
A Functional Correctness
Model of Program

Verification

Marvin V. Zelkowitz

University of Maryland

T ranslating a problem description
into a computer solution is central
to programming, but the process is

generally ill-defined, error-prone, and ex-
pensive. Some researchers are using for-
mal mechanisms to describe a problem and
algorithmic processes to convert the prob-
lem statement into a program. The general
approach is to describe a problem in a
specification language with well-defined
syntax and semantics. This reduces the
problem to developing a source program
that meets the specification. Among the
specification languages investigated, axi-
oms’ and algebraic models* predominate.

Verification is just one of many ap-
proaches to producing quality software.
(The sidebar on the following page shows
where it fits in the overall scheme.) The
functional approach described in this arti-
cle is one alternative, but it is not meant as
a panacea for poor requirements and spec-
ifications analysis. Regardless of the model
employed, verification is a precise, formal,
and difficult undertaking. Some applica-
tions do, however, lend themselves to a
functional approach that has not been ad-
equately described in the literature.

The University of Maryland uses a func-

This model’s
verification conditions

depend only on
elementary symbolic
execution of a trace

table. An easy-to-learn
technique, it’s used in a

freshman computer
science course.

tional correctness model as part of its intro-
ductory computer science course. The model
was originally developed by Mills,3 who,
with others,4-6 has since refined it. The idea
is to express a specification as a mathemat-
ical function, develop a program, and prove
that the function implemented by that pro-
gram is the same as the specification func-

tion. The system used at the university
meets several of Dijkstra’s criteria’ for the
teaching of formalism to express programs.

In this article, the method is applied to
rather simple programs. However, even in
large complex implementations, the tech-
niques can be applied informally to deter-
mine the functionality of complex interac-
tions.

Functional model of a
program

Specifications. A specification is a
mathematical description of a problem to
be solved. Let a be a string representing a
source program. For example, a Pascal
program is just the linear string

program main(input, output); . . . end.

We express the mathematical function
denoted by program a by a box notation.*
[a] represents the function that com-

*[p] is often written as B in other papers on the subject.

30 0018-9162/90/l IOO-0030$01.00 0 1990 IEEE COMPUTER

Approaches to producing quality programs

Testing. In the oldest technique, testing, programs are ex- program’s specifications. This contrasts to the above defini-
ecuted using sample data that is representative of the data tion of verification. Correct programs may be very unreliable,
processed under actual use. If the data is chosen appropri- and reliable programs may not be correct. For example, con-
ately, most errors can be found. But, as Dijkstra has ob- sider two watches - one stopped and the other two hours
served, testing can only show the presence of bugs, not their late. The stopped watch is correct twice a day; the late watch
absence. In most large implementations, testing is the most is never correct. However, the stopped watch is highly unreli-
feasible and generally the only usable technique.’ able, while the late one is quite reliable.

Design methodology. Good techniques produce well-
structured programs, which minimize faulty logic and hence
errors. Techniques like structured programming, data ab-
stractions, top-down design, and object-oriented program-
ming help the programmer think more clearly about the pro-
gramming process. While these methods are great aids in
producing quality programs, the programs must still be
checked using other techniques for the eventual program-
ming glitch.*

Testing is often the best method to show good reliability.5
Software safety is a related topic that addresses reliability and
the probability of embedded systems causing physical harm
to individuals6

As can be seen by the above list, all of the techniques are
useful, but they are difficult to use effectively. Improving these
methods is a major focus of software engineering research.

References
Verification. Under this technique, programs are viewed

as formal objects developed from a set of precise specifica-
1. R. DeMillo et al., Software Testing and Evaluation. Benjamin Cum-

mings, Menlo Park, Calif., 1987.
tions. Once developed, they are guaranteed to produce the
output given in the specifications. This is the model devel-
oped in this article. Although it guarantees the stated output,
the technique has problems: there is no guarantee that the
specifications are correct, and the development of proofs is
extremely difficult. The major techniques are axiomatic,
where programs are considered extensions to the predicate
calcuIus3; algebraic, which views programs as equations4;
and functional, the approach in this tutorial.

