

BELIEF IN CORRECTNESS

Marshall D. Abrams, The MITRE Corporation, 7525 Colshire Drive, McLean, VA
22102, abrams@mitre.org

Marvin V. Zelkowitz, Institute for Advanced Computer Studies and Department of

Computer Science, University of Maryland, College Park, MD 20742, mvz@cs.umd.edu

 Abstract

In developing information technology, you want assurance that systems are secure
and reliable. Correctness is an attribute that one strives for in order to
achieve those goals, but you cannot have assurance or security without
correctness. We discuss methods used to achieve correctness, focusing on
weaknesses and approaches that management might take to increase belief in
correctness. Formal methods, simulation, testing, and process modeling are
addressed in detail. Structured programming, life-cycle modeling like the spiral
model, use of CASE tools, use of formal methods applied informally, object-
oriented design, reuse of existing code, and process maturity improvement are
also mentioned. Reliance on these methods involves some element of belief since
no validated metrics exist. Suggestions for using these methods as the basis for
managerial decisions conclude the paper.

1. Introduction

"Engineers today, like Galileo three and a half centuries ago, are not
superhuman. They make mistakes in their assumptions, in their calculations, in
their conclusions. That they make mistakes is forgivable; that they catch them
is imperative. Thus it is the essence of modern engineering not only to be able
to check one's own work, but also to have one's work checked and to be able to
check the work of others." [Petroski, 1985]

Assurance is defined1 as "the confidence that may be held in the security
provided by a Target of Evaluation." Informally, assurance is a "warm fuzzy
feeling" that the system can be relied upon to reduce residual risk to the
predetermined level. Without delving into psychology, we observe that
effectiveness and correctness both contribute to assurance. Effectiveness is
determined by analysis of the specifications of the functional requirements; the
environment in which the system will be used, the risks, threats, and
vulnerabilities; and all the countermeasures, including physical,
administrative, procedural, personnel, and technical. The system is considered
effective if the result of this analysis is an acceptable residual risk.
Correctness is determined by comparing the implementation of the countermeasures
with their specification. The system is considered correct if the implementation
is sufficiently close to the specification. Note that this definition of
correctness is compatible with the concept of risk management and is closer to
the concept of trustworthy than to error-free.

This paper shows how correctness can be established. All known methods
contributing to correctness have shortcomings that make it impossible to
establish correctness beyond reasonable doubt. That is, establishing correctness
is a matter of belief, not proof. Under conditions of belief, we caution fiscal
prudence in resources invested in assuring correctness. The major methods
addressed in this paper are mathematical models, simulation, testing, process
models and procedures. Minor methods, called silver bullets, include structured
programming, the spiral model, Computer Aided Software Engineering (CASE) tools,

formal methods applied informally, object-oriented (OO) programming, reusing
existing code, and process maturity. Cost benefit is offered as a measure for
selecting which belief system to embrace. We recommend hedging one's investments
by using more than one method.

Security-critical information technology (IT) systems2 are extremely dependent
on correctness. In systems involving human life and safety, correctness is
paramount. A security-critical IT system must do exactly what is identified in
its specification and not do anything that is not so specified. Correctness of
software always has to be with respect to a specification.

Various methods may be used to demonstrate correctness, but all are less than
perfect and involve some element of belief in relying on the results of using
that method. That is, it cannot be proven that a method is "good" or "better."
The methods are complementary in contributing to correctness itself as well as
in contributing to belief in correctness. There is a growing consensus that, to
say the least, no one technique can provide adequate assurance (see, for
example, [Butler, 1993]). David Parnas [Parnas, 1990], among others, has
suggested that an "assurance tripod" is required: the combination of rigorous
testing, evaluation of the process and personnel used to develop the system, and
a thorough review and analysis of various products produced during development.
In the pragmatic end, managerial judgment determines resource allocation to
correctness and assurance. In this paper, we focus on practical product
correctness and the various problems one has in achieving this correctness.

We should learn from branches of natural science and engineering that have been
trying to understand complex systems far longer than computers have existed. One
important objective is to recognize when simplifying assumptions are valid and
when they are dangerous. One of the authors learned as a sophomore that "the
essence of engineering is to make enough assumptions so that you can solve the
problem, without assuming the problem away."

