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A ~ - - T h i s  paper compares two implementation models for abstract data types: direct and indirect 
implementations. Direct implementations offer relatively cheap execution and expensive compilation costs 
while indirect implementations result in relatively expensive implementations and cheap compilation costs. 
These two models are both accommodated by Ada, and a small experiment compares their costs for a 
particular data type. 
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1. I N T R O D U C T I O N  

The development of user-defined types in ALGOL 68 and Pascal provided a clear break with the 
earlier generation of languages such as FORTRAN and Algol which allowed users only a fixed 
set of types. Programmers using these newer languages can declare new types which in turn can 
be used in declaring new data objects. Objects with user-defined typescorrespond more closely with 
problem-domain objects than to programming-language objects. 

Pascal and Algol 68 type definitions are not ideal methods for defining new types since there 
is no way to declare the operations of a newly declared type. Any program unit within the reach 
of the type definition can access the components of objects with user-defined types. Programmers 
define new operations with functions and procedures, and turned to methodologies like information 
hiding [1] to remedy the shortcomings of the type definition features of these languages. Only the 
few routines that actually manipulated the components of objects need to know the details of an 
object's representation; in the remainder of a program components can be manipulated indirectly 
by calling one of these routines. 

During the 1970s, several languages were designed to extend type definitions that encapsulated 
the representation of objects and permitted users to define new operations on objects. Among the 
better known languages from this era are CLU [2], Alphard [3], Simula [4], Mesa [51, Euclid [6] 
and Ada [7]. Of these languages, Ada is certain to become the most widely used. The remainder 
of this paper discusses the implementation of encapsulated objects in Ada, although we believe 
similar results can be obtained from other languages. 

2. T W O  I M P L E M E N T A T I O N  M O D E L S  

In languages which support abstract data types two basic implementation models have been 
used; for purposes of discussion we call them: direct implementations and indirect implementations. 
Storage for directly implemented objects is allocated in the activation record of the procedure in 
which they are declared. This implies that the compiler knows the underlying representation of 
objects during compilation of all modules that declare objects and can (possibly) generate inline 
code to manipulate the objects. In contrast, indirectly implemented objects are represented in the 
activation record of their declaration as pointers to the actual (heap) storage for the objects. The 
compiler generating code for operations on these objects need not know thdr  structure, but must 
generally generate less efficient code. For example, if an abstract type Stack was declared as follows 

type Values is array (1 .. 100) of integer; 
type Stack is 

record 
Top: integer; 
A: Values; 

end record; 
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Direct Implementa t ion  
Activat ion Record 

Indirect  Implementa t ion  
Activat ion Record 

System data 

SI.Top 
SI.A (descriptor) 
S2.Top 
S2.A (descriptor) 
$1.-4, (values) 
S2~ (values) 

System data 

$1 (pointer) 
$2 (pointer) 

Fig. 1. Two activation records. 

'~ SI.Top 

SI~A. (descriptor) 
SI.A (values) 

S2.Top 
S2.A (descriptor} 
S2.A (values) 

then instances of objects declared in a procedure 

procedure P ...; 
var 
$I, $2: Stack; 

could bc represented in either of the ways shown in Fig. I. 
Direct implementations offer reductions in execution time (and possibly code size) over indirect 

implementations since it takes an extra memory cycle (and perhaps an extra instruction) to 
derefcrcnce the pointer to the object in indirect implementations. Attaining this advantage might 
depend critically on having a compiler that expands procedures inline. If data objects have to be 
passed (by reference) to procedures implementing abstract operations in order to perform the 
operation, the number of memory references in the direct and indirect implementations is likely 
to be similar. 

Indirect implementations may lead to fewer compilations than direct implementations when 
changes arc made to the representations of objects. When the representations of directly 
implemented objects change, then the module implementing the type's operations and all the 
compilation units that declare these objects must be recompilcd. The latter units must be 
rccompilcd to effect changes in the structures of their activation records. However, in indirect 
implementations, all abstract objects are referenced via pointers so only the module implementing 
the type's operations needs to bc recompiled. The recompilation costs for large systems of programs 
can be significant. 

Thus the tradeoffs can be summarized as follows: relatively cheap execution and expensive 
compilation costs for direct implementations, and relatively expensive implementations and cheap 
compilation costs for indirect implementations. Among the better known languages, Euclid 
represents objects directly, while in CLU, Mesa, and Simula 67 objects are represented indirectly. 
We have implemented each of these approaches--the first in Simpl-D [8] and the second in PLUM 
[9]. Since our two implementations arc for very different languages, it makes little sense to compare 
these two approaches empirically. However, Ada supports both these approaches so it is possible 
to compare them using Ada. 