Reliability. Reliability is the probability that software will
not cause a system failure for a specified period of time,
whether or not the data presented to the software meet the

2. E. Yourdon, Writings of the Revolution: Selected Readings on Soft-
ware Engineering, Yourdon Press, New York, 1982.

3. D. Gries, The Science of Programming, Springer-Verlag, New
York, 1981.

4. J. Guttag, “Notes on Type Abstraction (Version 2),” IEEE Trans.
Software Eng.. Vol. 6, No. 1, Jan. 1980, pp. 13-23.

5. D.L. Parnas, J. van Schowen, and S.P. Kwan, “Evaluation of Safe-
ty-critical Software,” Comm. ACM, Vol. 33, No. 6, June 1990, pp.
636-648.

6. N. Leveson, “Software Safety: Why, What and How,” Computing
Surveys, Vol. 18, No. 2, 1986, pp. 125-l 63.

putes the same values as program CC.
Although a function is the intuitive mod-

el of a specification, often we simply want
one feasible solution out of many possibil-
ities. In choosing one optimal strategy from
several equivalent ones (for example,
equivalent optimal moves in a game-play-
ingprogram), we usually do not care which
solution the program employs. Because of
this, we only need to define a specification
as a relation. If r is such a specification
relation, it is equivalent to a program p by
the following correctness theore&:

Program p is correct with respect to
specification relation r if and only if domain(r
n [p]) = domain(r).

In other words, if we take the subset of I
from those pairs in r that are also in func-
tion [p] (that is, r n [p]), we have a func-
tion. If this function has the same domain
as r, then [p] includes a pair of values for
each member of relation r, and we get a
feasible (or correct) implementation of the

specification. In what follows, however,
we use the simpler case. We have chosen
the more restricted specification function
f, instead of the more general relation r, with
the corresponding correctness theorem off
L [PI.

Programs. A program is a sequence of
declarations followed by a sequence of
statements. Each maps a set of values for
every variable in the program into a new
set of values. Using denotational seman-
tics, we can define the meaning of such a
program as follows:

If wr is a set of variable names and vu/ is
a set of values, a stare is a function with the
signature state : var + WI/. A state represents
the formal model for program storage (for
example, activation records).

If rxpr is an expression, [expr] is a function
that maps a state into values, or [expr] : state
+ VU/. For example, if (.r,a) and (y,b) represent
entries in the state function S representing
variables ,I- and y. then [x+y] (S) is defined to
bethefunctionwith[x] (S)+[y](S)asavalue.
If we define [x] (S) to be S(B), then S(s) = a,

which agrees with our intuitive definition
that [x+y] (S) = a+h.

If s is a Pascal statement, then [s] is a
function that maps a state into a state-that
is, each statement maps a set of values for all
variables into a new set of values. If s is a
declaration, then the resulting state includes a
(iwr,va/) pair for the newly declared variable.
Forexample, ifsis thestate ((x,l),~v,2)), then
the function [y:=x] applied to s results in the
state { (B, I), (J, I) 1.

It is easy to see the correspondence between
sequential execution and function
composition. Ifs is a sequence s,, s2, , S, of
statements, then [s] = [s,, s2, , s,] = [s,] 0
[SJ 0 0 [S”l = [%I C... ([%I ([s,l)) . ..).

The function [p] for “program main (in-
put, output); begin sl; ~2; end.” is given
by [program main (input, output)] 0 [sl] 0
[s,] 0 0 [.] where the signature for [pro-
gram...] is val+ state, for [.] is state + val,
and state + state for all other statements.
Hence, a program maps a value to a value
and is composed of functions that map
states to states. (Details of how to handle
individual statement types like assignments,

November 1990 31

conditionals, and iteration are given later.)
Developing a program requires several

separate activities:

(1) designing a specification that ex-
presses the task to be performed,

(2) refining that specification into a for-
mal explicit statement that captures
the specification’s intended func-
tionality, and

(3) developing a program that correctly
implements that functionality.

Most of this article concerns the transi-
tion between the last two steps. Techniques
will be given that aid in this transition and
help show that both formalisms have
equivalent functionality.

Applications. With this notation, three
separate activities-verification, program
design, and reverse engineering - can be
investigated:

(1) Iffis a function and ifp is a program,
show [p] =f- that is, verification.

(2) Iffis a function, develop program p
such that [p] =f- that is, program design.
As a practical matter, we only care thatfL
[p], since any value in [p] and not in f
represents a value computed by the pro-
gram that is outside its specifications and
not of interest to us.

