
Innovations Syst Softw Eng (2005) 1: 3–11
DOI 10.1007/s11334-005-0007-z

ORIGINAL PAPER

Mikael Lindvall · Ioana Rus · Forrest Shull
Marvin Zelkowitz · Paolo Donzelli
Atif Memon · Victor Basili · Patricia Costa
Roseanne Tvedt · Lorin Hochstein
Sima Asgari · Chris Ackermann · Dan Pech

An evolutionary testbed for software technology evaluation

Received: 1 September 2004 / Accepted: 28 December 2004 / Published online: 11 March 2005
© Springer-Verlag 2005

Abstract Empirical evidence and technology evaluation are
needed to close the gap between the state of the art and the
state of the practice in software engineering. However, there
are difficulties associated with evaluating technologies based
on empirical evidence: insufficient specification of context
variables, cost of experimentation, and risks associated with
trying out new technologies. In this paper, we propose the
idea of an evolutionary testbed for addressing these problems.
We demonstrate the utility of the testbed in empirical studies
involving two different research technologies applied to the
testbed, as well as the results of these studies. The work is part
of NASA’s High Dependability Computing Project (HDCP),
in which we are evaluating a wide range of new technologies
for improving the dependability of NASA mission-critical
systems.

1 Introduction

A large gap exists between the state of the art and the state of
the practice in software engineering. Research into software
engineering practices, methods, and tools is producing a large
number of exciting new technologies that promise to reduce
the cost or improve the quality of software. By technology
we refer to algorithms, techniques, methods, methodologies,
processes, and software tools that can be used to develop
software-intensive systems. Examples of technologies are:
agents, agile methods, architecture languages, aspects, asser-
tions, and automated programming – to name just a few. How-
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ever, while research efforts are continuing apace, only a small
percentage of these technologies is seeing any significant use
on real development projects.

It is becoming more commonly accepted among software
engineering researchers that empirical evidence is needed to
close this gap. That is, we can know whether a technology
is feasible, widely usable, and capable of meeting the claims
specified for it only if the technology has been applied by
others than the technology developer and empirically stud-
ied. However, there are some key obstacles that make this
difficult.

Insufficient specification of context variables It is clear that
there are many types of users and many contexts in which
a technology can be applied. These context variables clearly
bound and limit the effectiveness of a technology. The fact
that a given technology was evaluated positively under cer-
tain conditions does not a priori imply that it must thus be
good under all other project conditions. Determining which
conditions do or do not make results transferable between
project environments is an open and challenging question.

Cost Researchers have two possible strategies for exercising
their new technologies: (1) to create realistic development
artifacts from scratch on which they can be applied or to (2)
work with development teams, learn their context and termi-
nology and familiarize themselves with appropriate artifacts,
and apply the technology to these artifacts. Either strategy
imposes severe costs on researchers. Moreover, conducting
studies with representative subjects tends to increase the costs
of experimentation (the most relevant subjects for most stud-
ies come from the population of professional software devel-
opers, whose time is almost always overbooked and highly
expensive) while making it more difficult to achieve statisti-
cal significance.

Risk Trying out new technologies (or even technologies new
to a given environment) under conditions approaching a
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realistic project environment carries significant risk. Not only
can unsuccessful attempts not help, but they may also actively
hinder a project by requiring unbudgeted effort, missing
important project problems, etc. If the project fails because
of the new technology, the project manager will be faulted
for taking an “unnecessary” risk.

To address these problems, we propose the idea of pack-
aged “testbed” applications that can facilitate empirical stud-
ies of new technologies in a way that assists the eventual
technology transfer of mature results into live project envi-
ronments. Such testbeds can reduce costs (researchers can
make use of software artifacts, at a useful level of represen-
tativeness, without investing the effort to create them from
scratch, even if the use of testbeds does not explicitly
address the problem of involving representative subjects);
reduce risks (the testbeds are designed to support an iterative
cycle of experimentation, predicated on the idea that tech-
nologies can mature over time based on empirical results,
that “buys down” risk before taking the technology to live
project environments); and help contextualize the results (as
the context of each testbed can be described in detail for the
research community to use). In addition, testbeds can be used
as a vehicle for collaboration between researchers because it
allows them to work on common artifacts provided by an
independent source.