3. TWO MODELS IN ADA 

In Ada, modules are called packages, and the visible part of a package that is known to other 
modules is specified in a package specification. An Ada specification contains the name of the 
abstract type, and procedures and functions that implement the operations of the type, as well as 
any other information the designer of the abstract type wishes to make known to the outside world. 
For example, a directly implemented stack could be specified as: 

packase Stack_Type is 
type Stack is private; 
procedure Push (S: in out Stack; X: in INTEGER); 
procedure Pop (S: in out Stack); 
function Top (S: in Stack) return INTEGER; 
function EmptyStack (S: in Stack) return BOOLEAN; 
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pr/vate 
type Values is array (i .. I00) of INTEGER; 
type Stack is 

record 
Top: INTEGER :~ 0; 
A: Values; 

end record; 
end StackType; 

Stack objects could then bc declared in another rnodulc as shown below. 

with StackType; use Stack_Type; 
procedure StackTest is 

$I, $2: Stack; 

end StackTest; 

To avoid exposing the representation of a ncw type to many other compilation units as ALGOL68 
and Pascal do, Ada provides the concept of a private type. While the name of a private typc is 
available to all users of a package, access to its components is restricted to the package body with 
the same name as thc specification. Howcvcr, since the compiler reads the package specification, 
the benefits of both encapsulation and direct implementation arc availablc to Ada users. Because 
of this, changes in the private part of the Stack_Typc specification will necessitate rccompilation 
of program units using Stack Type. 

To reduce the numbcr of compilations, indirectly implemented stacks could bc spccificd by the 
package shown below. 

package IStack Type is 
type IStack is private; 
procedure NewStack (S: in out IStack); 
procedure Push (S: in out IStack; X: in INTEGER); 
procedure Pop (S: in out IStadk); 
function Top (S: in IStack) return INTEGER; 
function EmptyStack (S: in IStack) return BOOLEAN; 
private 

type IStackRep; - hide representation from outside 
type IStack is acces~ IStackRep; 

end IStack Type; 

The details of the representation of stack objects can bc hidden within the package body. 

package body IStack Type is 

type Values is array (i .. 100) of INTEGER; 
type IStackRep is 

record 
Top: INTEGER; 
A: Values; 

end record; 

procedure NewStack (S: in out IStack) is 
begin 

S :~ new IStackRep; 
S.Top :-~ 0; 

end NewStack; 

end'IStack._Type; 

Stack objects can then be declared and manipulated in separate modules. 

with IStack Type; use IStack_Type; 
procedure StackTest is 

S: IStack; 
begin 

NewStack(S); 

end'StackTest; 

In procedure StackTest, the object named S is represented by a pointer and NewStack must be 
called to create the stack object. Thus changes to the representation of stack objects require that 
the package body be recompiled since NewStack creates these objects, but program units declaring 
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stack objects (like StackTest) remain unchanged. Note that we have not completely hidden the 
differences in representations between the two implementations. The indirect implementation still 
needs a call to NewStack to allocate storage. This difference can be avoided by adding a 
(superfluous) call to NewStack in the direct implementation. These difference could be avoided if 
Ada provided an initialization operation in package bodies. 

Using an Ada compiler on a VAX 8600 using Berkeley UNIX 4.3, we ran two experiments to 
determine the expense (in terms of data space and execution time) of both indirect and direct 
implementations. In both experiments we used the Stack data types declared above. The first 
experiment shows the effects of declaring a number of stacks and doing the minimal number of 
operations on them (i.e. calling NewStack to create the indirectly implemented objects). 

Space Used by Objects 
Implementation Number of Objects 

0 1 25 .50 100 
direct 29k 29k 48k 68k 108k 
indirect 29k 31k 54k 77k 124k 

The figures in this table are produced by the UNIX "time" command and represent "unshared 
memory" sizes of the data and stack segments of processes. As is evident from the table, the 
indirectly implemented objects use more storage than directly implemented objects. Each additional 
indirectly implemented object costs approximately 0.92 k of memory, while a directly implemented 
object costs an additional 0.8 k. Actual storage costs for each object is 404 bytes for indirectly 
implemented objects and 400 bytes for directly implemented objects so there is about 100% 
execution overhead per object allocation in using this compiler. 

The second experiment measures the cost of operations on objects. In this case a series of pairs 
of Push-Pop operations was applied to a single Stack object. 