(3) If p is a program, then find a func-
tionf such that [p] =f- that is, reverse
engineering. Given a program, determine
its specifications. Some heuristics are giv-
en, but the basic method is to “guess” a
solution and show by methods 1 and 2
above that it is the correct solution.

Symbolic execution

Symbolic execution is an aid in showing
functional composition. To show that [p] =
h we symbolically execute program p and
show that the resulting function is the same
asf.

For example, consider the Pascal se-
quence

x:= x+1;
y:= x+y;
x:= y+l

Since we know that

[x:=x+1; y:= x+y; x:= y+l] =
[x:=x+1] 0 [y:=x+y] 0 [x:=y+l]

we can symbolically execute each state-

ment function. We use a trace table where
we write, under “Part,” the relevant state-
ment function and, under each relevant
variable, the new value that results from
that execution. In the statement function,
we substitute the value of each variable at
that point in the computation. This results
in a new function that can transform each
variable into its new value.

For the above Pascal sequence, we get
the following trace table:

Part X Y

(2) formalizing the specification, and (3)
developing the source program. We use a
functional notation for step 2 that is closely
tied to the eventual Pascal source program.
This notation includes (1) concurrent as-
signment, (2) conditional assignment, and
(3) loop verification. This notation was
strongly influenced by McCarthy’s work
on Lisp.

Designing assignment statements.
Concurrent assignment is defined as si-
multaneous assignment. The function

This states that simultaneously x is trans-
formed by the function [x:=x+y+2] andy is
transformed by [y:=x+y+l].

The extension of the trace table to han-
dleconditionals (for example, if statements)
requires a condition column. We write the
predicate that must be true at that point for
that execution path to proceed, and we
develop trace tables for each path through
the program.

For example, the program sequence

x:= x+y;
if x>y then

x:= x-l

has two possible execution sequences, (x>y
and xly) and two corresponding traces:

Part Condition x Y

x:= x+y x+Y
if x>y (x+YbY
x:=x-l (x+y)-1

and

Part Cond. X Y

x:= x-by x+Y
if x>y (x+YEY

These two tables represent the following:
if x+y>y, the function is [x:= x+y-11; if
x+yly, the function is [x:= x+y]. The next
section shows how to write this as a condi-
tional assignment function.

Design rules

As stated earlier, software development
consists of (1) designing the specification,

(x,y,z := y,z,x)

simultaneously accesses the current values
of variables y, z, and x and stores them,
respectively, into variables x, y, and z.
Mathematically, the state function that re-
sults will have the same values for all state
variables other than x, y, and z, and those
three will have new values.

Given statementp, showing that [p] does
implement this concurrent assignment is
simply a matter of building its trace table.
The more interesting problem is how to
develop p, given some concurrent assign-
ment as its specification. This leads to
three design heuristics for concurrent as-
signment:

(1) All values on the right side of the
intended concurrent assignment (that is,
all values needed by a left-side variable)
must be computable at each step.

(2) At each step, if a variable can be
assigned its intended value, do so. Other-
wise, introduce a temporary variable, and
assign it a value that must be preserved.

(3) Stop when all variables on the left
side of the intended concurrent assignment
have been assigned their intended values
(that is, when finished).

If we “execute” a trace table as we devel-
op each Pascal assignment statement, we
are also verifying that the design works as
we wish. Once the values in the trace table
are the desired values, we have shown that
the assignment statements written do in-
deed implement the intended concurrent
assignment.

Remember, however, that the three de-
sign rules are heuristics, not an algorithm.
They indicate how to search for a solution
and how to check if the solution is correct,
but they do not give the solution. We have
not replaced the art of programming by an
implementable methodology that auto-
matically builds correct programs from
specifications.

32 COMPUTER

-

Designing conditional statements. The
conditional assignment is the formal mod-
el of conditionals. If b, is a Boolean condi-
tion and c, is a design function, then a con-
ditional statement has the syntax

sponding concurrent assignments. The
functionfthat this implements is

equivalent. These will be denoted V.I-III.
Once we have these verification condi-
tions, we would like to use them as design
guidelines to help developp, given onlyf.
We call these five design rules V.l-V.

