

Generating Testable Hypotheses from Tacit Knowledge
for High Productivity Computing

Sima Asgari1, Lorin Hochstein1, Victor Basili1,2, Jeff Carver3, Jeff Hollingsworth1,
Forrest Shull2, Marvin Zelkowitz1,2

1Computer Science Department - University of Maryland, College Park, 20742 MD, USA
2Fraunhofer Center for Experimental Software Engineering, College Park, 20742 MD, USA

3Mississippi State University, Mississippi State, MS 39762, USA
{sima,lorin,basili,hollings,mvz}@cs.umd.edu, fshull@fc-md.umd.edu, carver@cse.msstate.edu

Abstract
In this research, we are developing our understanding of how the
high performance computing community develops effective
parallel implementations of programs by collecting the folklore
within the community. We use this folklore as the basis for a
series of experiments, which we expect, will validate or negate
these assumptions.

Keywords
High Productivity Development Time Experimental
Studies, Tribal Lore, Folklore, Tacit Knowledge
Solicitation, Testable Hypotheses, Focus Groups

1. Introduction

The DARPA High Productivity Computing Systems (HPCS)
project has goals of “providing a new generation of economically
viable high productivity computing systems for national security
and for the industrial user community,” and initiating “a
fundamental reassessment of how we define and measure
performance, programmability, portability, robustness and
ultimately, productivity in the HPC domain”1.

In order to reassess the definitions and measures in a scientific
domain it is necessary to study the basis and source of those
definitions and measures. These sources are usually found in the
related literature and various documentations existent in the
community. However the large amount of tacit information that is
merely in people’s minds often remains neglected.

Historically, there has been little interaction between the HPC
and the software engineering communities. The Development
Time Working Group of the HPCS project is focused on
development time issues. The group has both software
engineering researchers as well as HPC researchers. The strategy
of the working group is to apply empirical methods to study
parallel programming issues. We have applied similar methods in
the past to researching development time issues in other software
domains [7].

Because of little interaction between the HPC and SE
communities in the past, those of us on the SE side have very little
knowledge about the nature of software development in the HPC
domain. While the HPC community has not focused on
development time issues in the sense of generating publications
on these subjects, it has assuredly accumulated a wealth of
experience about such matters, leading some HPC practitioners to
refer to the field as a “black art”. Indeed, those in the community
tend to harbor strong (and sometimes contradictory) beliefs about
development time issues. It would be inappropriate to disregard
this body of knowledge simply because it has not been packaged

1 http://www.highproductivity.org

in a suitable format. Unfortunately, since it currently exists only
as tacit knowledge, it is not obvious how to best leverage this
expertise. While there has been previous research in trying to
capture the needs of HPC programmers as they relate to software
development issues [2, 3], there has been little research in trying
to capture the knowledge of HPC programmers on software
development issues, with a notable exception [5]. In this paper,
we describe the initial stages of our work to collect this
knowledge, which we refer to as “tribal lore” or “folklore”.

By tribal lore or folklore we mean the common beliefs about
the interaction between variables such as code development effort,
development activities such as debugging, programming models,
languages, execution time, etc.

We conducted two separate studies to solicit HPCS folklore
and the types of defects common to high-end programming. This
paper discusses the process of knowledge solicitation, some initial
analysis of the collected information and hypotheses created.

An initial conclusion from the folklore is that debugging
parallel code is a particularly difficult task. In order to quantify
the debugging difficulty we need to analyze the defects (bugs) in
the code to find out the types of defects that programmers
encounter when writing parallel code, to understand how common
these defects are and to specify how difficult they are to fix.

2. Knowledge Solicitation Process

The development time working group of HPCS is responsible
for investigating issues concerning development time within the
HPCS framework. We conduct experimental studies by collecting
various data during the code development phase of high
productivity computing by novices (university students working
on class assignments) and professionals working on real projects
(case studies) or small sample problems (observational studies).

As the initial set of hypotheses that should be investigated
using the collected data, we generate hypotheses from the tacit
knowledge collected from the HPC community members. After
capturing this knowledge, several testable hypotheses are
generated around each issue and we investigate them using the
development data that we’ve collected.