This paper describes the HDCP testbed concept by pro-
viding a detailed description of a technology testbed that we
constructed for NASA and of the process by which tech-
nology researchers can use the testbed to generate empirical
data about their own technologies. We show that the test-
bed adequately addresses the above problems by describing
the application of empirical studies involving two different
research technologies to the testbed and showing the detailed
results of these studies. Lessons learned and future work con-
clude the paper.

1.1 Related work

We have some confidence that publicly available packaged
testbeds can help in this area because of our prior experi-
ence in technology transfer in the NASA Software Engineer-
ing Laboratory (SEL). The SEL work involved studies of
technologies at different levels of maturity, under conditions
ranging from small, sample, offline documents to live pro-
jects at NASA (in which we performed smaller experiments
and monitored the use of the technology quite closely) [2].
These experiences helped inform our process for how unac-
ceptable risks to projects can be retired with offline studies.

We have been experimenting on understanding what con-
stitutes a useful “testbed” of software artifacts that can be
reused in multiple empirical studies. For example, we have
run multiple experiments on reusable software artifacts, from
multiple domains, that were seeded with defects in order to
evaluate technologies. Some of those artifacts had a long his-
tory of being reused by other researchers. In some cases, this
was done to replicate or explore our results in more detail.

For example, one study of inspection techniques [1] that drew
conclusions about team performance was replicated by inde-
pendent researchers who analyzed in more detail the perfor-
mance of different team members [9]. In other cases, it was
done to allow the evaluation of new technologies against a
well-understood baseline. (For example, a recent study of
testing technologies [10] reused documents on which we had
previously evaluated different variants of software inspec-
tions [12]). We have analyzed the strengths and weaknesses
of such artifacts for transferring explicit and implicit knowl-
edge from the original creators to other research users [11].
Weaknesses we uncovered were that these “testbed” artifacts
were static and limited with respect to the set of technologies
for which they were relevant, thus restricting the technology
studies that could be performed on them.

In NASA’s High Dependability Computing Project
(HDCP), we are faced with the problem of evaluating a wide
range of proposed new technologies for improving the
dependability of NASA mission-critical systems (http://
www.hdcp.org/). This means that we are not part of any sin-
gle development environment, as was the case in our work
in the NASA SEL, nor could we deal with small testbeds
focused on a small set of technologies. We needed an evolv-
able testbed that could be easily extended to accommodate
new technologies and further experimentation. The testbed
concept described in this paper extends the experiences with
reusable artifacts to meet HDCP needs.

2 HDCP and technology transfer

HDCP is a NASA initiative for increasing dependability of
software-based systems. The HDCP project proposes and
investigates the achievement of high dependability by intro-
ducing new technologies that are developed at participating
universities and research centers.

HDCP views high-dependability technology evaluation
as passing through a series of milestone gates, each demon-
strating its context of effectiveness. The milestones go from
level 1 (internal set – least mature) to level 4 (live examples –
most mature). We indicate in Table 1 the NASA technology
readiness levels (TRLs) associated with each of the HDCP
levels (TRL 1 representing a concept and TRL 9 correspond-
ing to an operational technology).

A significant gap between level 1 and level 3 needed to
be addressed in the HDCP project. Level 1 represents a sit-
uation in which the inventor of a new technology applies
it to a software system that she knows well. This form of
study is relatively uncomplicated since it is likely that most
inventors have access to or can develop a software system
to which they can apply their technology. Level 1 studies
are necessary for initial experimentation with a technology;
however, the value of the results is limited. The experimenter
knows not only the system and its correct behavior well, but
also the technology and what is expected from it. Because
of this knowledge and bias (the inventor wants the technol-
ogy to show promising results), it is difficult to generalize
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Table 1 Technology levels

HDCP level NASA TRL Milestone description

4 7 or 8 Live examples: this milestone definition is specific to a part or all of a system currently under development
at NASA, a NASA contractor, or an HDCP company by mutual agreement of all concerned.

3 6 HDCP domain-specific offline set: domain-specific set of examples chosen from past NASA
or NASA-contractor projects or from HDCP company projects.

2 5 Scaled-down versions of NASA-related software-intensive systems with high-dependability requirements.
1 3 Internal set: typically internally developed set of examples on which the technology researcher

has applied the technology.