Consider the following example:
The while statement [while b do d] is

defined recursively via the if statement to
mean”

x:=x+ y:=y-z: (* 1 *)
(* 2 *)

if x+y>O then
y:=x+y (* 3 “)

else
y:=-x-y (” 4 *)

with the semantics of evaluating each h, in
turn. and setting the value of the condition-
al to be c, for the first h, that is true. If all b,
are false, then the statement is undefined.
(This is similar to the co&of Lisp.) If h,, is
the default case (that is, the expression
true), then it can be omitted, with the last
term becoming (L.,,). The iden@ function
is written as 0.

We’ll use several theorems involving
conditional statements in this article. They
can be verified by simple trace tables:

[while b do d] = [if b then begin d;
while b do d end]

That is, if h is true, perform d and repeat the
while statement. Via a simple trace table
we get the same result as

This has two execution sequences, l-2-3
and l-2-4, with two different traces.

(**) [while b do d] = [if b then d;
while b do d] = [if b then d] 0 [while b
do d]

(1) If is true:

Part Cond. x y

Let f be the meaning of the while state-
ment, that is, f = [while b do d]. By substi-
tuting back into (**) above, we get the first
condition that

(1) Conditional (a--th) I (not(a)*c) has
the same meaning as (a-th) I (c).

(2) Conditional (ad(hdc)) has the same
meaning as (a and b-c).

(3) Conditional (u+c) I (h-tc) has the
same meaning as (a or hdc).

(4) Conditional(a--t(horc))hasthesame
meaning as (u-QJ) I (a-tc).

y:=x+y xiy-x=y

(2) If is false, so not(if) is true: (V.1) f = [if b then d] o f

[Part 1 Cond. [x [y What other conditions onfensure it is
indeed the specification of the while state-
ment? Iffis undefined for some inputa, then
both sides of the equation are undefined.
To ensure that this cannot happen, we re-
quire thatf be defined whenever [while] is
defined, or that domain([while]) c
domain(f). (Note: For ease in reading, we
will use [while] to stand for [while b do d]).

Similarly. if [while] is everywhere the
identity function, then any f will fulfill the
equation since the recursive equation re-
duces tof= () o,f=,f. Thus, we must also
have domain(f) c domain([while]). This
yields

x:=x+y x+Y Y i
y:=y-x x+y -x
if x+y>O (x+y)-x50
y:=-x-y 4-x)

The Pascal source program for this de-
sign is simply a series of if statements that
test each condition in turn. For example,
given

I I -(x+y) /
(h,+c,) I (h@C.?) I . . . I (b,,-Scn) 1 I Y =- i

the Pascal program can be written directly
as

This gives the function:

(p-0 + .u,y :=x+4‘,?‘) I (4‘50 4 x,y
:=.I+?‘,-?‘) if b, then c,

else if bz then c?
else if bi then ci Or. since the assignment toy (that is, (:>O

--3)’ :=y) and (~50 --f v := -y)) is just
function abs(y), the function reduces to (V.11) domain(f) = domain([while b

do dl) If all the b, are false, since the Pascal code
is everywhere defined, the specifications
are actually a (correct) subset of this source
program.

(s,y := s+y, abs(y))
Consider any state s E domain([while]).

If[b] (s) is true, that is, expression b in state
.r is true, then from (**), s,= [d] (s) and s,
E domain([while]). This will be true, for
s?, So, and so on, until at some point [b] (s,,)
is false and both [if b then d] (s,,) and [while
b do d] (s,,) equal s,,.

This s,? is a member of domain([while])
and of range([while]). More importantly,
if [b] (s) evaluates to false, then [while] (s)
= s. Or, stated another way, [while] (s) = s
for all states .r where [b] (s) is false. This is
just a restriction on the [while] function to
those states where b is false, which is the
function (not(b) --f [while]). This must be

We could have left our answer as a
condirional assignment, but replacing it as
a concurrent assignment using the absolute
value function leads to a more understand-
able solution. Knowing when (and how) to
apply such reductions is probably as com-
plex an issue as any encountered in axiom-
atic verification.