Figure 1 shows the process of knowledge solicitation and
analysis. The area inside the dotted rectangle in figure 1 is the
current part of the study that we discuss in this paper.

2.1 HPCS Folklore

One of the main goals of the development time working group
of HPCS project is to leverage HPC community’s knowledge of
development time issues. In order to do so, we are soliciting
expert opinion on issues related to HPC programming by
collecting elements of folklore through surveys, generating
discussion among experts on these elements of the lore to increase

precision of statements and to measure degree of consensus and
finally generate testable hypotheses based on the lore that can be
evaluated in empirical studies.

Figure 1: Folklore and defect solicitation process

Before starting the exploratory experiment of collecting
peoples’ anecdotal beliefs through surveys, we needed an initial
set of such anecdotes to both encourage thinking and also use as
examples of what we are interested in.

To gather the folklore in HPC, a member of the study group,
who is an HPC professor, conducted an informal scan of several
sources including lecture notes used in introductory HPC classes
at the University of Maryland as well as scanning the Internet for
related keywords (including "HPC folklore” and "HPC folklore").
The goal of this process was not to be exhaustive, but instead to
gather a sense of the type of information that a beginning HPC
programmer might find. This initial list of 10 ideas (the left
column of the table in Appendix 1) was recorded and used as the
basis for our first survey.

We then asked 7 HPC specialists and professors who regularly
teach HPC classes to comment on the initial list. They were asked
to give an “agree”, “disagree” or “don’t know” answer to each
lore, give their comments or change suggestions and add any folk
lore that they are aware of but is not on the list.

Figure 2 shows the answers. The folklore number 11 in
Appendix 1was added by one of the participants at this stage.
Generally the comments revolved around clarifying the domain to
which the bit of lore applied. For example was the bit of lore
talking about a user programming model such as OpenMP or
hardware architecture such as a multi-threaded machine.

In order to clarify the questionable points we scheduled a
discussion session among the participants. This discussion
resulted in some modifications in the way folklore sentences were

phrased. The right column of the table in Appendix 1 is the result
of this modification.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

HPCS Tribal Lore

S
ur

ve
y

pa
rt

ic
ip

an
ts

agree Agree, but Disagree Disagree, but Don't know

Figure 2: Responses to the initial list of HPC folklore

At some point during the discussion, the participants agreed

that “MPI programs don't run well when you use lots of small
messages because you get latency-limited”. In order to include
this in the folklore list, the lore number 12 was added to the list.

At the next step of the study, a survey form was compiled
from the current list of 12 folklore and distributed to the
participants at the “High Productivity Computing Systems,
Productivity Team Meeting” held in January 2005. In order to
avoid any bias, some of the randomly selected lore were rephrased
to imply the logically inverse sentence. Two sets of survey forms
were compiled and distributed randomly.

In Figure 3 (the survey results), the numbers on the x-axis
represent the folklore numbers, where the numbers marked with *
show that the altered version of the lore was used. In version 1 of
the survey the altered phrases of the folklore 1,3,4,6,7,8 and 11
and the original version of the folklore 2,5,9,10 and 12 were used,
and in the second version of the survey they were switched. In
Figure 3, the third column for each folklore, marked as ‘mean”,
represents the mean value from the two surveys.

The total number of respondents was 10 for the first version
and 18 for the second version of the survey. In most cases more
than 50% of the participants agreed with the positive lore and
disagreed with the altered ones. It seems that folklore numbers 5
and 11 need further investigation since there is less than 30%
agreement on them. This emphasizes the fact that there could be
large inconsistency between experts’ viewpoints and also that the
phrasing of the folklore is a very important factor. Before trying to
create testable hypotheses based on the folklore, we are updating
the folklore phrasing to make sure to collect proper data for
testing those hypotheses. Also in order to avoid misinterpretation,
the folklore should be phrased as clear and unambiguous as
possible, starting from the most controversial ones.

The list of HPC folklore is still in primary stage and needs
further refinement. We are classifying and analyzing the
comments given to the survey by participants. We are also
conducting the survey in our upcoming classroom studies to see
how comparable students’ and professionals’ knowledge is.