Let us consider whether formal theories of programming are good approximations
of real programs executing on real computers. Although the theories are
relatively simple, applying them to realistic programs vastly complicates the
model. You cannot even assume simple axioms like "For all integers i, i+1>i" on
fixed wordsize computers since integer i may "overflow" and have an unspecified,
negative, zero, or the same value, depending upon the particular hardware
executing the program. Mathematical models of computer programs generally do not
accurately represent the subtlety of programs in an environment (i.e., execution
on real hardware). In some sense, the mathematics of computer modeling belongs
in the realm of applied rather than pure mathematics. When we use Ohm's law,
Kirkoff's rules, etc., to design an electronic circuit or use Newton's laws to
predict the orbit of a satellite, no one is saying that they have "proved" that
the circuit works or that the satellite will be exactly where they said it would
be. By the same token, when we model a computer program using some method such
as Hoare's [Hoare, 1969] we then have some confidence (maybe little) that the
program when executed will behave much as we predict (but perhaps not exactly
like we predict-e.g., integer overflow). This requires that even simple programs
have complex proofs in order to show that the mathematical properties of the
program behave as desired. Simple formalisms for programs are too complex to
accurately represent most programs in execution on physical machines.

This insight shows that formalisms in programming are very different from
formalisms in the natural sciences. In the natural science, you have a theory
(e.g., Laws of Motion) that is a good approximation to the physical interactions
among objects. In physics, a sufficiently accurate approximation gives useful

results. In contrast, for programming, you must approximate the program and the
hardware (e.g., assume integers are infinite) in order to have any relationship
to the formal model. A key difference is lack of continuity. In programming,
disastrous examples of integer overflow and other discontinuities show that the
supposed approximations are not necessarily close. Use of discrete logic to
model these leads to expressions of enormous complexity [Parnas, 1985].
Alternatively, models could incorporate known characteristics and limitations of
the computer to increase their veracity. We do not wish to compare good models
of physics with bad models of computers. Newton's laws do not work well for
objects at near the speed of light or for objects that are not in inertial
frames of reference. Likewise, a Hoare model of computer system behavior is a
poor representation if the integer values are at or near the overflow. One would
need to modify the model to accommodate the overflow behavior. Once having done
so, the model would be better.

Several methods have been developed and been accepted over time to demonstrate
the correctness of computer programs. None of these heuristics are true in the
sense that they portray absolute infallibility of the method. Each has
proponents and detractors. In the next section, we describe these methods,
explore ways in which each accomplishes its task, and draw some conclusions from
this analysis.

2. Correctness methods

Several techniques are regularly employed to show that a computer program does
exactly what it is supposed to do and nothing else. The first two described
below, formal methods and simulation, analyze the program and derive properties
about it. The third, testing, experiments with program behavior, perhaps using
some information derived by application of the first two techniques. The fourth
technique, process models and procedures, looks at the development process
itself under the assumption that good development practices result in good
software.

Each method is described briefly, emphasizing its advantages, disadvantages, and
contributions to our belief system. A common distraction with all methods is the
complexity of execution. The steps, processes, or manipulations that constitute
the practice of the method can be so overwhelming that perspective is lost. We
agree with Hamming [Hamming, 1962] that "the purpose of computing is insight"
and that it is difficult to retain perspective and insight in the face of
complexity. It is very easy to get caught up with all the mechanics of employing
a method so that in practice the mechanics get emphasized at the expense of
understanding.

"When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind"
[Kelvin, 1881]. Metrics of correctness need to be developed and applied to
individual methods and combinations of methods. We need to replace belief with
analysis if at all possible. While early work on the Capability Maturity Model
[Paulk, 1993] and the Experience Factory [Basili, 1992] show that we may develop
such metrics, more needs to be done.

2.1 Formal Methods

The use of formalisms stems from two related observations: natural language
tends to be imprecise, and in achieving precision, there is the potential for
automation. Mathematical notation has the advantage of precision and is

associated with rigorous, logical thinking that assists in reducing ambiguity.
In principle, formal models of IT systems can support all phases of the system
development process -articulation of policy for use, high-level architecture,
design, and implementation. Today, formal models of security policy help perfect
understanding and development, especially of new policies. While formal
specifications are used in Europe, they have not made much of an impact in the
United States. No language is likely to be a cure- all in achieving higher
levels of abstraction, and more natural models of problem spaces, for all
problem spaces.

