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1. Introduction

Much of the literature in the Software Engineering community concerning programmer pro-
ductivity was developed with assumptions that do not necessarily hold in the High Performance 
Computing (HPC) community:

1. In scientific computation insights culled from results of one program version often drives 
the needs for the next.  The software itself is helping to push the frontiers of understanding 
rather than the software being used to automate well-understood tasks. 

2. The requirements often include conformance to sophisticated mathematical models. 
Indeed, requirements may often take the form of an executable model in a system such as 
Mathematica, and the implementation involves porting this model to HPC systems. 

3. “Usability” in the context of an HPC application development may revolve around 
optimization to the machine architecture so that computations complete in a reasonable 
amount of time. The effort and resources involved in such optimization may exceed initial 
development of the algorithm.  

Due to these unique requirements, traditional software engineering approaches for improving 
productivity may not be directly applicable to the HPC environment. 

As a way to understand these differences, we are developing a set of tools and protocols 
to study programmer productivity in the HPC community.  Our initial efforts have been to 
understand the effort involved and defects made in developing such programs. We also want 
to develop models of workflows that accurately explain the process that HPC programmers use 
to build their codes. Issues such as time involved in developing serial and parallel versions of a 
program, testing and debugging of the code, optimizing the code for a specific parallelization 
model (e.g., MPI, OpenMP) and tuning for a specific machine architecture are all topics of 
study. If we have those models, we can then work on the more crucial problems of what tools 
and techniques better optimize a programmer’s performance to produce quality code more 
efficiently. 

Since 2004 we have been conducting human-subject experiments at various universities 
across the U.S. in graduate level HPC courses (Figure 1). Graduate students in a HPC class are 
fairly typical of a large class of novice HPC programmers who may have years of experience 
in their application domain but very little in HPC-style programming. Multiple students are 
routinely given the same assignment to perform, and we conduct experiments to control for 
the skills of specific programmers (e.g., experimental meta-analysis) in different environments.  
Due to the relatively low costs, student studies are an excellent environment to debug protocols 
that might be later used on practicing HPC programmers.  

Limitations of student studies include the relatively short programming assignments due to 
the limited time in a semester and the fact these assignments must be picked for the educational 
value to the students as well as their investigative value to the research team.
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In this article, we present both the methodology we have developed to investigate pro-
grammer productivity issues in the HPC domain (Section 2), some initial results of studying 
productivity of novice HPC programmers (Section 3), and current plans for improving the 
process in the future (Section 4).

2. Experiment methodology

In each class, we obtained consent from students to be part of our study. There is a 
requirement at every U.S. institution that studies involving human subjects must be approved 
by that university’s Institutional Review Board (IRB). The nature of the assignments was left to 
the individual instructors for each class since instructors had individual goals for their courses 
and the courses themselves had different syllabi.  However, based on previous discussions as 
part of this project, many of the instructors used the same assignments (Table 1), and we have 
been collecting a database of project descriptions as part of our Experiment Manager website 
(See Section 4). To ensure that the data from the study would not impact students’ grades (and 
a requirement of almost every IRB), our protocol quarantined the data collected in a class from 
professors and teaching assistants for that class until final grades had been assigned. 

Embarrassingly parallel:      Buffon-Laplace needle problem, Dense matrix-vector multiply

Nearest neighbor:      Game of life, Sharks & fishes, Grid of resistors, Laplace’s equation, Quantum dynamics

All-to-all:      Sparse matrix-vector multiply, Sparse conjugate gradient, Matrix power via prefix

Shared memory:      LU decomposition, Shallow water model, Randomized selection, Breadth-first search

Other:      Sorting

Table 1. Sample programming assignments

We need to measure the time students spend working on programming assignments with the 
task that they are working on at that time (e.g., serial coding, parallelization, debugging, tuning).  
We used three distinct methods: (1) explicit recording by subject in diaries (either paper or web-
based); (2) implicit recording by instrumenting the development environment; and (3) sampling 
by an operating system installed tool (e.g., Hackystat1). Each of these approaches has strengths 
and limitations. But significantly, they all give different answers.  After conducting a series of 
tests using variations on these techniques, we settled on a hybrid approach that combines diaries 
with an instrumented programming environment that captures a time-stamped record of all 
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1 STUDY UMD

6 STUDIES

MIT
3 STUDIES

Mississippi State
2 STUDIES

USC
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1 STUDY

UH
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Figure 1. Classroom studies  
conducted.