Verifying assignment and conditional
statements. Assumep is the program to be
verified and it consists of only if and as-
signment statements. There are only a fi-
nite number of execution paths through the
program. For each path, compute the con-
dition that must be true to execute that
path, and use a trace table to determine
what happens to the variables by executing
that given path. Assume p,, pz, .._ are the
conjunctions of all conditions on each ex-
ecution path, and u,, a?, . . . are the corre-

Verifying while loops. To handle full
program functionality, we must address
loops. Given a functional descriptionf and
a while statement p, we first describe three
verification rules that prove thatf’andp are

November 1990 33

Figure 1. Domain and range of the while function.

Therefore, as shown in Figure 1,
range([while]) c domain([while]). Sincef
must also have this property, we get the
first design constraint:

(D.1) range(f) c domain(f).

Similarly, we have shown that for an s
where [b] (s) is false, [while] (s) =s, wemust
also have&) = s, because if [b] (s) is false,
the body d is not executed. But these are
just the points in range(f). Therefore, we
get the second design constraint:

(D.11) ifs E range(f), then f(s) = s.

D.1 and D.11 must be true if f is the
meaning of a while statement. Therefore,

equal to the identity function 0, also re- problem of designing a loop. Given a spec- they show the existence of a possible solu-
stricted to the same domain, or just (not(b) ificationf, how can we design a while from tion.
-+ ()). Any candidate functionfmust also the three statement verification conditions From D.11, we knowfmust be an identity
have this property, yielding the third con- given above? on range(f) in order to be implemented
straint From V.111, the while terminates when with a while. We can restate this as:

[b] evaluates to false, and range([while]) is
(V.111) (not(b) + f) = (not(b) + ()) just the set of states where [b] is false. But (D.111) [b] evaluates to true in

since we can apply [while] to this state domain(f)-range(f) and false in
Designing while loops. Consider the initially, it is also part of domain([while]). range(f).

Verification example using the
functional correctness model

This example shows that the functionf= (AIB + A,B := (B-
(B-A)/2), (B-(B-A)/2) I ()) is implemented by the source pro-
gram

1 while A<B do
2 begin
3 A := A+l;
4 if A<B then
5 B := B-l
6 end

where A and B are integers and division means integer truncated
division (for example, l/2 = 0).

The approach we follow is to first determine the functionality
of the assignment statement (line 3), then the if statement (lines
4-5), then the entire begin block (lines 2-6), and finally the
functionality of the entire segment (lines l-6).

Line 3. A := A+1 is just the concurrent assignment (A :=A+l).

Lines 4-5. dl = [if A<B then B := B-l]

If A43 is true, evaluate the function B := B-l, and if it is
false, skip the then statement and do nothing, for example, the
identity function. The conditional assignment can be written
as

d, = (A& + B := B-l) I ()

Lines 2-6. dz = [begin A := A+l; if A<B then B := B-l end]

d2 = [A:=A+l] o [if A<B then B:=B-11 = (A:=A+l) 0 dl
= (A:=A+I) o ((A4 + B:=B-1) I())

Develop a trace table for the begin block. There will be two
paths through this block (for example, first and second alter-
natives ford,). Hence, there will be two trace tables:

Part Cond. A B

3: A:=A+I A+1
4: if A<B (A+l)<B
5: B:=B-1 B-l

Part 1 Cond. IA IB 1

3: A:=A+l A+1
4: if A<B (A+lQB

34 COMPUTER

Similarly to the assignment design, we finding the loop invariant in an axiomatic
develop the while loop via proof.

(D.IV) Develop d so that all values
are preserved forf.

(D.V) Show thatfis everywhere
defined, that is, the loop must
terminate for all x E domain(f).

(4) Termination. Prove that the selected
h and d cause the loop to terminate (condi-
tion D.V). If proven, since step 2 shows
that [b] (.r)isfalsefor.r~ range(f), thisshows
that the loop will terminate with some x in
this range.

Given function f, we develop a while
statement such that [while] =fas follows:

(1) Existence. Verify conditions D.1 and
D.11. If these cannot be satisfied, then no
such while statement can be written.

(2) Range determination. Use D.111 to
develop some predicate h such that [b] is
false on range(f) and true on domain(f)-
range(f). Sincef and [while] are to be the
same function, h becomes the predicate for
the loop.

Examples. For two simple examples of
this method, see the sidebars below and on
page 38. The first example verifies a pro-
gram with its specifications: the second
example shows the design of a program
from its functional specification. For amore
complex example, see Gannon, Hamlet,
and Mills.”

