
Compm. lang. Vol. 12, No. 1, pp. 21-25, 1987 0096-0351/87 $3.00 +0.00
Printed in Great Britain. All rights reserved Copyright ~ 1987 Pergamon Journals Ltd

T W O I M P L E M E N T A T I O N M O D E L S O F

A B S T R A C T D A T A T Y P E S

JOHN D. GANNON a n d MARVIN V. ZELKOWITZ
Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland,

College Park, MD 20742, U.S.A.

(Received March 1986; revision received July 1986)

A ~ - - T h i s paper compares two implementation models for abstract data types: direct and indirect
implementations. Direct implementations offer relatively cheap execution and expensive compilation costs
while indirect implementations result in relatively expensive implementations and cheap compilation costs.
These two models are both accommodated by Ada, and a small experiment compares their costs for a
particular data type.

Keyworda: abstract data type ada run-time implementation

1. I N T R O D U C T I O N

The development of user-defined types in ALGOL 68 and Pascal provided a clear break with the
earlier generation of languages such as FORTRAN and Algol which allowed users only a fixed
set of types. Programmers using these newer languages can declare new types which in turn can
be used in declaring new data objects. Objects with user-defined typescorrespond more closely with
problem-domain objects than to programming-language objects.

Pascal and Algol 68 type definitions are not ideal methods for defining new types since there
is no way to declare the operations of a newly declared type. Any program unit within the reach
of the type definition can access the components of objects with user-defined types. Programmers
define new operations with functions and procedures, and turned to methodologies like information
hiding [1] to remedy the shortcomings of the type definition features of these languages. Only the
few routines that actually manipulated the components of objects need to know the details of an
object's representation; in the remainder of a program components can be manipulated indirectly
by calling one of these routines.

During the 1970s, several languages were designed to extend type definitions that encapsulated
the representation of objects and permitted users to define new operations on objects. Among the
better known languages from this era are CLU [2], Alphard [3], Simula [4], Mesa [51, Euclid [6]
and Ada [7]. Of these languages, Ada is certain to become the most widely used. The remainder
of this paper discusses the implementation of encapsulated objects in Ada, although we believe
similar results can be obtained from other languages.

2. T W O I M P L E M E N T A T I O N M O D E L S

In languages which support abstract data types two basic implementation models have been
used; for purposes of discussion we call them: direct implementations and indirect implementations.
Storage for directly implemented objects is allocated in the activation record of the procedure in
which they are declared. This implies that the compiler knows the underlying representation of
objects during compilation of all modules that declare objects and can (possibly) generate inline
code to manipulate the objects. In contrast, indirectly implemented objects are represented in the
activation record of their declaration as pointers to the actual (heap) storage for the objects. The
compiler generating code for operations on these objects need not know thdr structure, but must
generally generate less efficient code. For example, if an abstract type Stack was declared as follows

type Values is array (1 .. 100) of integer;
type Stack is

record
Top: integer;
A: Values;

end record;

21

22 JOHN D. GA,',r~ON and MARW~ V. ZELKOWITZ

Direct Implementa t ion
Activat ion Record

Indirect Implementa t ion
Activat ion Record

System data

SI.Top
SI.A (descriptor)
S2.Top
S2.A (descriptor)
$1.-4, (values)
S2~ (values)

System data

$1 (pointer)
$2 (pointer)

Fig. 1. Two activation records.

'~ SI.Top

SI~A. (descriptor)
SI.A (values)

S2.Top
S2.A (descriptor}
S2.A (values)

then instances of objects declared in a procedure

procedure P ...;
var
$I, $2: Stack;

could bc represented in either of the ways shown in Fig. I.
Direct implementations offer reductions in execution time (and possibly code size) over indirect

implementations since it takes an extra memory cycle (and perhaps an extra instruction) to
derefcrcnce the pointer to the object in indirect implementations. Attaining this advantage might
depend critically on having a compiler that expands procedures inline. If data objects have to be
passed (by reference) to procedures implementing abstract operations in order to perform the
operation, the number of memory references in the direct and indirect implementations is likely
to be similar.

Indirect implementations may lead to fewer compilations than direct implementations when
changes arc made to the representations of objects. When the representations of directly
implemented objects change, then the module implementing the type's operations and all the
compilation units that declare these objects must be recompilcd. The latter units must be
rccompilcd to effect changes in the structures of their activation records. However, in indirect
implementations, all abstract objects are referenced via pointers so only the module implementing
the type's operations needs to bc recompiled. The recompilation costs for large systems of programs
can be significant.