1 Johnson, P. M., Kou, H., Agustin, J. M., Zhang, Q., 
Kagawa, A., Yamashita, T. “Practical automated 
process and product metric collection and analysis 
in a classroom setting: Lessons learned from 
Hackystat-UH,” Proceedings of the 2004 International 
Symposium on Empirical Software Engineering, Los 
Angeles, California, August, 2004.
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compiler invocations (including capture of source code), all programs invoked by the subject as 
a shell command, and interactions with supported editors.  Elsewhere,2 we describe the details 
of how we gather this information and convert it into a record of programmer effort.

After students completed an assignment, the data was transmitted to the University of 
Maryland, where it was added to our Experiment Manager database. Looking at the database 
allows post-project analysis to be conducted to study the various hypotheses we have collected 
via our folklore collection process.

For example, given workflow data from a set of students, the following hypotheses that are 
the subjective opinion of many in the HPCS community, collected via surveys at several HPCS 
meetings, can be tested:3

Hyp 1: The average time to fix a defect due to race conditions will be longer in a shared 
memory program compared to a message-passing program. To test this hypothesis we can 
measure the time to fix defects due to race conditions.

Hyp. 2: On average, shared memory programs will require less effort than message passing, 
but the shared memory outliers will be greater than the message passing outliers. To test this 
hypothesis we measure the total development time.

Hyp. 3:  There will be more students who submit incorrect shared memory programs compared 
to message-passing programs. To test this hypothesis we can measure the number of 
students who submit incorrect solutions.

Hyp. 4:  An MPI implementation will require more code than an OpenMP implementation. To 
test this hypothesis we can measure the size of code for each implementation.

The classroom studies are the first part of a larger series of studies we are conducting (Figure 
2).  We first run pilot studies with students.  We next conduct classroom studies, then move onto 
controlled studies with experienced programmers, and finally conduct experiments in situ with 
development teams. Each of these steps contributes to our testing of hypotheses by exploiting 
the unique aspects of each environment (i.e., replicated experiments in classroom studies and 
multi-person development with in situ teams).  We can also compare our results with recent 
studies of existing HPC codes.4
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2 Hochstein, L., Basili, V., Zelkowitz, M., 
Hollingsworth, J., Carver, J. “Combining self-reported 
and automatic data to improve effort measurement,”  
Joint 10th European Software Engineering Conference 
and 13th ACM SIGSOFT Symposium on the Foundations 
of Software Engineering (ESEC/FSE 2005), Lisbon, 
Portugal, September 2005, 356-365.

3Asgari, S., Hochstein, L., Basili, V., Zelkowitz, M., 
Hollingsworth, J., Carver, J., Shull, F. “Generating 
Testable Hypotheses from Tacit Knowledge for High 
Productivity Computing,” 2nd International Workshop 
on Software Engineering for High Performance 
Computing System Applications, (May, 2005) St. Louis, 
MO, 17-21.

4 Post, D., Kendall, R.P., Whitney, E. “Case study of 
the Falcon Project,” Second International Workshop on 
Software Engineering for High Performance Computing 
Systems Applications, St. Louis, MO, 2005.
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Figure 2. Research Plan.
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Defect studies
As part of our effort to understand development issues, our classroom experiments have 

moved beyond effort analysis and have started  to look at the impact of defects (e.g., incorrect 
or excessive synchronization, incorrect data decomposition) on the development process. By 
understanding how, when, and the kind of defects that appear in HPC codes, tools and tech-
niques can be developed to mitigate these risks to improve the overall workflow. As we have 
shown,2 automatically determining workflow is not precise, so we are working on a mixture of 
process activity (e.g., coding, compiling, executing) with source code analysis techniques. The 
process of defect analysis we are building consists of the following main activities:

Analysis: 
1. Analyze successive versions of the developing code looking for patterns of changes 

represented by successive code versions (e.g., defect discovery, defect repair, addition of 
new functionality).

2. Record the identified changes.
3. Develop a classification scheme and hypotheses.

For example, a small increase in source code, following a failed execution and following a 
large code insertion, could represent the pattern of the programming adding new functionality, 
followed by a test and then defect correction. Syntactic tools that find specific defects can be 
used to aid the human-based heuristic search for defects.