(3) Loop body. Use DIV to develop an
appropriated. These guidelines do not give
absolute solutions to this problem, but they
do indicate how to verify whether d, once
found, is a solution. It is comparable to

Data abstraction and
representation
functions

The discussion so far has concentrated
on the process of developing a correct
procedure from a formal specification.

However, program design also requires
appropriate handling of data.

Data abstractions. A data abstraction is
a class of objects and a set of operators that
access and modify objects in that class.
Such objects are usually defined via the
type mechanism of a given programming
language, and a module is created consist-
ing of such a type definition and its associ-
ated procedures.

Isolation of the type definition and invo-
cation of the procedures that operate on
such objects are crucial to the data abstrac-
tion model. Each procedure has a well-
defined input/output definition. The im-
plementor is free to modify any procedure
within a module as long as its input/output
functional behavior is preserved, and any
use of such a procedure can only assume its
functional specification. The result is that,
rather than viewing a program as a com-
plex interaction among many objects and
procedures, a program can be viewed as the
interaction among a small set of data ab-
stractions -each relatively small and well
defined.

We then get

d2 = (A+I<B + A,B :=A+l,B-1) I (A := A+l)

Lines l-6. Showf = [while A<B do begin A:=A+l; if A<B then
B:=B-1 end]

We must show that functionf meets the three verification rules.
We will do this in the order VII, VIII, and V.I.

(1) Show V.IIZ. (not(A<B) +fi = (not(A<B) -+ ())

(not(A<B) +f) =

(AX3 + (ASB + A,B := B-(B-A)/2, B-(B-A)/2) I ()) =

(A3 and AIB --f (A,B := B-(B-A)/2, B-(B-A)/2)) I (A3
-+‘I)=

(A=B -+ A,B := B-(B-A)/2, B-(B-A)/2) I (AXI + ()) =

(A=B + A,B := A&) I (AkB + ()) =

(A= + 0 1

(2) Show VII. domain(f) = domain([while])

fis defined for all A and B. For ASB, an explicit assignment is
given, and for all other A and B,fis the identity function.

The [while] function is also defined for all A and B. If Aa, the
body of the while does not execute giving the identity function for
such A and B. If A<B, then for each pass through the loop, A is
increased by 1 and B may be decremented by 1. At some point, B-
A must reach 0 or become negative. If B-AIO, then BIA and the
while loop terminates. So for all A and B, the while statement must
terminate and will generate some value for A and B.

(3) Sho~r V.I. f = [if b then d] 0 f

The meaning of the body of the if statement (d) is the previously
defined function:

d2 = (A+l& +A,B :=A+l,B-1) I (A :=A+])

The problem then reduces to showing that

f= (if A<B then (A+l<B + A,B:=A+l,B-1) I (A:=A+l)] o
((AIB -+ A,B := B-(B-A)/2, B-(B-A)/2) I ())

We will generate the set of functions that represent each
separate path through each possible trace table. If we let c, be the
ifexpressionA<B, c2 beA+l<B in dz, and c3 be A3 inf, then there
are six possible paths through this function yielding six different
trace tables, each deriving a different function g,:

November 1990 35

Figure 2. Commuting representation diagram.

Languages such as Ada (or C++) allow the procedure names contained in the
data abstractions to be built relatively module.
easily, since the object type can be speci- However, even in older languages, such
fied as the private part of a package (or as C or Pascal, data abstractions form a
class) specification. Only the body of the good model of program design. Although
package has access to the type structure, not automatically supported by the
while other modules have access only to language, with reasonable care, programs

can be designed that adhere to the data
abstraction guidelines.

Representation functions. A procedure
within a data abstraction translates a high-
level description of a process into a lower
level programming language implementa-
tion. For example, suppose character strings
up to some predefined maximum value are
needed. Pascal only defines fixed-length
strings; therefore, we must implement this
as objects using primitive Pascal data types.

In procedures outside the defining mod-
ule, we would like to refer to these objects
(for example, call them Vstrings) and be able
to operate on them. While inside the mod-
ule, we need to operate on their Pascal
representation (arrays of characters). In
the former case, we call such functions
abstractfunctions that define the function-
al behavior of the operation, while we call
the latter concrete functions that give the
implementation details.

