized that testing cannot be



exhaustive, testing has a very strong intuitive appeal and constitutes a very
strong basis for belief in correctness.

Testing always involves conparing the actual results of execution with
anticipated results. One way to capture anticipated results is to test an
execut abl e specification of a prototype. Once this is done, it is possible to
automatically execute the systembeing tested and its specification in parallel
and to automatically conpare the results, thereby greatly increasing the nunber
of feasible test cases [Taylor, 1985].

2.4 Process Mddel s and Procedures

Al'l of the previous techni ques depend upon subjecting a programto one of the
di scussed nethods to increase confidence that the program exhibits correct
behavi or. However, as we have often stated, this is extrenely difficult to do.
As an alternative, perhaps it is easier to understand the mechani sns used in
devel opi ng the program under the belief that correct methods yield correct
programs. The idea underlying process nodels is that understandi ng what you are
doing is a necessary step to inprovenent. By using a sinple, well understood
process to devel op software, we have belief that the ultinmate product best neets
our needs. Two process nodels currently enjoy favor: waterfall and spiral. The
United States Departnent of Defense (DoD) standards inply (but do not require)
use of the former in managenment of software devel oprent.

The waterfall nobdel [Royce, 1970] conceives of software devel opnent as a linear
process based upon a set of deliverable artifacts. There are easily recognized
nm | est ones between steps in the process. Al though the nechanisns of the process
are generally obscure-only the results of the process are visible. Therefore,
the waterfall nobdel uses these products-a specifications docunent, a design
docunent, a source file, and the results of testing, for exanple. These

nm | estones can support a managenent strategy of schedul es and revi ews.
Recognition that the process is not perfect led to the introduction of feedback
paths in the nodel. If drawn as a waterfall of steps, the feedback paths suggest
sal non swi mm ng upstream The feedback paths represent know edge gai ned in
latter steps that affect activities and decisions nade earlier. It nmay be
necessary to adjust, or even abandon, earlier work as a consequence of feedback
In practice, schedules tend to not allow for such corrective action. Non-
techni cal project managers are often determined to neet their schedules, no
matter what the consequences [Stillman, 1993].

Because of all of these deficiencies, belief in the waterfall nodel as a usefu
net hodol ogy for devel oping software that satisfies its specification has been
slowl y decreasing, and an alternative spiral nodel has been gaining favor

[ Boehm 1988]. The spiral nopdel enphasizes the process of devel opi ng software
rather than the resulting products. It is also called a risk- reduci ng nodel,
since the basic premse is to develop and prototype a solution, evaluate the

ri sks of addi ng specifications, and repeat the process. Each cycle of the nodel
creates a nmore conplex version of the system with the ultinmte prototype being
the final systemitself. At each stage, we use COccanmls razor to sinplify our
solution, we make the process of devel opnent as visible as possible, and we try
to quantify the risks involved in continuing devel opnment. Thus, our belief in
the solution should be higher than with the hidden processes inherent in the
waterfall model. The spiral nodel enphasizes the repetition of basic activities
at progressive stages of a project. The exact activities change as the project
mat ures, but such activities as design, inplenentation, testing, evaluation, and
pl anning are related. Changing requirements are nore easilly acconodated. The
cost is represented by the radial distance in a polar coordinate systemand the



activities occur at a specified polar angle. Progress is assuned proportional

or at least related to, cost. Wile the theory of the spiral npdel accombdates
redesi gn and backtracking, the inmposition of schedul es can have exactly the sane
effect as on the waterfall nodel.

3. Choosing anpong alternative beliefs

Sof tware engi neers pronote one technique after another as the "silver bullet"
[ Brooks, 1987] solution to all our problenms. This section examnm nes the nopst
popul ar silver bullets.