Table 2 HDCP Milestones

Milestones Subject’s level of independence from Objectivity

Testbed Technology and credibility

Level 2c High High High
Level 2b High Low ↑
Level 2a Low High
Level 1 Low Low Low

the results from such initial studies. In order to show that the
technology is feasible and also meets its claims in other con-
texts, it is important to experiment on higher levels. Level 2
represents a scenario in which the inventor of a technology
applies it to a software system that is a scaled-down ver-
sion of NASA-related software. Several NASA projects were
interested in participating in this activity, for example cen-
ter-TRACON automation system (CTAS) and Mars Science
Laboratory (MSL), but access restrictions made it infeasible
to scale down use for experimentation. Increased security
measures made it difficult for non-US citizens to investigate
these and other similar systems. In order to bridge the gap to
level 3, level 2 testbeds were created that could serve as rep-
licas of scaled-down NASA applications. Thus, CTAS was
represented by the tactical separation assisted flight environ-
ment (TSAFE) testbed, an air traffic system identifying the
position of aircraft on a map, initially developed at MIT [5]
and turned into a testbed at FC-MD. SCRover, developed
at the University of Southern California, is representative of
MSL [4].

Focusing on level 2 unveils several sublevels in terms of
the experimenter’s degree of independence from technology
and testbed. Levels 1 and 2 can be characterized as presented
in Table 2. In level 1, the inventor of the technology experi-
ments on a familiar testbed. Within level 2, the level of inde-
pendence, and therefore the objectivity and credibility of the
experiment, increases from level 2a to level 2c. In level 2a,
the experimenter experiments with a technology invented by
someone else on a testbed she is familiar with. In level 2b,
the experimenter experiments with technology developed by
herself on an unfamiliar testbed. In level 2c, the experimenter
is an external assessor, familiar with neither the testbed nor
the technology.

Table 1 shows how testbeds can be used to design exper-
iments with increasing objectivity and credibility, thereby
reducing the risks of using new technologies by prequalify-

ing technologies in a related context, enabling cost-effective
HDCP technology integration, and accelerating the pace of
HDCP technology maturity and transition.

In order to develop an efficient testbed that would meet
the needs of experimentation in level 2, a HDCP testbed must
be under version and configuration control and must fulfill
the following requirements:

• Representative of NASA and NASA-related missions.
• Easy to distribute and use.
• Open to non-US citizens and permanent residents (not

subject to ITAR and other similar restrictions).
• Easy to evolve and tailor to different technologies.
• Cost-effective on people and computing resources.1

3 Testbed and its usage in experimentation

We define a testbed as a set of artifacts associated with a
software (or a software-intensive) system, together with the
infrastructure needed for running experiments on that sys-
tem. If the system under study includes hardware, then it is
part of the testbed as well.

By experiments we mean verifying hypotheses associ-
ated with software development technologies. In other words,
evaluating the effects of using technologies in the develop-
ment of software with respect to well-defined goals (e.g.,
feasibility, effectiveness, or cost).

A testbed is not static; it evolves as existing artifacts and
infrastructure features are improved and added. Thus, over
time there will be many different versions of these items.
For each experiment on the testbed, a set of artifacts and
infrastructure features is selected based on the design of the
experiment and the characteristics of the technology. This set
of items constitutes a configuration of the testbed.

Testbed artifacts are either product- or process-oriented.
Product-oriented artifacts include source code, executables,
and documentation such as requirements, design, test plans,
test cases, and user manuals. Process-oriented artifacts in-
clude project plans, descriptions of methods and techniques
applied during software development, and their results (e.g.,
results of inspections, testing, and certification). Different

1Based on a presentation by Barry Boehm at the HDCP workshop in
June 2004
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technologies are designed to detect different classes of faults.
An important testbed artifact is therefore the set of seeded
faults that can be used to create a configuration of the testbed.

The infrastructure consists of instrumentation that must
be added to the system in order to experiment with it. For
example, the code needs to be instrumented in order to mon-
itor and record its execution, and test case generation and
execution must be automated.

The testbed has an associated experience base in which
experimental designs, results from previous experiments, les-
sons learned, and history of evolution are kept. This is anal-
ogous to experimental protocols frequently used in medicine
[7].