Verification: 
We then need to analyze these results at various levels.  Verification consists of the following 

steps, among others:
1. If we can somehow obtain the “true” defect sets, we can directly compare our analysis 

results with them to evaluate the analysis results quantitatively.
2. Multiple analysts can independently analyze the source code and record identified defects.
3. Examine individual instances of defects to check if each defect is correctly captured and 

documented.
4. Provide defect instances and classify them into one of the given defect types. This can be 

used to check the consistency of the classification scheme.

Nakamura, et al. explore this defect methodology in greater detail.5

3. Results

Early results needed to validate our process were to verify that students could indeed produce 
good HPC codes and that we could measure their increased performance. Table 2 is one set of 
data that shows that students achieved speedups of approximately three to seven on an 8-pro-
cessor HPC machine. CxAy means class number x, assignment number y. This coding was used 
to preserve anonymity of the student population.

5 Nakamura, T., Hochstein, L.,  Basili, V. R. “Identifying 
Domain-Specific Defect Classes: Using Inspections 
and Change History,” International Symposium on 
Empirical Software Engineering, (ISESE), Rio de Janeiro, 
September, 2006.
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Data set Programming Model Speedup on 8 processors

Speedup measured relative to serial version:

C1A1 MPI mean 4.74, sd 1.97, n=2

C3A3 MPI mean 2.8, sd 1.9, n=3

C3A3 OpenMP mean 6.7, sd 9.1, n=2

Speedup measured relative to parallel version run on 1 processor:

C0A1 MPI mean 5.0, sd 2.1, n=13

C1A1 MPI mean 4.8, sd 2.0, n=3

C3A3 MPI mean 5.6, sd 2.5, n=5

C3A3 OpenMP mean 5.7, sd 3.0, n=4

Table 2. Mean, standard deviation, and number of subjects for computing speedup  
on Game of Life program.

 
       

Additional classroom results include the following:

1. Measuring productivity in the HPC domain is part of understanding HPC workflows. 
However, what does productivity mean in this domain?6 Figure 3 is one model that we can 
derive from the fact that the critical component of HPC programs is the speedup achieved 
by using a multiprocessor HPC machine over a single processor.7 Productivity is defined as 
the relative speedup of a program using an HPC machine compared to a single processor 
divided by the relative effort to produce the HPC version of the program compared to a 
single processor version. 

Program → 1 2* 3 4 5

Serial effort (hrs) 3 7 5 15

Total effort (hrs) 16 29 10 34.5 22

Serial Exec (sec) 123.2 75.2 101.5 80.1 31.1

Parallel Exec (sec) 47.7 15.8 12.8 11.2 8.5

Speedup 1.58 4.76 5.87 6.71 8.90

Relative  Effort 2.29 4.14 1.43 4.93 3.14

Productivity 0.69 1.15 4.11 1.36 2.83

*- Reference serial implementation

Table 3. Productivity experiment: Game of Life.

Table 3 shows the results for one group of students programming the Game of Life (a simple 
nearest neighbor cellular automaton problem where the next generation of “life” depends upon 
surrounding cells in a grid and a popular first parallel program for HPC classes).8 The data 
shows that our definition of productivity had a negative correlation compared to both total 
effort and HPC execution time, and a positive correlation compared to relative speedup. While 
the sample size is too small for a test of significance, the relationships all indicate that produc-
tivity does behave as we would want a productivity measure to behave for HPC programs, i.e., 
good productivity means lower total effort, lower HPC execution time and higher speedup.

Speedup = 
Reference Execution Time

Parallel Execution Time

Productivity = 
Relative Speedup

Relative E�ort

Relative Effort = 
Parallel E�ort

Reference E�ort

Figure 3. HPC productivity.

6 The International Journal of High Performance 
Computing Applications, (18)4, Winter 2004.

7 Zelkowitz, M., Basili, V., Asgari, S., Hochstein, 
L., Hollingsworth, J., Nakamura, T. “Measuring 
productivity on high performance computers,” IEEE 
Symp. on Software Metrics, Como, Italy, (September 
2005).