In discussing formal methods, we have to be sure to differentiate them from
formalized methods, such as Computer Assisted Software Engineering (CASE) tools,
structured analysis, and other mechanized methods for developing source programs
[Rushby, 1993]. In using formal methods, one traditionally begins with a formal
description of the specification of a software system according to some
underlying mathematical model and the realization of that specification as a
concrete design or source code implementation. (Other possibilities are to start
with a description of how the system is to be used, or to let an automated
deduction system participate directly in the construction of later design and
implementation stages.) Using mathematical principles, one shows that the
program agrees with the model. For example, axiomatic verification, perhaps the
oldest of the formal techniques, assumes we have a program S, a precondition
(specification) P that is true before the execution of S, and a postcondition
(output specification) Q. We need a proof that demonstrates: (1) the
relationship among S, P, and Q that determines the effect program S has on P to
assure that Q will be true after execution terminates, and (2) program S does
indeed terminate if P is true initially [Hoare, 1969]. If we derive a set of
axioms for each statement type in our language (e.g., rules for describing the
behavior of the if statement, the while statement, the assignment statement),
then we have tied program correctness to the problems of generating correct
mathematical proofs. But we still have not proved that the program when executed
on a specific computer is correct because of the very problems raised earlier.
At best we have shown that the formal description of the program satisfies its
specification (i.e., produces the given post condition when the precondition is
true) [Fetzer, 1988]. Our confidence in the correctness of the program is
dependent on our confidence that our formal model is an accurate representation
of the target computer.

As described previously, when we use formal models we need to suppress details
to make the models tractable. Unfortunately, many of the details suppressed in
the formal models are implementation dependent and security relevant. Formal
models are losing ground to the complexity of networked and distributed systems.
It is difficult to scale up the traditional use of formal methods to large
complex systems. While they may appear to work satisfactorily on small "toy"
problems, there has been little evidence that they scale up very well [Parnas,
1985].

"Larger examples are necessary to demonstrate how these concepts scale up"
[Youngblut, 1989, p. 58]. Formal models are often applied to complex systems
combined with other belief systems. For example, variants of the Bell-LaPadula
security policy model [Bell, 1974] are often cited as the basis of operating
system security, but the actual implementations also include security- relevant
processes, called trusted or privileged, that are not formally modeled. Belief
that security is preserved after introduction of these processes is often
established by non- formal means. Practitioners of formal modeling sometimes
appear to forget about the assumptions and simplifications that were made to
make their models tractable and fail to caveat the applicability of their

results to the real world. This is an error on the part of the practitioners. A
great deal of the simplifying assumptions are made because the modelers simply
do not know how to model some of these features (although many are certainly
susceptible to being modeled), or the resources available do not permit modeling
the necessary details. Perhaps the practitioners are not experienced enough in
this kind of mathematics.

Within the limits imposed by the simplifications and assumptions made for the
sake of tractability, formalism can be used both to determine correctness of the
implementation and adherence of the system to certain properties. We can prove
that a given procedure must return a certain value and also show that certain
policies are never violated. Many observers believe that formal policy models
have their maximum benefit in removing inconsistencies, ambiguities, and
contradictions in the natural language policy statement. The process of
formalizing the policy aids in clarifying the policy. This process then has the
secondary benefit of making a clearer statement of policy to the implementors.

Although formal methods are based on mathematical proofs, we must realize that
even mathematical proofs may have flaws. "Outsiders see mathematics as a cold,
formal, logical, mechanical, monolithic process of sheer intellection... [but]
Stanislaw Ulam estimates that mathematicians publish 200,000 theorems every
year. A number of these are subsequently contradicted or otherwise disallowed,
others are thrown into doubt, and most are ignored. Only a tiny fraction come to
be understood and believed by any sizable group of mathematicians" [DeMillo,
1979, p. 272]. Although mathematicians do not like to admit it, correctness can
be likened to a social process-it is only the test of time where no flaw has
been discovered that builds our confidence in the ultimate truth of a theorem.
All scientific processes have flaws. Petroski [Petroski, 1985] argues that
failure is an important part of engineering design. It is only when things fail
that we understand how to make them better. How well would we be designing
bridges if none ever collapsed? Either we have overbuilt them to a point of
economic stupidity, or we have never stressed them sufficiently. We hope that by
our continuing (unsuccessful) attempts to model computers, we are learning
something.