Stakeholders in the experimentation process include the
technology developer, the testbed developer, and the experi-
menter. A person can have more than one role. Each of these
individuals has a certain familiarity with the subjects and
objects of the experiment. For example, the technology devel-
oper is familiar with the technology while the testbed devel-
oper is familiar with the testbed. Some bias (intentional or
not) in designing and running an experiment might result
from this familiarity or from the interest of a stakeholder.
For example, the technology developer might want to dem-
onstrate that her technology satisfies its claims (rather than to
evaluate whether or not that is true, i.e., the well-known psy-
chological principle of confirmation bias where the believers
of a phenomenon are more likely to observe it). Therefore, the
value of an experiment in terms of objectivity and credibility
increases with decreased dependency of the experimenter in
relation to the technology and the testbed, as illustrated in
Table 1.

4 Building, using, and evolving the TSAFE testbed

The TSAFE concept was defined at NASA Ames Research
Center [6] and was proposed as a principal component of a
largerAutomatedAirspace Computing System. The goal is to
shift the burden of ensuring aircraft separation from human
controllers to computers. The TSAFE software, upon which
we based the testbed, is a 20 KLOC Java program that per-
forms two primary functions: conformance monitoring and
trajectory synthesis. In addition to the source code and an
overall description, MIT provided an installation guide and
a user manual as well as recorded flight data for test input.

As part of our effort to turn TSAFE into a testbed, we
added, based on the existing artifacts, a requirements speci-
fication and an architecture document. We synthesized faults
that were seeded into the source code. Test cases are under
development. We added a testbed infrastructure to facilitate
experimentation, e.g., support to seed the code with synthe-
sized faults, to monitor seeded faults as they get executed,
and to generate system output and traces that can be captured
and used to determine the status of the TSAFE system under
execution. A test case input generator is under development.
Some initial studies were conducted and documented to serve
as examples for other experimenters interested in using the

Fig. 1 Testbed-related activities

testbed. The experience from these technology experiments
as well as feedback and lessons learned have been collected
and will be provided together with the other artifacts as part
of the testbed experience base in order to maximize the use-
fulness of the testbed and minimize the cost and effort of
experimentation using the testbed. Artifacts such as docu-
ments are managed in hyperwave using its version and con-
figuration management system. Artifacts such as source code
are managed in CVS.

4.1 Testbed-related activities

For building, using, and evolving the testbed we performed
the following activities (Fig. 1):

1. Select application in relevant domain.
2. Select family of technologies.
3. Select one technology within the family.
4. Prepare artifacts necessary for experimentation.
5. Conduct study to create a testbed baseline.
6. Define faults to be seeded.
7. Design and conduct experiment.
8. Analyze and document results from experiment.
9. Improve testbed based on analysis.

10. Improve technology based on analysis.
11. Verify testbed usefulness.

How many of these steps will be repeated in future exper-
iments on the testbed depends on whether or not the new
technology is part of a technology family that has already
been applied to the testbed.

4.1.1 Select application in relevant domain

The Tactical Separation Assisted Flight Environment
(TSAFE) was the selected application, and the relevant do-
main was NASA software for air traffic control. TSAFE is a
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good choice for a software testbed due to its relationship with
the CTAS system and its related dependability requirements.
TSAFE will automatically and independently make decisions
without relying on human controllers. TSAFE software is
reasonably complex without being too difficult to study.

4.1.2 Select family of technologies

We performed a brief characterization of the technologies
in HDCP and identified several families of technologies.
Members of a family possess some commonalities, such as
the input artifacts on which they operate and the develop-
ment activities they support, their purpose, and outcome. For
each of these families, different artifacts, infrastructure, and
seeded faults are needed. Since many of the technologies in
the HDCP project are related to software architecture analy-
sis, we concentrated on such technologies.

Software architecture deals with the structure, interac-
tions, and behavior of a software system. The building blocks
of software architecture are its components and their interre-
lationships. Constraints and rules describe how the architec-
tural components communicate with one another.

We focused on software architectural evaluations, which
are investigations into how a system is structured and
behaves, with the purpose of suggesting areas for improve-
ment or for understanding various aspects of a system (e.g.,
maintainability, reliability, or security). In many cases, a soft-
ware architectural evaluation is performed before a system is
designed or implemented. In other cases, a software
architectural evaluation is performed after the system has
been implemented. This type of architectural evaluation is
typically performed to assure that the actual implementation
of a system matches the planned architectural design [13].

We chose a set of technologies that support implementa-
tion-oriented software architectural evaluation. These eval-
uations typically reconstruct the actual software architecture
from the source code in order to compare it with the planned
architecture.