8 Gardner, M. “Mathematical games,” Scientific 
American, October, 1970.
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Serial MPI OpenMP Co-Array 
Fortran StarP XMT

Nearest-Neighbor Type Problems

Game of Life C3A3 C3A3
C0A1
C1A1

C3A3

Grid of Resistors C2A2 C2A2 C2A2 C2A2

Sharks & Fishes C6A2 C6A2 C6A2

Laplace’s Eq. C2A3 C2A3

SWIM C0A2

Broadcast Type Problems

LU Decomposition C4A1

Parallel Mat-vec C3A4

Quantum Dynamics C7A1

Embarrassingly Parallel Type Problems

Buffon-Laplace Needle C2A1
C3A1

C2A1
C3A1

C2A1
C3A1

Other

Parallel Sorting C3A2 C3A2 C3A2

Array Compaction C5A1

Randomized Selection C5A2

Table 4. Some of the early classroom experiments on specific architectures.

Table 4 shows the distribution of programming assignments across different programming 
models for the first seven classes (using the same CxAy coding used in Table 2). Multiple 
instances of the same programming assignment lend the results to meta-analysis to be able to 
consider larger populations of students.2

Dataset Programming Model Application Lines of Code

C3A3 Serial Game of Life mean 175, sd 88, n=10

MPI mean 433, sd 486, n=13

OpenMP mean 292, sd 383, n=14

C2A2 Serial Resistors 42 (given)

MPI mean 174, sd 75, n=9

OpenMP mean 49, sd 3.2, n=10

Table 5. MPI program size compared to OpenMP program size.

For example, we can use this data to partially answer an earlier stated hypothesis (Hyp. 
4: An MPI implementation will require more code than an OpenMP implementation). Table 5 
shows the relevant data giving credibility to this hypothesis (but this early data is not statistically 
significant yet).

2. An alternative parallel programming model is the PRAM model, which supports fine-
grained parallelism and has a substantial history of algorithmic theory.9 XMT-C is an 
extension of the C language that supports parallel directives to provide a PRAM-like 

2 Hochstein, L., Basili, V., Zelkowitz, M., 
Hollingsworth, J., Carver, J. “Combining self-reported 
and automatic data to improve effort measurement,”  
Joint 10th European Software Engineering Conference 
and 13th ACM SIGSOFT Symposium on the Foundations 
of Software Engineering (ESEC/FSE 2005), Lisbon, 
Portugal, September 2005, 356-365.

9 Vishkin, U., Dascal, S., Berkovich, E., Nuzman, J. 
“Explicit Multi-Threading (XMT) Bridging Models 
for Instruction Parallelism,” 10th ACM Symposium on 
Parallel Algorithms and Architectures (SPAA), 1998.
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model to the programmer. A prototype compiler exists that generates code that runs on a 
simulator for an XMT architecture. We conducted a feasibility study in a class to compare 
the effort required to solve a particular problem. After comparing XMT-C development to 
MPI, on average, students required less effort to solve the problem using XMT-C compared 
to MPI. The reduction in mean effort was approximately 50%, which was statistically 
significant at the level of p<.05 using a t-test.10 

3. While OpenMP generally required less effort to complete (Figure 4), the comparison of 
defects between MPI and OpenMP, however, did not yield statistically significant results, 
which contradicted a common belief that shared memory programs are harder to debug. 
However, our defect data collection was based upon programmer-supplied effort forms, 
which we know are not very accurate. This led to the defect analysis mentioned previously,5 
where we intend to do a more thorough analysis of defects made. 

4. We are collecting low-level behavioral data from developers in order to understand the 
“workflows” that exist during HPC software development.  A useful representation of HPC 
workflow could both help characterize the bottlenecks that occur during development 
and support a comparative analysis of the impact of different tools and technologies upon 
workflow.  One hypothesis we are studying is that the workflow can be divided into one of 
five states; serial coding, parallel coding, testing, debugging, and optimization. 

In a pilot study at the University of Hawaii in Spring of 2006, students worked on the Gauss-
Seidel iteration problem using C and PThreads in a development environment that included 
automated collection of editing, testing, and command line data using Hackystat.  We were able 
to automatically infer the “serial coding” workflow state as the editing of a file not containing 
any parallel constructs (such as MPI, OpenMP, or PThread calls), and the “parallel coding” 
workflow state as the editing of a file containing these constructs. We were also able to automati-
cally infer the “testing” state as the occurrence of unit test invocation using the CUTest tool.  In 
our pilot study, we were not able to automatically infer the debugging or optimization workflow 
states, as students were not provided with tools to support either of these activities that we could 
instrument. 

Figure 4. Time saved using OpenMP over MPI for 10 
programs. (MPI used less time only in case 1 above).