For the Vstring example, we could de-
fine the string via an abstract comment
containing the functional definition:

Cl

true
true
true
true
false
false

c2

true
false
true

-

c3 Function

true
true
false
false
true
false

g1
g2

iiT3

g4

g5

I%

For ga:

Part Cond. A B

ct is true A<B
ca is false A+12B
c3 is true A+lSB

A+1
B-(B- B-(B-
(A+ 1))I2 (.4+1))/2

(Note: If cl is false, then d2 is not evaluated, giving only six pos- Theresultingpredicateis(A4) and(A+l>=B)and(A+lG), which

sibilities rather than the full complement of eight that normally
reduces to A=B-,

occurs with three predicates.) By substituting B-l for A, we get

g2 = (A=&1 + A,B := B-(B-(A+1))/2, B-(B-(A+l))/2)
We need to show that

= (A=B-1 + A,B := B-(B-(B-1+1))/2,

f= gl I g2 I g3 I g4 ’ & I g6 B-(B-(B-1+1))/2)

For g,:
= (A=B-1 4 A,B := B,B)

Part Cond. A B However, if A=B-I, then (B-A)/2=0. Thus we can write g2 as

c, is true A<B g2 = (A=B-1 --;r A$? := B-(B-A)/2, B-@-A)@)
c2 is true A+l<B A+1 B-l
c3 is true A+lIB-1 B-l-(B-l- B-l-(B-l- For g-,:

(A+1))/2= (A+1))/2=
B-(B-A)/2 B-(B-A)/2

The resulting predicate, (A<B) and (A+l<B) and (A+lSKl), re-
duces to Ad-l; gl = (A&-l -+ A,B := B-(B-A)/2, B-(B-A)/2)

y-

36 COMPUTER

(abs: ,y-abs = a.,, x2, x,,>]

The concrete representation of a Vstring
could be

(con: .r-con: record
chars: array [l...maxval] of char;
size: O..maxval
end:)

To show that both representations are
the same, we define a representation
function that maps concrete objects into
abstract objects. It does this by mapping a
state into a similar state, leaving all data
unchanged except for those specific ob-
jects. Let r map a concrete object into its
abstract representation. If Cstrings is the
set of concrete strings (that is, the set of
variables defined by the above record de-
scription) and Vstrings is the set of abstract
strings, then we define a representation
function r with the signature

r: state -3 state

such that r = { (u,r) I ~=r, except that if u(x)

E Cstrings, then r(x) E Vstrings). This
simply means that u and 1% represent the same
set of variables in the program store, ex-
cept that each occurrence of a concrete
variable in u is replaced by its abstract def-
inition in 1’.

For each implementation of a string, we
have its abstract meaning given by func-
tion r:

.v-abs:=cr-con.chars[i] I 1 5 i I
s-con.size>

The purpose of a procedure in an ab-
straction module is to implement an ab-
stract function on this abstract data. For
example, if we would like to implement an
Appendoperation, wecandefinex:=Append
(XJ) as

(abs: x, ,Y,~ ,..., x,!+,, := x1 ,..., x,,,
VI...., y,)

Similarly, we can define a concrete imple-
mentation of this same function as

(con: .r.chars[n+l] ,..., As given by our earlier correctness the-

.u.chars[n+.r.size],
x.size := v.chars[l] ,..., y.charsLv.size],
x.size+~.size)

If .x--con and y-con represent the con-
crete implementations of Vstrings x and y.
and if .r-abs and v-abs represent their ab-
stract representation, and if Append-con
and Append-abs represent the concrete
and abstract functions, we have

.I--con’ := Append-con (x-con, y-con)
s-abs’ := Append-abs (.x-abs, y-abs)

We want to know if both the concrete
and abstract functions achieve the same
result, or if the abstract representation of
what we get by implementing Append-con
is the same as our abstract definition of
Append. This is just the result: Is
r(x-con’)=.\-abs’? We say that the repre-
sentation diagram of Figure 2 commutes
(that is, either path from (x-con, g-con) to
x-abs’ gives the same result). We have to
show that I’ applied tax-con’gives us .u_abs
(for example, .I-, , .I-? ,..., x,,, yI ,..., v,,).