4.1.3 Select one technology within the family

The particular technology chosen for initial experimentation
is called software architecture evaluation (SAE) [13]. It iden-
tifies deviations between the planned architecture and the
actual (implemented) architecture of a software system. This
analysis is used to evaluate whether the implemented soft-
ware architecture follows the planned software architecture
and associated goals, rules, and guidelines.

The quality issues that SAE claims to find are discrep-
ancies between the planned and the actual architecture. The
planned architecture is represented by a set of components
and their interconnections, as well as some information
regarding classes that constitute the component interface.
SAE thus claims to find missing as well as extra intercon-
nections between components and to identify when classes
other than the specified interface classes are used to access
components.

4.1.4 Prepare artifacts necessary for experimentation

The necessary artifacts were determined by analyzing the
inputs to the selected technology: planned and actual archi-
tecture. The planned architecture was based on architectural
information in the original TSAFE documentation. It
describes the components and their interactions, the design
rationale behind this particular architectural design, and the
mapping from components to source code constructs. The ac-
tual architecture is extracted from the source code using a tool
that is part of the SAE technology, and hence the related prep-
aration was to install the testbed source code in the correct
folders.

4.1.5 Conduct study to create a testbed baseline

The first study involved applying SAE on the TSAFE test-
bed in order to detect architectural violations. The analy-
sis revealed three such violations. Further analysis of the
detected violations determined that they were all minor and
not sufficient for experimentation; therefore, faults needed to
be synthesized.

The baseline study resulted in a better understanding of
the testbed architecture and its source code and allowed us to
improve the testbed artifacts. For example, a set of architec-
tural rules was added to the architecture document, making
it easier to understand. These rules explicitly specified the
components of the testbed and their interconnections. They
named the classes of each component that were considered
interface classes and through which all communication with
the component should occur. The rules also explicitly
described each occurrence of design patterns and the
expected implementation.

4.1.6 Define faults to be seeded

Since there are many different families of technologies that
find faults of different types, the fault space covered by all
technologies is quite large. Instead of attempting to cover the
entire fault space, we decided to start with faults related to
the selected technology. Thus, we defined (synthesized) a set
of faults based on the claims of the SAE, which is related
to the architecture of TSAFE. For each of these faults we
documented the architectural rules that they violated.

We then divided the faults into three different fault sets.
There were several reasons for creating several such sets.
First, we deemed it unrealistic, based on our experience from
previous studies of this technology [13], that a source code
of the size of this testbed (in terms of number of compo-
nents and their interrelations) would contain more than ten
architectural violations. Second, it was impractical to seed all
architectural faults into one version since faults interfere with
each other, making it difficult to analyze the results for such
faults. Third, we wanted to run repeated experiments based
on the same technology and therefore needed several testbed
configurations based on different sets of faults. The results
were four different testbed configurations: three fault-seeded
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versions of the testbed source code in addition to the original
version of TSAFE, which is considered a baseline to which
we compare faulty versions of the testbed.

4.1.7 Design and conduct experiment

We designed an experiment in which the technology would
be applied to the testbed, with the goal of investigating the
feasibility of SAE for project use, concentrating especially on
the cost (how much effort is required to be spent on its use) in
comparison with benefits (how many architectural issues are
found that would realistically impact system quality, specifi-
cally flexibility and maintainability). Since this was an early
study of the application of SAE, we were most interested
in whether there was enough evidence of the usefulness of
the technology to support further work. For this reason, the
study design concentrated on answering the following spe-
cific research questions:

• Can SAE, when applied by a user knowledgeable in
SAE, really find the types of quality issues it was de-
signed to uncover?

• Does applying SAE result in the identification of other
quality issues outside of the original target set?

To allow for experimentation of SAE on the testbed, the
experimental team prepared architectural documents includ-
ing a high-level diagram of the testbed software and the set
of rules describing features the architecture should possess.
Of the 42 rules, 29 describe how components are supposed
to interact and were considered to be relevant to SAE. Thus,
SAE was expected to detect violations of these 29 rules. The
other 13 were related to lower-level details of the software
design such as information on how classes inside compo-
nents interact. Thus, SAE was not expected to find violations
of these 13 rules.