3.1 Tarnished Silver Bullets

To address correctness in system devel opnent, many techni ques have been proposed
as potential solutions (e.g., see [Chang, 1993; Davis, 1993]). Al techniques

i nvol ved a neasure of belief as groups of professionals argued anmong thensel ves
regardi ng the appropriateness of their favorite nethod. None has conpletely
provi ded the warm fuzzy feelings we want

a. Structured progranmmng (e.g., "goto-less progranm ng" of the 1970s) nmkes
progranm ng easy and correct. Twenty years of experience have shown that quality
has inproved, but not to the level initially proposed. There is a relationship
between the restrictions inposed by using only the appropriate contro

structures and formal verification of the source code produced; however, errors
still occur in such prograns [Zel kowitz, 1990].

b. The spiral nodel is superior to the waterfall nodel. The spiral nodel was
an inprovenent in that it enphasized the process of software devel opment with
attendant interest in the managenment, risk evaluation and reduction, and
prototypi ng aspects of the process. Note that this is an exanple of Petroski's
t heses. Because the waterfall nethodol ogy has proved i nadequate to produce good
software, a new nethodol ogy (spiral) has been introduced. Wen it is determ ned
that the spiral also is inadequate, creative people will develop a new system
Since we do not have good measures of correctness, it is difficult to know how
to make the process better. Note also that the spiral nodel and the waterfal
nodel that it replaced both represent a sinmlar set of practices as actually

i mpl enent ed by nany organi zati ons.

C. CASE tools will supplenent the intelligence |acking in today's
programers. Unfortunately, the tools have not added nuch intelligence and
today's progranmmers could still use additional help. Case tools suffer fromthe

sanme problem as the other software we are discussing: they have errors (al
software has errors), and they are only as smart as their devel opers.

d. Formal nethods applied informally (e.g., |anguages |like VDM and Z) can

i nprove the process. Wile this seens to be true, it has yet to be denonstrated
that this approach results in the correctness that we need for security-rel ated
systems. It is not clear that our belief in these specification techniques wll
be hi gh enough to elininate the need for alternate mechanisms. Nor is it clear

that our beliefs are the only ones that count. See [MacKenzie, 1992] for a

di scussi on of mathematical argunments that qualify as proof in a court of |aw

e. nj ect-oriented (OO programing and design will replace conventiona

desi gn techni ques, and | anguages that inplenent such processes (e.g., C++) will
repl ace other |anguages (e.g., Pascal, Ada, FORTRAN). This concept represents
one of the newer trends in program design. W do not have enough evidence to
judge the effects of OO design on security. This technique does encapsul ate sone



of the formal data-structuring mechanisns into the progranm ng | anguage;

however, it nust still be observed what effects it will have on overall system
correctness. (Note that this is just the current version of the traditiona
silver bullet, "Language X will nake progranming easier." In the 1960s, we had

COBOL and then PL/I, in the 1970s we had Pascal, in the 1980s we had Ada, and
now we have C++.). Each | anguage is perceived to have failed in achieving sone
obj ective. Hence, soneone devel ops a new | anguage to correct the flaws. This
cycle will probably never end, as it is not likely that any one | anguage wll be
perfect for all applications.

f. Reusi ng existing code is the solution. Since code proven correct once need
not be so proven again, one only needs to create a library of reusable
conponents. \Wile reusing existing code is an admrable goal, we still do not

have the technology to inplenent this process. Wile we can create wite-only
libraries of reusable conponents, we have no process avail able that enabl es us
to determne the specifications of an existing library conponent and whether it
fulfills the specifications for another application. Current interests in

domai n-specific architectures and faceted classification schenes are both
attenpts at understanding the functionality of reusable components. W reuse

har dwar e conponents all the tinme, in the sense that we nanufacture identica
copies of circuit packages and other conponents. Each conponent conforns to sone
specification of performance and behavior that is described in components
manual s. Why can't we do something simlar with software?

g. Process maturity inprovenent is today's salvation [Paul k, 1993]. Current
thinking is that inproving only the process w thout |ooking at the ultimte
product being produced is all that is necessary to produce quality software.
VWhile it should greatly inprove the production of software from many

organi zations that currently have no such process, as shown often in the past,
this is a naive approach to produci ng correct software.

We do not nmean to say that the above techniques are failures. All, to sone
extent, inprove upon the quality and correctness of the resulting programthat

i s produced. Programm ng as taught in the universities and practiced in industry
today is radically different fromthat of the 1960s. However, the inportant

point is that none of them achieves the |evel of correctness that woul d support
our belief in that technique over all others.

3.2 Wiich Belief Systemto Enbrace

Resources nust be allocated anpong the correctness net hodol ogi es. Wile
managenent has been described as the art of naking decisions based on inadequate
information, the quality of decisions is often inproved by providing nore
information. Installation and use of security-critical |IT systems cannot wait
for proofs of efficacy or devel opnment of netrics for determning cost-benefit.
Managers will need to continue to nake deci sions whether or not to enploy IT.
The managerial authorization and approval granted to an IT systemto process
sensitive data in an operational environnent is, in theory, made on the basis of
anal ysis and certification of the extent to which design and inplenmentation of
the system neet pre-specified requirenents for achieving adequate security.
Security objectives can be net by a conbination of technical nmeans within the
system and physi cal and procedural neans outside the system In this theory,
when managenent accredits the system managenent is accepting the residual risk.