Thus the tradeoffs can be summarized as follows: relatively cheap execution and expensive
compilation costs for direct implementations, and relatively expensive implementations and cheap
compilation costs for indirect implementations. Among the better known languages, Euclid
represents objects directly, while in CLU, Mesa, and Simula 67 objects are represented indirectly.
We have implemented each of these approaches--the first in Simpl-D [8] and the second in PLUM
[9]. Since our two implementations arc for very different languages, it makes little sense to compare
these two approaches empirically. However, Ada supports both these approaches so it is possible
to compare them using Ada.

3. TWO MODELS IN ADA

In Ada, modules are called packages, and the visible part of a package that is known to other
modules is specified in a package specification. An Ada specification contains the name of the
abstract type, and procedures and functions that implement the operations of the type, as well as
any other information the designer of the abstract type wishes to make known to the outside world.
For example, a directly implemented stack could be specified as:

packase Stack_Type is
type Stack is private;
procedure Push (S: in out Stack; X: in INTEGER);
procedure Pop (S: in out Stack);
function Top (S: in Stack) return INTEGER;
function EmptyStack (S: in Stack) return BOOLEAN;

Implementation models of abstract data types 23

pr/vate
type Values is array (i .. I00) of INTEGER;
type Stack is

record
Top: INTEGER :~ 0;
A: Values;

end record;
end StackType;

Stack objects could then bc declared in another rnodulc as shown below.

with StackType; use Stack_Type;
procedure StackTest is

$I, $2: Stack;

end StackTest;

To avoid exposing the representation of a ncw type to many other compilation units as ALGOL68
and Pascal do, Ada provides the concept of a private type. While the name of a private typc is
available to all users of a package, access to its components is restricted to the package body with
the same name as thc specification. Howcvcr, since the compiler reads the package specification,
the benefits of both encapsulation and direct implementation arc availablc to Ada users. Because
of this, changes in the private part of the Stack_Typc specification will necessitate rccompilation
of program units using Stack Type.

To reduce the numbcr of compilations, indirectly implemented stacks could bc spccificd by the
package shown below.

package IStack Type is
type IStack is private;
procedure NewStack (S: in out IStack);
procedure Push (S: in out IStack; X: in INTEGER);
procedure Pop (S: in out IStadk);
function Top (S: in IStack) return INTEGER;
function EmptyStack (S: in IStack) return BOOLEAN;
private

type IStackRep; - hide representation from outside
type IStack is acces~ IStackRep;

end IStack Type;

The details of the representation of stack objects can bc hidden within the package body.

package body IStack Type is

type Values is array (i .. 100) of INTEGER;
type IStackRep is

record
Top: INTEGER;
A: Values;

end record;

procedure NewStack (S: in out IStack) is
begin

S :~ new IStackRep;
S.Top :-~ 0;

end NewStack;

end'IStack._Type;

Stack objects can then be declared and manipulated in separate modules.

with IStack Type; use IStack_Type;
procedure StackTest is

S: IStack;
begin

NewStack(S);

end'StackTest;

In procedure StackTest, the object named S is represented by a pointer and NewStack must be
called to create the stack object. Thus changes to the representation of stack objects require that
the package body be recompiled since NewStack creates these objects, but program units declaring

24 Jole~ D. GAr~O.~ and MARVlt~ V. ZELKOWITZ

stack objects (like StackTest) remain unchanged. Note that we have not completely hidden the
differences in representations between the two implementations. The indirect implementation still
needs a call to NewStack to allocate storage. This difference can be avoided by adding a
(superfluous) call to NewStack in the direct implementation. These difference could be avoided if
Ada provided an initialization operation in package bodies.

Using an Ada compiler on a VAX 8600 using Berkeley UNIX 4.3, we ran two experiments to
determine the expense (in terms of data space and execution time) of both indirect and direct
implementations. In both experiments we used the Stack data types declared above. The first
experiment shows the effects of declaring a number of stacks and doing the minimal number of
operations on them (i.e. calling NewStack to create the indirectly implemented objects).

Space Used by Objects
Implementation Number of Objects

0 1 25 .50 100
direct 29k 29k 48k 68k 108k
indirect 29k 31k 54k 77k 124k

The figures in this table are produced by the UNIX "time" command and represent "unshared
memory" sizes of the data and stack segments of processes. As is evident from the table, the
indirectly implemented objects use more storage than directly implemented objects. Each additional
indirectly implemented object costs approximately 0.92 k of memory, while a directly implemented
object costs an additional 0.8 k. Actual storage costs for each object is 404 bytes for indirectly
implemented objects and 400 bytes for directly implemented objects so there is about 100%
execution overhead per object allocation in using this compiler.

The second experiment measures the cost of operations on objects. In this case a series of pairs
of Push-Pop operations was applied to a single Stack object.