0%

20%

40%

60%

80%

100%

1 1*

1
Mea

n 2 2*

2
Mea

n 3 3*

3
Mea

n 4 4*

4
Mea

n 5 5*

5
Mea

n 6 6*

6
Mea

n 7 7*

7
Mea

n 8 8*

8
Mea

n 9 9*

9
Mea

n 10 10
*

10
 M

ea
n 11 11

*

11
 M

ea
n 12 12

*

12
 M

ea
n

AgreePositiveDeisagreeInverse DisagreePositiveAgreeInverse Don't know Blank

Figure 3: Folklore Survey Results

2.2. Testable Hypotheses
 We use the revised folklore to produce testable hypotheses and
investigate the hypotheses using the collected data. An example
for testable hypotheses is lore number 4 in the updated list of
Appendix 1:
Folklore 4: Debugging race conditions in shared memory
programs is harder than debugging race conditions in message
passing programs.

At the first discussion session, the following points were
brought up:
• When working in the shared memory model, either it works

right away or you will never figure out why.
• Bugs in shared memory are hard to deal with because they can

be non deterministic, more subtle and harder to track down.
• Shared memory programs are far easier to develop because:
o They provide a global address space
o You do not have to think about the details that you do in

message passing
o You can incrementally develop shared memory programs

• In some cases, it may be harder to debug shared memory
programs.

The following hypotheses were created from the above:
Hypothesis 1: The average time to fix a defect due to race
conditions will be longer in a shared memory program compared
to a message-passing program. �
To test this hypothesis we measure the time to fix defects due to
race conditions.
Hypothesis 2: On average, shared memory programs will require
less effort than message passing, but the shared memory outliers
will be greater than the message passing outliers. �
To test this hypothesis we measure the total development time.
Hypothesis 3: There will be more students who submit incorrect
shared memory programs compared to the message-passing
programs. �
To test this hypothesis we measure the number of students who
submit incorrect solutions.

Table 1: Initial Defects List

Message Passing
M1 ·Deadlock sender and receiver waiting for each other

M2 ·Async Send/Recv and updating variables before send
completes
M3 ·Async Send/Recv and reading variables before they arrive

M4 ·Not all processes call a collective communication operation

M5 ·Process tries to send a message to itself

M6 ·Type inconsistencies in Send/Recv

Shared Memory
S1 ·Synchronization bugs

S2 ·Variables that should be thread private are shared

S3 ·Variables that should be shared are private

S4 ·Different locks used for the same variable (i.e. one shared
object and a reader lock and a writer lock)

S5 ·Program tires to acquire a lock it already holds

Decomposition
D1 ·Same work done on more than one node (when not
intended)

D2 ·Some work not done

3. Defects (bugs) in HPC code

The types of defects that occur in code, their frequency of
occurrence, and the effort required to fix them have an impact on
productivity. In order to be able to test the defect related folklore,
such as folklore 4, which discussed above, we need to analyze
defects. We have started a study to analyze the defects by
classifying defect types, how common they are and how difficult
they are to fix. The process is similar to the one used for the
folklore.

We asked a HPC specialist to compile an initial list of defects
from the literature and his own experience. Table 1 shows this
initial list. At the next step of the study, a survey form from the
initial list of defects was compiled and distributed to the
participants at the “High Productivity Computing Systems,
Productivity Team Meeting” held in January 2005.
In this defect survey we asked the participants to identify the
frequency of each defect on a 1 to 5 scale where 1 is the lowest
and 5 is the highest frequency. They were also asked to identify
the severity of the defect as low, medium or high and at the end
they were asked to add any defects that they have experienced but
is not on the list.

The initial list of table 1 was used for the survey and table 2 is
the list of defects added by the respondents. These new defects
will be added to the list for the next round of surveys.

The initial analysis of the survey results shows that for 11 out
of 13 defects, more than 60% of respondents believe that the
frequency is low or medium, except for 2 defects S1 and S2. The
initial conclusion for this observation could be: “Shared memory
defects are more frequent than other types of defect“, which is
a hypothesis generated from the folklore analysis.