Time Consumed b T Operations 
Implementation Number of Push-Pop Pairs 

100k 250k 5(}Ok 1OOOk 
direct 1.6 4.2 8.4 16.g 
indirect (access check) 2.1 5.2 10.4 20.g 
indirect (no access check) 1.7 4.3 8.7 17.3 

The figures in this table are produced by the UNIX "time" command and represent "user time", 
the number of seconds executing the user's program. Indirectly implemented operations took 
approximately 25% longer to execute than the corresponding directly implemented operations. 
Investigation of the generated code for indirectly implemented objects revealed that the pointer to 
the stack object was being checked to make sure it was not null each time the stack object was 
referenced. Inserting the pragrna SUPPRESS(ACCESS_CHECK) eliminated almost all of the 
performance differences between the two implementations. The small differences that remain are 
the result of an extra instruction generated for parameter transmission of indirectly implemented 
objects. Passing one of these objects as an in-out parameter results in the value of the pointer 
representing the object being passed to the operation and the (possibly changed) value being copied 
back to the object's storage. In contrast, the compiler generates an address for directly implemented 
objects and knows that any change in the address need not be restored. While the execution 
differences are small, running programs with access checking disabled is unsafe. 

As predicted, expanding the operations inline results in even larger advantages for directly 
implemented objects. 

Time Consumed b~" OpertLtions 
Implementation Number of Inline Push-Pop Pair~' 

100k 250k 500k lO00k 
direct 0.6 1.5 3.0 6.2 
indirect 1.1 2.8 5.6 11.2 

Part of the differences in these figures results from the compiler not eliminating access checking 
when expanding operations on indirectly implemented objects. Even if we remove the differences 
found in the previous values when neither set of operations was expanded inline, we still see an 
advantage for directly implemented objects. 
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4. C O N C L U S I O N S  

In Ada,  a t  first glance there is no apparent  reason why a private par t  should appear  in a package 
specification rather than a package body  since users o f  the package cannot  directly access the 
representation o f  the type. The reason becomes clear when we consider implementat ion models. 
Since a major  goal o f  the language is rapid execution in embedded computers ,  execution time is 
a pr imary design goal and compilat ion costs have a relatively low priority. By put t ing the private 
parts into the specification, an Ada  compiler can implement objects directly rather than indirectly 
saving both  storage space and execution time. By offering both  implementat ion possibilities, Ada  
permits its users to save on compilat ion costs by using indirect implementat ions during devel- 
opment ,  and to save on execution costs by switching to direct implementat ions during product ion.  

Acknowledgement--This work was supported by the Air Force Office of Scientific Research under grant F49620-85-K-0018. 

R E F E R E N C E S  

I. Pamas D. L., On the criteria used in decomposing systems into modules. Commun. ACM 15(12), 1053-1058 (December 
1972). 

2. Liskov B., Abstraction mechanisms for CLU. Commun. ACM 20, 564-576 (1977). 
3. Wulf W., London g. and Shaw M., An introduction to the construction and verification of Alphard programs. IEEE 

Trans. Software Engng 2, 253-264 (1976). 
4. DaM O.-J., Myhrhaug B. and Nygaard K., The SIMULA 67 Common Base Language. Norwegian Computing Center, 

Oslo, Publication No. S-22 (1970). 
5. Geschke C. M., Morris J. H. and Satterthwaite E. H., Early experience with Mesa. Commun. ACM 20, 540-553 (1977). 
6. Hott R. C. and Wortman D. B., A model for implementing Euclid modules and prototypes. ACM TOPLAS 4(4), 

552-562 (October 1982). 
7. Reference Manual for the Ada Programming Language. United States Department of Defense, Draft Revised MIL-STD 

1815 (July 1982). 
8. Gannon J. D. and Rosenberg J., Implementing data abstraction features in a stack-based language. Software Pract. 

Exper. 9, 547-560 (1979). 
9. Zelkowitz M. V. and Lyl¢ J. R., Implementation of language enhancements. Comput. Lang. 6, 139-153 (1981). 

About the Autbor--Jomq D. GANNON received the A. B. degree in mathematical economics and the M.S. 
degree in applied mathematics from Brown University in 1970 and 1972, respectively, and the Ph.D. degree 
in computer science from the University of Toronto in 1975. He is currently an Associate Professor in 
the Department of Computer Science and the Institute for Advanced Computer Studies at the University 
of Maryland. Dr Gannon's research centers on language and compiler design to increa~ the reliability 
of programs. Initially his work focussed on the design of less error-prone programming languages. His 
interests in program proving and testing have led him to investigate formal Slx'cifications, test oracles, 
and test coverage metrics. Most recently, Dr Gannon has studied atomic remote procedure call in response 
to the problems of distributed and fault-tolerant computing. 

About the Author--MARviN V. ZELKOWITZ is Associate Professor of Computer Science at the University 
of Maryland. He received a Ph.D. degr~ in Computer Science from Cornell University in 1971. He is 
a past chairman of both ACM SIGSOFT and IEEE Computer Society Technical Committee on Software 
Engineering and is currently on the Executive Committee of both of these. His major research interests 
are in programming language design, language implementation and environment design, and he has 
published many papers on these topics. 