10 Hochstein, L., Basili, V. R. “An Empirical Study to 
Compare Two Parallel Programming Models,” 18th 
ACM Symposium on Parallelism in Algorithms and 
Architectures (SPAA ‘06), July 2006, Cambridge, MA.

5 Nakamura, T., Hochstein, L.,  Basili, V. R. “Identifying 
Domain-Specific Defect Classes: Using Inspections 
and Change History,” International Symposium on 
Empirical Software Engineering, (ISESE), Rio de Janeiro, 
September, 2006.

Experiments to Understand HPC Time to Development



31

 Our analysis of these results leads us to conclude that workflow inference may be possible in 
an HPC context. We hypothesize that it may actually be easier to infer these kinds of workflow 
states in a professional setting, since more sophisticated tool support is often available that can 
help support inferencing regarding the intent of a development activity.  Our analyses also cause 
us to question whether the five states that we initially selected are appropriate for all HPC devel-
opment contexts.  It may be that there is no “one size fits all” set of workflow states, and that we 
will need to define a custom set of states for different HPC organizations in order to achieve our 
goals. Additional early classroom results are given in Hochstein, et al.11

4. Current Developments

As stated earlier, we have collected effort data from student developments and begun to 
collect data from professional HPC programmers in three ways; manually from the participants, 
automatically from timestamps at each system command, and automatically via the Hackystat 
tool, sampling the active task at regular intervals. All three methods provide different values for 
“effort,” and we developed models to integrate and filter each method to provide an accurate 
picture of effort.

Our collection methods evolved one at a time. To simplify the process of students (and other 
HPC professionals) providing needed information, we developed an experiment management 
package (Experiment Manager) to more easily collect and analyze this data during the devel-
opment process. It includes effort, defect and workflow data, as well as copies of every source 
program during development. Tracking effort and defects should provide a good data set for 
building models of productivity and reliability of HEC codes.

The Experiment Manager (pictured in Figure 5) has three components:

1. UMD server: This web server is the entry portal to the Experiment Manager for students, 
faculty and analysts and contains the repository of collected data.

UM Experiment
Manager (EM)

+
Hackystat Server

HPDBugBase
(defect data)

UM Data Analysis
Environment

Master DB Sanitized DB

UM Workflow Tool

Data Analysis 
Interfaces

SQL Queries

Upload
Develop
Analysis

Tool

Download
Analysis
Results

UM Admin

Technician

Professor

Student

HPC Machine

Umdinst
+

Hackystat
Sensors

Local Server: Capture
Data

UMD Server: Store
Data

UMD Server: Analyze
Data

Sign up for account/key
Manual online logs questionnaire

Create a course
Monitor registration

Install Upload

Local Log
Upload Sanitized Data

Write/Run Code

Figure 5. Experiment Manager Structure.

11 Hochstein, L., Carver, J., Shull, F., Asgari, S., 
Basili, V., Hollingsworth, J. K., Zelkowitz, M. “HPC 
Programmer Productivity: A Case Study of Novice HPC 
Programmers,” Supercomputing 2005, Seattle, WA, 
November 2005.
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2. Local server: A local server is established on the user machine (e.g., the one used by 
students at a university) that is used to capture experimental data before transmission to 
the University of Maryland.

3. UMD analysis server: A server stores sanitized data available to the HPCS community 
for access to our collected data. This server avoids many of the legal hurdles implicit with 
using human subject data (e.g., keeping student identities private).

For the near future, our efforts will focus on the following tasks:

• Evolve the interface to the Experiment Manager web-based tool to simplify use by the 
various stakeholders (i.e., roles).

• Continue to develop our tool base, such as the defect data base and workflow models.
• Build our analysis data base including details of the various hypotheses we have studied in 

the past.
• Evolve our experience bases to generate performance measures for each program sub-

mitted in order to have a consistent performance and speedup measure for use in our 
workflow and time to solution studies.

5. Conclusions

     Over the past three years we have been developing a methodology for running HPC 
experiments in a classroom setting and obtaining results we believe are applicable to HPC pro-
gramming in general. We are starting to look at larger developments and at large university 
and government HPC projects in order to increase the confidence on the early results we have 
obtained with students.

     Our development of the Experiment Manager system allows us to more easily expand 
our capabilities in this area. This allows many others to run such experiments on their own in a 
way that allows for the appropriate controls of the experiment so that results across classes and 
organization at geographically diverse locations can be compared in order to get a thorough 
understanding of the HPC development model.
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