We were also able to sort the defects based on their severity.
The ascending order of severity based on survey results would be:
M5, D1, S5, M4, M6, S3, D2, M1, S4, S2, M3, S1, M2, where M5
is the least and M2 the most severe defect. Investigating the
validity of above conclusions as well as drawing further
conclusions relies on the results from our ongoing and upcoming
survey studies.

3.1 Empirical Defect Study

We are gathering empirical defect data from our HPC
development time studies. In a pilot study students that were
developing a program for 1D quantum dynamics simulation in C
(approximately 150 SLOC) were asked to track time to fix defects
while parallelizing code in MPI. As seen in figure 4, in this study
“the defects related to I/O activities are the most time
consuming to fix”. This is another generated hypothesis that is
being investigated in our current studies.

4. Conclusion and Future Work

In this paper, we have described our efforts in collecting
elements of the collective knowledge of the HPC community, or
“folklore”, that relate to issues of development time. We have

Table 2: Added defects

MPI sends never received, code runs, but resources never
reclaimed

Message failure

Message reordering2

Bookkeeping errors in domain decomposition (indexing
errors)

Loop with data dependencies get parallelized

Loop without data dependencies does not get parallelized

Pointer problems

Thread stack overflow

Using any distributed memory machine

2 “Forgetting messages could be reordered”

Figure 4: Time to fix defects

employed methods traditionally used in the social sciences such as
focus groups and surveys [6]. This work is complementary to our
other research in the area, where we are conducting experimental
studies to collect development time data and analyze this data by
searching for empirical relations between variables such as
activity, effort, workflow, performance, and code size.

To run good experiments, we need to develop relevant
testable hypotheses. To this end we have tried to understand what
the community believes to be true about high end computing and
to make explicit the tacit assumptions about a number of issues.

We have been soliciting expert opinion on the issues related to
HPC programming by collecting elements of folklore through
surveys, generating discussion among experts on these elements
of the lore to increase precision of statements and to measure
degree of consensus and finally generate testable hypotheses
based on the lore that can be evaluated in empirical studies. In
some cases we were also able to generate new hypotheses based
on the logical relationship between the collected lore.

It is important to note that in order to keep the survey
questions simple and not confusing; we had to use the short-and-
pithy statement of the lore, although they usually do not reflect
people’s full understanding of the lore. Therefore the survey
respondents may think we are oversimplifying the statements.
This is an issue that needs further consideration.

The results so far indicate that there is a large variation in
beliefs among experts. For 10 items out of a total of 12 folklore
items, the results show agreement among 46% to 65% of the
respondents, the maximum agreement being 64%. Two items of
lore were less than 30% agreed upon. These items clearly need
more clarification.

There are several explanations for this variation. First, it is
possible that there is not a wealth of common beliefs in the
community about high end computing. Second, it is possible that
most beliefs are bound by a context. Thus each individual brings
to the table a variation of that common belief based upon their
own specialized experiences. This could either mean that if we
could define the context variables surrounding each lore, we
might find small common sets of lore, or it could mean that the
contexts are so diverse that each individual represents his or her
own lore. It is also possible that we have not sufficiently
characterized folklore in our statements, causing confusion in the
answers. This could be in the original statements themselves (e.g.,
not providing sufficient context) or in the negation of the

I/O related
defects

statements (not truly capturing the inverse of the original
statement). In any case, it is clear that in some cases, we have not
captured a verifiable folklore and thus need to work on better
formulating our hypotheses.

What would be a reasonable percentage of agreement? Can
the hypotheses be clearly stated to minimize the variation and
offer empirical support for the folklore? These are the issues we
are currently working on.

We believe continuing to develop the folklore is of value.
Evaluation of the testable hypotheses generated based upon the
folklore could lead to a higher degree of consensus and to the
creation of a set of empirically supported measures of productivity
in HPC domain.

We have also begun to try to understand the nature of defects
in high end computing and use some of our methods in generating
folklore about development in general to defects in particular.
Results at this writing are preliminary but we do have some
agreement that shared memory defects are more frequent than any
other type of defect. This is the kind of hypothesis we can test in
case studies.