2.2 Simulation

Simulation is the development of a simplified version of a system's
specification by eliminating non-critical attributes to develop a system that
exhibits relevant properties. By ignoring certain properties, it is often
possible to quickly and inexpensively build simpler versions of a system. Using
this simulation, security-related principles can be more readily developed and
examined. This increases our belief in the ultimate specification since we have
demonstrated the existence of an implementation that already has the desired
properties.

While we can simulate a system to test the security policies, the interaction of
these policies with the assumed-away specifications of the complete system
severely lowers our belief in the correctness of the overall system with respect
to security. By definition, one is "abstracting away" non-essential aspects of
the system when doing simulation and modeling-yet it is very hard to develop
"non-interference proofs" for those missing aspects, so that you have confidence
that they really won't change the behavior of interest in the "real" system. It
is only by testing (and/or formalism) applied to the complete system that adds
to our belief in this product-although the existence of a simulation that
implements our security policy does provide a sort of existence proof on policy

and increases our confidence (i.e., belief) in a complete implementation. (See
spiral model discussion, below.)

2.3 Testing

Testing demonstrates behavior by executing a system using a selected set of data
points to show that the system executes correctly on those points. The
assumption is made that if the set of data points is chosen appropriately, then
the behavior of the system for most data points will be analogous to the
selected data points. If we believe that the selected data points are
representative of the domain of data in which we interested, we have confidence
in the correctness of our implementation. Choosing the selected data points and
the best method of testing our program are our major decision steps toward
determining our belief in the correctness of this system. Knowledge gained from
formal methods, code analysis, and simulation can help focus the selection. As
pointed out by Leveson [Leveson, 1992], "testing researchers have defined
theoretical ways of comparing testing strategies both in terms of cost and
effectiveness (for example, [Weyuker, 1991]), formal criteria for evaluating
testing strategies (for example, [Goodenough, 1975]), and axioms or properties
that any adequacy criterion (rule to determine when testing can stop) should
satisfy (for example, [Weyuker, 1986])." Analytic results can also indicate when
statistically significant measurement results have been obtained [Mamrak, 1979].

Testing methods can be divided into functional, performance, failure-mode, and,
for security, penetration. Functional testing includes testing against a catalog
of flaws previously discovered in this or other systems. The major thrust of
security testing is in penetrating (i.e., violating the security policy),
thereby measuring the resistance to anticipated threats. The presence of
anticipated threat actions, possibly by a malicious adversary, distinguishes the
security concerns in a system.

Testing functional specifications is usually achieved by black- box testing, in
which the tester only has access to the specifications of the program, while
testing specific program behavior by understanding the design is achieved by
glass-box (a.k.a. white-box) testing, in which the tester has access to the
internal source code of the program. Security testing of high-assurance systems
proceeds with extensive documentation of design and implementation. Varying
degrees of assurance are obtained according to the information available to the
testers, including security kernel code, design documentation, and formal
models. The value of penetration testing depends on the experience of the
testers and the methodology employed. IV&V (Independent verification and
validation), where a group independent from the developers is charged with
testing a system, is sometimes effective in finding errors that developers who
"know" the source program sometimes overlook. However, IV&V is expensive and
many applications, especially ones without high reliability requirements, do not
benefit from this added level of assurance [Page, 1985].

The classical example by Dijkstra shows that exhaustive testing cannot prove
correctness of any implementation. To prove the correctness of "a+b=c" on 32-bit
computers would require 232x232 = 264 or over 1019 tests. At a rate of even 108
tests per second, that would require 1011 seconds or over 3,000 years. Perhaps
we should ask ourselves whether we really have so little understanding of the
operation of a computer that we have to test addition, for example, for all
possible addends to be convinced that the addition function is working
correctly? Under what conditions can we state a general argument that works in
the face of overflow? Although it is recognized that testing cannot be

exhaustive, testing has a very strong intuitive appeal and constitutes a very
strong basis for belief in correctness.

Testing always involves comparing the actual results of execution with
anticipated results. One way to capture anticipated results is to test an
executable specification of a prototype. Once this is done, it is possible to
automatically execute the system being tested and its specification in parallel,
and to automatically compare the results, thereby greatly increasing the number
of feasible test cases [Taylor, 1985].