Next, as stated above, three versions of the source code
were prepared, each seeded with different faults. Version 1,
for example, included a set of 13 rule violations (i.e., 13
instances where the actual architecture did not conform to
the planned architecture). Of these, SAE was expected to
detect 7. These 7 expected rule violations were considered
to map to 4 distinct faults in the code.

Each fault-seeded version was used in a separate exper-
iment conducted by the same subject (as described below).
This experimental design allowed us to replicate our own
study twice. Because SAE is largely tool-based (a tool auto-
matically retrieves the actual architecture from the source
code, compares it with the planned architecture, and reports
deviations), this was not seen as a major threat to the validity
of the study (the tool does not learn from one application to
the next). However, because SAE does require some inter-
pretation of the tool output on the part of the subject, there
was a slight risk that the human subject would notice differ-
ences in the system from one run to the next, which would
have allowed her to find faults more effectively than would
be expected on a real system.

In this study, the subject was a researcher who was a mem-
ber of the team developing SAE. The subject could be con-

sidered highly experienced with the object of study (SAE) as
well as highly experienced with software architecture issues,
although a novice with TSAFE. This was an attractive choice
for an initial study since the subject required no training in
SAE and was less likely to produce faulty results based on a
misapplication of the technology. To mitigate the risk of the
associated bias, the subject was not included in any planning
about the study, the selection of the testbed, or the seeding
of faults. This series of experiments is thus an example of
experimentation on level 2b: the independence of the subject
from the technology is low, but the independence from the
testbed is high.

To assess the feasibility of the SAE technology, this study
measured the number of seeded rule violations and the num-
ber of seeded faults that were found by the human subject.

4.1.8 Analyze and document results from experiment

The results of the study were useful for further evolution of
the SAE technology:

• The time spent on applying SAE was about 4 h, which
was not considered prohibitive.

• Six out of the seven expected seeded rule violations
were found.The one seeded fault that was missed helped
identify a defect in the tool that has since been fixed.

• The six violations found by SAE were considered to
map to three out of the four faults, meaning that the
tool defect caused one of the four faults to be missed.

• An additional three out of the six unexpected rule vio-
lations were found, which indicates that SAE can be
useful outside the set of narrowly targeted problems it
was designed to catch.

The results were similar for all three experiments.
Our conclusion is that SAE, when applied by a user

knowledgeable in SAE, can find most of the types of qual-
ity issues it was designed to uncover. We also conclude that
applying SAE results in the identification of other quality
issues outside of the original target set.

4.1.9 Improve technology based on analysis

Software architecture evaluation can be improved to detect
all the faults that it claims to uncover, and the SAE process
can be extended to cover, in a systematic way, issues outside
the original target set. It was discovered that architectural
violations could shadow each other. Therefore, identifying
and removing the first detected violations may not be suffi-
cient. Thus, it was determined that the SAE technology would
benefit from additional instructions that would help the user
identify such problems in a structured way, thereby ensuring
the detection of all violations.

The fact that more violations than expected were found
indicates that the technology can be improved inexpensively.
This is due to the fact that the subject used already existing
information in new ways that led to the discovery of these
unexpected rule violations.
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The results also indicated how SAE could be improved in
other areas. Design patterns are considered important
constructs of a software’s architecture. Violations of design
patterns are, for example, not systematically detected unless
design patterns involve several components. SAE should be
improved by adding instructions for how to detect such vio-
lations when design patterns are used inside components.

4.1.10 Improve testbed based on analysis

Based on the analysis of the experimental results, a number
of testbed improvements were made. For example, the sub-
ject reported multiple instances where misstated rules caused
some confusion as to what exactly should be checked in the
code. As a result, the language describing the rules belonging
to the testbed was restated and improved.

Measuring our effort revealed that it took 331 h to prepare
the experiment (develop the artifacts: 100 h, synthesize the
faults: 200 h, design the experiment: 20 h, develop the data
collection form: 10 h, install the testbed source code: 30 min,
and instruct the subject: 30 min), 4 h for the subject to com-
plete the experiment, and 10 h for the experimenter to analyze
the results of the experiment. Total time for preparation and
analysis of the experiment was 341 h. The goal is to reduce
this cost drastically, and the proposed solution is the reuse of
testbeds.