Time Consumed b T Operations
Implementation Number of Push-Pop Pairs

100k 250k 5(}Ok 1OOOk
direct 1.6 4.2 8.4 16.g
indirect (access check) 2.1 5.2 10.4 20.g
indirect (no access check) 1.7 4.3 8.7 17.3

The figures in this table are produced by the UNIX "time" command and represent "user time",
the number of seconds executing the user's program. Indirectly implemented operations took
approximately 25% longer to execute than the corresponding directly implemented operations.
Investigation of the generated code for indirectly implemented objects revealed that the pointer to
the stack object was being checked to make sure it was not null each time the stack object was
referenced. Inserting the pragrna SUPPRESS(ACCESS_CHECK) eliminated almost all of the
performance differences between the two implementations. The small differences that remain are
the result of an extra instruction generated for parameter transmission of indirectly implemented
objects. Passing one of these objects as an in-out parameter results in the value of the pointer
representing the object being passed to the operation and the (possibly changed) value being copied
back to the object's storage. In contrast, the compiler generates an address for directly implemented
objects and knows that any change in the address need not be restored. While the execution
differences are small, running programs with access checking disabled is unsafe.

As predicted, expanding the operations inline results in even larger advantages for directly
implemented objects.

Time Consumed b~" OpertLtions
Implementation Number of Inline Push-Pop Pair~'

100k 250k 500k lO00k
direct 0.6 1.5 3.0 6.2
indirect 1.1 2.8 5.6 11.2

Part of the differences in these figures results from the compiler not eliminating access checking
when expanding operations on indirectly implemented objects. Even if we remove the differences
found in the previous values when neither set of operations was expanded inline, we still see an
advantage for directly implemented objects.

Implementation models of abstract data types 25

4. C O N C L U S I O N S

In Ada, a t first glance there is no apparent reason why a private par t should appear in a package
specification rather than a package body since users o f the package cannot directly access the
representation o f the type. The reason becomes clear when we consider implementat ion models.
Since a major goal o f the language is rapid execution in embedded computers , execution time is
a pr imary design goal and compilat ion costs have a relatively low priority. By put t ing the private
parts into the specification, an Ada compiler can implement objects directly rather than indirectly
saving both storage space and execution time. By offering both implementat ion possibilities, Ada
permits its users to save on compilat ion costs by using indirect implementat ions during devel-
opment , and to save on execution costs by switching to direct implementat ions during product ion.

Acknowledgement--This work was supported by the Air Force Office of Scientific Research under grant F49620-85-K-0018.

R E F E R E N C E S

I. Pamas D. L., On the criteria used in decomposing systems into modules. Commun. ACM 15(12), 1053-1058 (December
1972).

2. Liskov B., Abstraction mechanisms for CLU. Commun. ACM 20, 564-576 (1977).
3. Wulf W., London g. and Shaw M., An introduction to the construction and verification of Alphard programs. IEEE

Trans. Software Engng 2, 253-264 (1976).
4. DaM O.-J., Myhrhaug B. and Nygaard K., The SIMULA 67 Common Base Language. Norwegian Computing Center,

Oslo, Publication No. S-22 (1970).
5. Geschke C. M., Morris J. H. and Satterthwaite E. H., Early experience with Mesa. Commun. ACM 20, 540-553 (1977).
6. Hott R. C. and Wortman D. B., A model for implementing Euclid modules and prototypes. ACM TOPLAS 4(4),

552-562 (October 1982).
7. Reference Manual for the Ada Programming Language. United States Department of Defense, Draft Revised MIL-STD

1815 (July 1982).
8. Gannon J. D. and Rosenberg J., Implementing data abstraction features in a stack-based language. Software Pract.

Exper. 9, 547-560 (1979).
9. Zelkowitz M. V. and Lyl¢ J. R., Implementation of language enhancements. Comput. Lang. 6, 139-153 (1981).

About the Autbor--Jomq D. GANNON received the A. B. degree in mathematical economics and the M.S.
degree in applied mathematics from Brown University in 1970 and 1972, respectively, and the Ph.D. degree
in computer science from the University of Toronto in 1975. He is currently an Associate Professor in
the Department of Computer Science and the Institute for Advanced Computer Studies at the University
of Maryland. Dr Gannon's research centers on language and compiler design to increa~ the reliability
of programs. Initially his work focussed on the design of less error-prone programming languages. His
interests in program proving and testing have led him to investigate formal Slx'cifications, test oracles,
and test coverage metrics. Most recently, Dr Gannon has studied atomic remote procedure call in response
to the problems of distributed and fault-tolerant computing.

About the Author--MARviN V. ZELKOWITZ is Associate Professor of Computer Science at the University
of Maryland. He received a Ph.D. degr~ in Computer Science from Cornell University in 1971. He is
a past chairman of both ACM SIGSOFT and IEEE Computer Society Technical Committee on Software
Engineering and is currently on the Executive Committee of both of these. His major research interests
are in programming language design, language implementation and environment design, and he has
published many papers on these topics.