2.4 Process Models and Procedures

All of the previous techniques depend upon subjecting a program to one of the
discussed methods to increase confidence that the program exhibits correct
behavior. However, as we have often stated, this is extremely difficult to do.
As an alternative, perhaps it is easier to understand the mechanisms used in
developing the program under the belief that correct methods yield correct
programs. The idea underlying process models is that understanding what you are
doing is a necessary step to improvement. By using a simple, well understood
process to develop software, we have belief that the ultimate product best meets
our needs. Two process models currently enjoy favor: waterfall and spiral. The
United States Department of Defense (DoD) standards imply (but do not require)
use of the former in management of software development.

The waterfall model [Royce, 1970] conceives of software development as a linear
process based upon a set of deliverable artifacts. There are easily recognized
milestones between steps in the process. Although the mechanisms of the process
are generally obscure-only the results of the process are visible. Therefore,
the waterfall model uses these products-a specifications document, a design
document, a source file, and the results of testing, for example. These
milestones can support a management strategy of schedules and reviews.
Recognition that the process is not perfect led to the introduction of feedback
paths in the model. If drawn as a waterfall of steps, the feedback paths suggest
salmon swimming upstream. The feedback paths represent knowledge gained in
latter steps that affect activities and decisions made earlier. It may be
necessary to adjust, or even abandon, earlier work as a consequence of feedback.
In practice, schedules tend to not allow for such corrective action. Non-
technical project managers are often determined to meet their schedules, no
matter what the consequences [Stillman, 1993].

Because of all of these deficiencies, belief in the waterfall model as a useful
methodology for developing software that satisfies its specification has been
slowly decreasing, and an alternative spiral model has been gaining favor
[Boehm, 1988]. The spiral model emphasizes the process of developing software
rather than the resulting products. It is also called a risk- reducing model,
since the basic premise is to develop and prototype a solution, evaluate the
risks of adding specifications, and repeat the process. Each cycle of the model
creates a more complex version of the system, with the ultimate prototype being
the final system itself. At each stage, we use Occam's razor to simplify our
solution, we make the process of development as visible as possible, and we try
to quantify the risks involved in continuing development. Thus, our belief in
the solution should be higher than with the hidden processes inherent in the
waterfall model. The spiral model emphasizes the repetition of basic activities
at progressive stages of a project. The exact activities change as the project
matures, but such activities as design, implementation, testing, evaluation, and
planning are related. Changing requirements are more easilly accomodated. The
cost is represented by the radial distance in a polar coordinate system and the

activities occur at a specified polar angle. Progress is assumed proportional,
or at least related to, cost. While the theory of the spiral model accommodates
redesign and backtracking, the imposition of schedules can have exactly the same
effect as on the waterfall model.

3. Choosing among alternative beliefs

Software engineers promote one technique after another as the "silver bullet"
[Brooks, 1987] solution to all our problems. This section examines the most
popular silver bullets.

3.1 Tarnished Silver Bullets

To address correctness in system development, many techniques have been proposed
as potential solutions (e.g., see [Chang, 1993; Davis, 1993]). All techniques
involved a measure of belief as groups of professionals argued among themselves
regarding the appropriateness of their favorite method. None has completely
provided the warm fuzzy feelings we want :

a. Structured programming (e.g., "goto-less programming" of the 1970s) makes
programming easy and correct. Twenty years of experience have shown that quality
has improved, but not to the level initially proposed. There is a relationship
between the restrictions imposed by using only the appropriate control
structures and formal verification of the source code produced; however, errors
still occur in such programs [Zelkowitz, 1990].

b. The spiral model is superior to the waterfall model. The spiral model was
an improvement in that it emphasized the process of software development with
attendant interest in the management, risk evaluation and reduction, and
prototyping aspects of the process. Note that this is an example of Petroski's
theses. Because the waterfall methodology has proved inadequate to produce good
software, a new methodology (spiral) has been introduced. When it is determined
that the spiral also is inadequate, creative people will develop a new system.
Since we do not have good measures of correctness, it is difficult to know how
to make the process better. Note also that the spiral model and the waterfall
model that it replaced both represent a similar set of practices as actually
implemented by many organizations.

c. CASE tools will supplement the intelligence lacking in today's
programmers. Unfortunately, the tools have not added much intelligence and
today's programmers could still use additional help. Case tools suffer from the
same problem as the other software we are discussing: they have errors (all
software has errors), and they are only as smart as their developers.