4.1.11 Verify testbed usefulness

To study the usefulness of the testbed concept, we conducted
a similar experiment with a related technology by applying
reflexion models [8] to the fault-seeded TSAFE version 1.
The RM technology is similar to the SAE. The RM technol-
ogy detects absences and divergences between the planned
and the actual architecture and is typically used to help de-
velop a better understanding of a complex software system.

We used the same fault seeding and the same set of arti-
facts, including data collection forms and experimental
instructions, as in the previous experiment. The subject was
already familiar with the RM technology, which minimized
the learning time.

The two variables that changed were the technology
(The RM technology instead of the SAE technology) and
the subject (from inventor to noninventor). This experiment
is thus an example of experimentation on level 2c: the inde-
pendence of the subject from the technology is high, as is the
independence from the testbed.

Results from testbed usefulness experiment The results of the
study were that:

• The time spent on applying RM was 4 h.
• Fourteen issues were reported, of which eight were re-

lated to suggested improvements of the rules rather than
architectural faults.

• The violations found by the RM technology were con-
sidered to map to two out of the four faults. However,
because of the way the RM technology detects absences
and divergences, the two undetected faults were outside
of its scope and thus not expected to be found.

• No additional unexpected rule violations were found,
which indicates that the RM technology identifies the
problems it was designed to uncover.

Comments on testbed usefulness The results from applying
the RM technology shed light on the need for support for
describing and navigating hierarchies involving components
and subcomponents of a software system. This is especially
important for larger systems composed of components on
many different levels of abstractions.

Comparing the results from applying the technologies
SAE and RM identified a significant overlap between the
faults detected by the two technologies. It was also noticed
that the two technologies provide different and complemen-
tary tool support and that they analyze, detect, and report
differences between planned and actual architectures in a
different manner. This and other insights into the differences
between the two technologies resulted in the creation of a
research project with the goal of combining them and creat-
ing a more powerful technology.

Most importantly, the study of the RM technology con-
firmed the value of the testbed. It was indeed cost-efficient to
reuse the testbed for this study. It took 60 min for the experi-
menter to prepare the experiment (develop the artifacts: 0 h,
synthesize the faults: 0 h, design the experiment: 0 h, develop
the data collection form: 0 h, minutes, retrieve and prepare
the data collection form from the experience base: 15 min,
install the testbed source code: 15 min, and instruct the sub-
ject: 30 min), 4 h for the subject to complete the experiment,
and 6 h for the experimenter to analyze the results of the
experiment. Total preparation and analysis time was 7 h.

5 Testbed experience and lessons learned

The fact that the faults were seeded into three different ver-
sions of the testbed allowed us to replicate our own experi-
ment several times. This helped us improve the architectural
rules, faults, and experimental procedures as well as the data
collection forms.

One of our goals was to evaluate SAE claims and iden-
tify limitations of this technology; thus we synthesized and
seeded faults related to this goal. Other goals and other tech-
nologies may require different faults to be seeded. As addi-
tional technologies are applied to the testbed, leading to an
increase in the number and type of uncovered faults, the cov-
erage of the fault space will increase.

The testbed is currently configured to support experimen-
tation in which software tools are used to find faults, but new
artifacts will be added in order to support other kinds of tech-
nologies as well.

Another limitation of the testbed is that it supports the Java
programming language, but we do not see this as a problem
because most of the HDCP technologies use Java.

It is clear that testbed development requires investment
up front, and we expect to recover this investment by being
able make the testbed available for experimentation by many
researchers.
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6 Usage scenarios supported by the testbed

Several scenarios describe how different stakeholders, such
as technology developers, practitioners, and educators, can
use the testbed.

Comparing effects of technology versus a baseline For tech-
nology developers whose technology is similar to other tech-
nologies already applied to the testbed, the testbed has many
benefits. The results from previous experiments can be used
as baselines against which technologies can be compared. A
technology developer can apply her technology to the test-
bed and compare the results to the data and to experiences
recorded from experiments with other technologies. Such
comparisons can help the technology developer determine
strengths and weaknesses as compared to related technolo-
gies. The results may help the technology developer convince
real projects to apply and use the technology (level 3). An-
other benefit is the ability to experiment with the technology
on the testbed without incurring the costs of creating a testbed
or experimental material as the testbed is already defined and
experimental material relevant to the technology is already
available.