Acknowledgements
This research was supported in part by Department of Energy
contract DEFG0204ER25633, to the University of Maryland.

5. References
[1] J. Kontio, J., Lehtola, L., and Bragge, J. “Using the Focus
Group Method in Software Engineering: Obtaining Practitioner
and User Experiences.” Proceedings of 2004 International
Symposium on Empirical Software Engineering (ISESE’04),
(Redondo Beach, CA, 19-20 Aug. 2004), 271-280.
[2] Shull F., Basili V. R., Boehm B., Brown A. W., Costa P.,
Lindvall M., Port D., Rus I., Tesoriero R., and Zelkowitz M. V.,
"What We Have Learned About Fighting Defects", Proceedings of
8th International Software Metrics Symposium, Ottawa, Canada,
IEEE, June 2002, pp. 249-258.
[3] C.M. Pancake, “Establishing standards for HPC system
software and tools”, NHSE Review, Nov. 1997.
[4] S. Squires, W. Tichy, L. Votta, “What Do Programmers of
Parallel Machines Need? A Survey”, Second Workshop on
Productivity and Performance in High-End Computing (P-PHEC)
, 2005.
[5] J. Dongarra et al., eds. “Sourcebook of Parallel Computing”,
Morgan Kaufmann, 2003
[6] C. Robson, “Real World Research: A Resource for Social
Scientists and Practitioner-Researchers”, 2nd Ed. Blackwell
Publishers, 2002.
[7] V. Basili, F. McGarry, R. Pajerski, M. Zelkowitz, “Lessons
learned from 25 years of process improvement: The rise and fall
of the NASA Software Engineering Laboratory”, IEEE Computer
Society and ACM International Conf. on Soft. Eng., Orlando FL,
May 2002, 69-79.

Appendix 1: List of HPC folklore

Initial List Updated List
[1] Use of Parallel machines is not just for more CPU power, but also
for more total memory or total cache (at a given level).

[1] Many people use parallel machines primarily for the large
amount of memory available (cache or main).

[2] It's hard to create a parallel language that provides good
performance across multiple platforms.

[2] It's hard to create a parallel language that provides good
performance across multiple platforms

[3] It's easier to get something working in using a shared memory
model than message passing.

[3] It's easier to get something working using a shared memory
model than message passing.

[4] It's harder to debug shared memory programs due to race
conditions involving shared regions.

[4] Debugging race conditions in shared memory programs is harder
than debugging race conditions in message passing programs

[5] Explicit distributed memory programming results in programs
that run faster since programmers are forced to think about data
distribution (and thus locality) issues.

[5] Explicit distributed memory programming results in programs
that run faster than shared memory programs since programmers are
forced to think about data distribution (and thus locality) issues

[6] In master/worker parallelism, the master soon becomes the
bottleneck and thus systems with a single master will not scale.

[6] In master/worker parallelism, a system with a single master has
limited scalability because the master becomes a bottleneck.

[7] Overlapping computation and communication can result in at
most a 2x speedup in a program.

[7] In MPI programs, overlapping computation and communication
(non-blocking) can result in at most a 2x speedup in a program.

[8] HPF's data distribution process is also useful for SMP systems
since it makes programmers think about locality issues.

[8] For large-scale shared memory systems, you can achieve better
performance using global arrays with explicit distribution operations
than using Open MP.

[9] Parallelization is easy, Performance is hard. For example,
identifying parallel tasks in a computation tends to be a lot easier than
getting the data decomposition and load balancing right for efficiency
and scalability.

[9] Identifying parallelism is hard, but achieving performance is
easy.

[10] It's easy to write slow code on fast machines. [10] It's easy to write slow code on fast machines. Generally, the first
parallel implementation of a code is slower than its serial counterpart.

[11] Experts often start with incorrect programs that capture the core
computations and data movements. They get these working at high
performance first, and then they make the code functionally correct
later.

[11] Sometimes, a good approach for developing parallel programs is
to program for performance before programming for correctness.

[12] N/A [12] Given a choice, it's better to write a program with fewer large
messages than many small messages