d. Formal methods applied informally (e.g., languages like VDM and Z) can
improve the process. While this seems to be true, it has yet to be demonstrated
that this approach results in the correctness that we need for security-related
systems. It is not clear that our belief in these specification techniques will
be high enough to eliminate the need for alternate mechanisms. Nor is it clear
that our beliefs are the only ones that count. See [MacKenzie, 1992] for a
discussion of mathematical arguments that qualify as proof in a court of law.

e. Object-oriented (OO) programming and design will replace conventional
design techniques, and languages that implement such processes (e.g., C++) will
replace other languages (e.g., Pascal, Ada, FORTRAN). This concept represents
one of the newer trends in program design. We do not have enough evidence to
judge the effects of OO design on security. This technique does encapsulate some

of the formal data-structuring mechanisms into the programming language;
however, it must still be observed what effects it will have on overall system
correctness. (Note that this is just the current version of the traditional
silver bullet, "Language X will make programming easier." In the 1960s, we had
COBOL and then PL/I, in the 1970s we had Pascal, in the 1980s we had Ada, and
now we have C++.). Each language is perceived to have failed in achieving some
objective. Hence, someone develops a new language to correct the flaws. This
cycle will probably never end, as it is not likely that any one language will be
perfect for all applications.

f. Reusing existing code is the solution. Since code proven correct once need
not be so proven again, one only needs to create a library of reusable
components. While reusing existing code is an admirable goal, we still do not
have the technology to implement this process. While we can create write-only
libraries of reusable components, we have no process available that enables us
to determine the specifications of an existing library component and whether it
fulfills the specifications for another application. Current interests in
domain-specific architectures and faceted classification schemes are both
attempts at understanding the functionality of reusable components. We reuse
hardware components all the time, in the sense that we manufacture identical
copies of circuit packages and other components. Each component conforms to some
specification of performance and behavior that is described in components
manuals. Why can't we do something similar with software?

g. Process maturity improvement is today's salvation [Paulk, 1993]. Current
thinking is that improving only the process without looking at the ultimate
product being produced is all that is necessary to produce quality software.
While it should greatly improve the production of software from many
organizations that currently have no such process, as shown often in the past,
this is a naive approach to producing correct software.

We do not mean to say that the above techniques are failures. All, to some
extent, improve upon the quality and correctness of the resulting program that
is produced. Programming as taught in the universities and practiced in industry
today is radically different from that of the 1960s. However, the important
point is that none of them achieves the level of correctness that would support
our belief in that technique over all others.

3.2 Which Belief System to Embrace

Resources must be allocated among the correctness methodologies. While
management has been described as the art of making decisions based on inadequate
information, the quality of decisions is often improved by providing more
information. Installation and use of security-critical IT systems cannot wait
for proofs of efficacy or development of metrics for determining cost-benefit.
Managers will need to continue to make decisions whether or not to employ IT.
The managerial authorization and approval granted to an IT system to process
sensitive data in an operational environment is, in theory, made on the basis of
analysis and certification of the extent to which design and implementation of
the system meet pre-specified requirements for achieving adequate security.
Security objectives can be met by a combination of technical means within the
system and physical and procedural means outside the system. In this theory,
when management accredits the system, management is accepting the residual risk.

How can we address this residual risk? While we have no clearly defined metric
for this, we do have examples of systems that seem to adequately address our
security concerns. One avenue of research is increased study of these

"artifacts"-the systems, designs, and specifications that have helped produce
acceptable solutions. This knowledge should enable us to produce better models
in the future. However, today there is no way to measure the residual risk, nor
is there a metric for cost-benefit. So, how is a decision made? Since computer
and management science cannot help verify a decision, the experienced manager's
intuition cannot be dismissed. Experience probably includes comparison with
previous efforts, the correctness of which has become better known over time.
One must be careful to distinguish between management saying "I did this before
and it worked" versus "I feel safe using this since I used it before, while this
new technique is unknown to me." The first statement encapsulates the
experiences of good management, while the second statement reinforces
unscientific prejudices. The real problem is how to differentiate among good
science, common sense, and stubborn stupidity.

In deciding which belief system to embrace, the prudent manager probably hedges
by using more than one system. Various combinations of formalism, testing,
simulation, and process may be employed. Since cost is one of the attributes we
need to address in evaluating the overall quality of the product, it is prudent
that management should adequately choose from among the techniques those that
meet required cost constraints yet still meet functional requirements for the
product.