Confirming effectiveness and identifying areas for improve-
ment For technology developers whose type of technology
has not yet been applied to the testbed, there are still many
benefits. The product-oriented artifacts can be reused as is.
The instrumentation and other infrastructure features can
possibly be reused. The seeded faults and experimental de-
signs can serve as examples of how to synthesize new faults
and to design experiments for the new technology.

Choosing technologies to improve software quality Based
on the results from experiments on the testbed, potential
technology users can analyze the effects of the various tech-
nologies on the development process. Based on this analysis,
potential technology users can make better decisions regard-
ing technologies that will be beneficial to improving their
software.

Adapt and use as class material Educators can reuse many of
the artifacts included in the testbed for class projects. Edu-
cators wanting to provide hands-on experience in software
engineering to students need projects that can be completed
in a semester and yet are interesting and represent real-world
projects. Coming up with such projects from scratch is a very
expensive task. Educators can reuse the testbed artifacts in
their class projects and feed back the results regarding the
artifacts they used, so that the experience from using the arti-
facts is captured and shared.

Teaching up-to-date development practices and their effects
Educators can use the results of the applications of technolo-
gies to the testbed to demonstrate examples of applications of
software development practices. Educators can also use the
repository of technologies applied to the testbed to identify
new technologies that they want to teach to students.

Teaching empirical studies and replicating studies The col-
lection of data we will provide from the different studies from
the technology developers can be used to illustrate the var-
ious types of studies and their benefits. Educators can also
replicate studies in order to teach a more hands-on class on
empirical studies.

7 Future work

Our current work focuses on improvement and evolution of
the TSAFE testbed, tailoring it for experiments targeted to
specific software attributes such as dependability and main-
tainability, and integration with related HDCP testbed sys-
tems. To improve the testbed, we will have external
researchers use the testbed for experiments conducted re-
motely and completely independent of us.We will gather their
feedback regarding how complete and easy the testbed was
to use when running their experiments. In this way we will
also improve the packaging and sharing of testbed-related
material for developing the empirical study experience base
around the testbed.

So far we have developed the testbed for (and experi-
mented with) technologies that apply to software architec-
ture. The next step is to extend the testbed for experiments
with a different kind of technology, e.g., code-related tech-
nology. A study is under way that characterizes tools that find
malicious code that threatens the security of a system. The
observations regarding reusability of the testbed are similar
to those reported above.

For HDCP, since the focus is on evaluating technologies
with respect to dependability, we have developed a method
for defining software dependability for a specific system [3]
and applied it to TSAFE. By linking the potential failures
that impact on dependability to the faults that might cause
them, and examining the effect of different technologies on
preventing, detecting, or removing these faults, we are able
to design experiments and augment TSAFE for assessing the
effect of technologies on dependability. We also plan to do
the same for maintainability.

We are coordinating and exchanging experience with USC
for testbed development and usage. We will create a reposi-
tory of testbeds and empirical studies that will integrate our
TSAFE and SCRover-related contributions. We are also plan-
ning on integrating the TSAFE testbed with the HDCP Red-
wood framework.2

We are building a testbed experience base so that the com-
munity can use and continuously improve these testbeds as
well as the collected design of experiments and empirical re-
sults. The experience base will include data regarding results
from the application of the technologies to corresponding
testbeds.

8 Summary and conclusion

This paper identified, on the one hand, the need for testbeds
to bridge the gap between technology developers and their

2 Presented at the HDCP workshop in June 2004
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laboratory experiments and, on the other hand, potential users
of new technologies and their needs to assess the readiness
and benefits of a technology before applying it. The paper also
addressed the need to perform experiments (in order to char-
acterize and evaluate technologies) that are less expensive,
allow for comparison of results, and are easier to replicate
compared to current practices. We presented the development
process for the TSAFE testbed and its usage for experiment-
ing with the software architectural evaluation and reflexion
model technologies. We exemplified the use of the testbed
and discussed how we assessed the usefulness of the test-
bed. We showed how a testbed approach can augment the
level of independence in experimentation, thereby increas-
ing the objectivity and credibility of experimental results.
We demonstrated that using a testbed addresses some of the
issues with experimentation such as cost, replication, and
comparison of technologies. For example: the time to pre-
pare and analyze the second experiment was 7 h instead of
341 h. We showed that the approach of experimenting with
publicly available testbeds and their experimental results is
beneficial for technology developers as well as for project
managers who need to make decisions about which technol-
ogies to use in their projects.
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