How can we address this residual risk? Wile we have no clearly defined netric
for this, we do have exanples of systens that seemto adequately address our
security concerns. One avenue of research is increased study of these



"artifacts"-the systens, designs, and specifications that have hel ped produce
acceptabl e solutions. This know edge shoul d enable us to produce better nobdels
in the future. However, today there is no way to neasure the residual risk, nor
is there a metric for cost-benefit. So, how is a decision nmade? Since computer
and nanagenent science cannot help verify a decision, the experienced manager's
intuition cannot be dism ssed. Experience probably includes conparison wth
previous efforts, the correctness of which has becone better known over tine.
One nust be careful to distinguish between managenent saying "I did this before
and it worked" versus "I feel safe using this since | used it before, while this
new techni que is unknown to ne." The first statenent encapsul ates the

experi ences of good nanagenent, while the second statenent reinforces
unscientific prejudices. The real problemis howto differentiate anong good
sci ence, common sense, and stubborn stupidity.

I n deciding which belief systemto enbrace, the prudent manager probably hedges
by using nmore than one system Various conbinations of formalism testing,
simul ati on, and process may be enployed. Since cost is one of the attributes we
need to address in evaluating the overall quality of the product, it is prudent
t hat managenent shoul d adequately choose from anong the techni ques those that
neet required cost constraints yet still neet functional requirenments for the
product.

4. Recomendati ons

G ven the absence of netrics for any of the belief systens, the inherent
difficulty in using any of them and the |ack of a repository of correctness
artifacts to study and eval uate, the authors do not propose to solve this
problemw th a pronouncement of correct technique. Qur focus is to increase the
awar eness of the technical and managerial segments of the IT security conmunity
to the linmtations of each of these techniques. W attenpt to increase
under st andi ng of the need to address nore than one solution to the nultifaceted
correctness problem

We view the glass as being half full. We do not advocate that anyone abjure his
belief(s) in correctness. Rather, we suggest that attenpts to prove beliefs are
bottonm ess pits. Unl ess sone breakt hrough occurs, we advocate treating this
aspect of software engineering pragmatically. Just as engineers built steam
engi nes (see [Leveson, 1992] for further anal ogy) before the science of

t her nrodynani cs was devel oped, the software engi neering comunity can build
software systens based on intuitive and pragmatic notions of howto attain
correctness and other aspects of quality. At |least now, we should acknow edge
practicing an enpirical discipline.

At the risk of appearing cautiously optimstic, we hesitantly endorse four
interrelated strategi es. The exact allocation of resources anobng the strategies
remai ns a technical managenent deci sion. Looking at the mature net hods avail abl e
today, we tend to agree with the perceived consensus that a conbination of the
foll owi ng shoul d be enpl oyed:

* Eval uati on of process, personnel, and abilities to identify and reinforce
positive attributes

* Thor ough revi ew and anal ysis of intermediate products during devel oprment
with sufficient tinme and resources allocated to correct deficiencies

* Ri gorous testing based on the precedi ng anal ysis



* Recognition of critical points in system devel opnent
= Point of dimnishing return for application of any nethod
= \When a devel opment should be terminated for cause or to stop henorrhaging

Looki ng forward, we see promi se in conbining aspects of programreuse and object
orientation. The possibility of enploying object self-protection in security
architecture shoul d be consi dered.

Each of the techniques described in this paper has an aspect that hel p increase
our belief in the correctness of an inplenentation, yet each is fraught with
sone dangers. Each techni que cones with sonme, generally high, cost for its use.
It is inmperative that managenment addresses each as aids in devel oping security-
critical IT systens and not arbitrarily dism ss any of them W shoul d:

* Be cogni zant of the limtations of each
= Belief in correctness should be relative

* Be prudent in establishing realistic assurance requirenents for a given
systemthat are neasurable, achievable, and cost- effective

* Resi st the tenptation of unachi evabl e el egance and perfection
* Differentiate between research and operations

= Define achievabl e specifications

= Accept residual risk
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