4. Recommendations

Given the absence of metrics for any of the belief systems, the inherent
difficulty in using any of them, and the lack of a repository of correctness
artifacts to study and evaluate, the authors do not propose to solve this
problem with a pronouncement of correct technique. Our focus is to increase the
awareness of the technical and managerial segments of the IT security community
to the limitations of each of these techniques. We attempt to increase
understanding of the need to address more than one solution to the multifaceted
correctness problem.

We view the glass as being half full. We do not advocate that anyone abjure his
belief(s) in correctness. Rather, we suggest that attempts to prove beliefs are
bottomless pits. Unless some breakthrough occurs, we advocate treating this
aspect of software engineering pragmatically. Just as engineers built steam
engines (see [Leveson, 1992] for further analogy) before the science of
thermodynamics was developed, the software engineering community can build
software systems based on intuitive and pragmatic notions of how to attain
correctness and other aspects of quality. At least now, we should acknowledge
practicing an empirical discipline.

At the risk of appearing cautiously optimistic, we hesitantly endorse four
interrelated strategies. The exact allocation of resources among the strategies
remains a technical management decision. Looking at the mature methods available
today, we tend to agree with the perceived consensus that a combination of the
following should be employed:

* Evaluation of process, personnel, and abilities to identify and reinforce
positive attributes

* Thorough review and analysis of intermediate products during development
with sufficient time and resources allocated to correct deficiencies

* Rigorous testing based on the preceding analysis

* Recognition of critical points in system development

! Point of diminishing return for application of any method

! When a development should be terminated for cause or to stop hemorrhaging

Looking forward, we see promise in combining aspects of program reuse and object
orientation. The possibility of employing object self-protection in security
architecture should be considered.

Each of the techniques described in this paper has an aspect that help increase
our belief in the correctness of an implementation, yet each is fraught with
some dangers. Each technique comes with some, generally high, cost for its use.
It is imperative that management addresses each as aids in developing security-
critical IT systems and not arbitrarily dismiss any of them. We should:

* Be cognizant of the limitations of each

! Belief in correctness should be relative

* Be prudent in establishing realistic assurance requirements for a given
system that are measurable, achievable, and cost- effective

* Resist the temptation of unachievable elegance and perfection

* Differentiate between research and operations

! Define achievable specifications

! Accept residual risk

5. Acknowledgments

We appreciate the contributions from the following individuals on previous
drafts of this paper: Rochelle Abrams, Sharon Fletcher, Lester Fraim, John
Gannon, David Gomberg, Ronald Gove, Chuck Howell, Jay Kahn, Carl Landwehr, John
McLean, Jonathan Millen, Jonathan Moffett, Jim Purtilo, Jim Williams, John P. L.
Woodward, and the anonymous reviewers. Research support on this activity for
Marshall Abrams was provided by the National Security Agency under contract
DAAB07-94-C-H601, and for Marvin Zelkowitz was partially provided by NASA grant
NSG-5123 from NASA/Goddard Space Flight Center to the University of Maryland.

6. References

Basili, V. R., G. Caldiera, and G. Cantone, 1992 "A Reference Architecture for
the Component Factory," ACM Transactions on Software Engineering and
Methodology, Vol. 1, No. 1, pp. 53-80.

Bell, D. Elliott, and Leonard J. LaPadula, April 1974, Secure Computer Systems:
Unified Exposition and MULTICS Interpretation, MTR 2997,. The MITRE Corporation,
Bedford, MA. Available from National Technical Information Service, AD/A 020
445.

Boehm, B., May 1988, "A Spiral Model of Software Development and Enhancement,"
IEEE Computer, Vol. 21,~ No. 5, pp. 61-72.

Brooks, F., 1987, "No Silver Bullet: Essense and Accidents of Software
Engineering," IEEE Computer, Vol. 20, No. 4, pp. 10-19.

Butler, R. W., and G. B. Finelli, 12 January 1993, "The Infeasibility of
Quantifying the Reliability of Life-Critical Real-Time Software,"IEEE
Transactions on Software Engineering , Vol. 19, No. 1, pp 3-12.

Chang, C., 5 September 1993, "Is Existing Software Engineering Obsolete?," IEEE
Software , Vol. 10, No. 5, pp. 4-5.

Commission of the European Communities, 28 June 1991, Information Technology
Security Evaluation Criteria (ITSEC): Provisional Harmonized Criteria,
Luxembourg: Office for Official Publications of the European Communities,
Version 1.2.

Davis, A., 5 September, 1993, "Software Lemmingineering," IEEE Software, Vol.
10, pp. 79-84.

DeMillo, R., R. Lipton and A. Perlis, May, 1979, "Social Processes and Proofs of
Theorems and Programs," Communications of the ACM, Vol. 22, No. 5, pp. 271-280.

Fetzer, J. H., September 1988, "Program Verification: The Very Idea,"
Communications of the ACM, Vol. 31, No. 9, pp. 1048-1063

Goodenough, J. B., and S.Gerhart, June 1975, "Toward a Theory of Test Data
Selection," IEEE Transactions on Software Engineering Vol. SE-1, No. 2.

Hamming, R., 1962, Numerical Methods for Scientists and Engineers, McGraw Hill.

Hoare, C. A. R., October, 1969, "An Axiomatic Basis for Computer Programming,"
Communications of the ACM, Vol. 12, No. 10, pp 576-583.

______ August 1986, "Mathematics of Programming," Byte, pp 115-121.

Kelvin W. T., 1881-1884, Popular Lectures and Addresses.

Knight , J. C. and D. M. Kienzle, 1992, "Preliminary Experience Using Z to
Specify a Safety-Critical System," Proceedings of 1992 Z Users Workshop,
Springer-Verlag.

Leveson, N. G., May 1992, "High-Pressure Steam Engines and Computer Software,"
Proceedings International Conference on Sostware Engineering, Melbourne,
Australia.

Mamrak, S. A. and M. D. Abrams, December 1979, "A Taxonomy for Valid Test
Workload Generation," Computer, pp. 60-65.

MacKenzie, November 1992, "Computers, Formal Proofs, and the Law Courts,"
Notices of the American Mathematical Society, Vol. 39, p. 9.

M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber, "Capability Maturity
Model for Software, Version 1.1," IEEE Software, Vol. 10, No.4, (July, 1993) pp.
18-27.

Page G., F. E. McGarry and D. N. Card, June, 1985, Evaluation of an independent
verification and validation methodology for flight dynamics, NASA/GSFC Technical
Report SEL 81-110.

Parnas, D. L., December 1985, "Software Aspects of Strategic Defense Systems,"
Communications of the ACM, Vol. 28, No. 12, December 1985, pp. 1326-1335.

Parnas, D. L., A. John van Schouwen, and Shu Po Kwan, June 1990, "Evaluation of
Safety-Critical Software," Communications of the ACM.

Petroski, H., 1985, To Engineer is Human: The Role of Failure in Successful
Design.publisher

W. W. Royce, 1970, "Managing the Development of Large Software Systems: Concepts
and Techniques," Proceedings IEEE Wescon..

Rushby, J., December 1993, Formal Methods and the Certification of Critical
Systems, Technical Report C3L-93-7, Stanford Research Institute.

Stillman, R., March 22, 1993, "Software Development: Neither Economics nor
Engineering," keynote address, Third Annual Software Engineerring Economics
Conference, The MITRE Corporation.

Taylor, T., October 1989, "FTLS-Based Security Testing for LOCK," Proceedings of
the 12th National Computer Security Conference, pp 136-145.

Weyuker, E. J., December 1986, "Axiomatizing Software Test Data Adequacy," IEEE
Transactions on Software Engineering Vol. SE-12, No. 12, pp. 1128-1138.

Weyuker, E. J., S. Weiss, and D. Hamlet, October 1991, "Comparison of Program
Testing Strategies," Proceedings of the Fourth Symposium on Software Testing,
Analysis and Veriofication (TAV4), Victoria, B.C., Canada, pp 1-10.

C. Youngblut, et al, February 1989, SDS Software Testing and Evaluation: Are
View of the State-of-the-Art in Software Testing and Evaluation with Recommended
R&D Tasks, Institute for Defense Analysis Report p. 2132.

Zelkowitz, M. V., November 1990, "A Functional Model of Program Verification,"
IEEE Computer Vol 23, No. 11, pp. 30-39.

1 Definitions of assurance, correctness, and effectiveness are taken from
the Information Technology Security Evaluation Criteria (ITSEC) [Commission of
European Communities, 1991]. Better definitions may be available by the time
this paper is published.

2 The term IT system includes all sizes of computer systems, from super
mainframes to desktop units to embedded components and controllers, as well as
networks and distributed systems.