This leads to the condition (A&) and (A+l<B) and A+l)>(B-1). The resulting condition is (Aa) and (A>B) or just (A>B); g6 =
We get (A<B-1) and (A>B-2), which is the null function. (A>B + A,B := A,B).

For Q": Next, showf= gt I g2 I g3 I g4 I g5 I g6. In this example, since
g3 and g4 are null, we have to show thatf= g, I g2 I gs I gb.

(A>B + A,B := A,B)
Theresultingconditionis(A<B)and(A+l~)and(A+l>B).But
(Ad) and (A+l>B) are mutually disjoint, making g, null. The first two terms reduce to

For g5: (A<B + A,B := B-(B-A)/2, B-(B-A)/2)

yi

For A=B, the third term becomes

(A=B+AB:=AB)=
(A=B + A:B := BL(B-A)/2, B-(B-A)/2)

And the last term is
The resulting condition is (AXi) and (AS) orA=B. For A=B, B-
(B-A)/2 = B = A; g5 = (A=B + A, B := A,B). (Ad -+ A,B := A,B)= (A>B + ())

For g6: We have therefore shown that

Part Cond. A B gl Ig2Ig5Ig6=
(AS + A,B := B-(B-A)/2, B-(B-A)I2) I (A>B + ()) =

c, is false A2B (AIB + A,B := B-(B-A)/2, B-(B-A)/2) I () =
c3 is false A>B A B f

November 1990 31

orem, a program (for example, Append-con)
will often compute a value in a domain
larger than necessary (for example,
domain(Append-abs)). Thus, we actually
want to show

r o Append-abs L Append-con 0 r

A verification
methodology

We have seemingly developed two
mechanisms for designing programs: (1) a
functional model for showing the equiva-
lence of a design and its implementation
and (2) a commuting diagram for showing
correct data abstractions. However, both
are complementary ideas of the same the-
ory. For example, the concrete design
comment for Append in the previous sec-
tion is just a concurrent assignment trans-
latable into a Pascal source program via the
techniques described.

This leads to a strategy for developing
correct programs:

develop the abstract data objects that are
needed.

(2) For each object, develop abstract
functions that may be necessary to operate
on the abstract object.

(3) Using the abstract object and opera-
tions as a goal, design the concrete repre-
sentation of the object and corresponding
representation function.

(4) Design a concrete function for each
corresponding abstract function.

(5) Show that the representation dia-
gram commutes. That is, the concrete
function does indeed implement the ab-
stract function.

(6) Develop correct programs from each
concrete function.

Note the order of steps 2 and 3. It is
important to understand the abstract func-
tions before designing the concrete repre-
sentation, since the appropriate represen-
tation will depend greatly on the application.
Consider the implementation of adute data
object. Depending on the abstract func-

(1) Store as character string MMIDDI
YY. This is appropriate if the date is simply
a unique tag associated with some data and
has no other semantic meaning.

(2) Store as <YY,DDD> where integer
YY is the year and integer DDD is the day
of year. This is quite efficient if sequential
dates are needed.

(3) Store as number of days since some
initial date. This is most efficient to com-
pute distances between two days, avoids
certain problems such as accounting for
leap years in all functions, but is cumber-
some to print out in its usual format.

(4) Store as <MM,DD,YY> for integers
MM, DD, and W. Computation on dates is
a bit more cumbersome, but conversion to
its usual printed form is quite easy.

The importance of this technique is that
it can be applied at any level of detail. This
article obviously considered only short
program segments. For larger programs,
only concepts critical to the success of a
program need to be formalized, although a
long-range goal would be to develop this or

- tions required, the following are all feasi- other techniques that could be applied to
(1) From the requirements of a program, ble concrete representations: very large systems in their entirety. Its

Design example

The second example involves developing a while loop
for the following specification:

f&y) = (x>100+x,y:=xx+1) I (x,y:=x,y)

To develop this program from its specifications, use the
four-step process based on rules D.1 through D.V (ex-
plained in the main text). First determine iff is realizable by
a while loop.

be less than or equal to 100 on the range off, we know that
+x+1) OR (&iOO) will be true on the range and hence false
on domain(f) - range(f). So the negative of this has our desired
property: not((x<lOO)or(y=+1))=(x>lOO) and(yox+l). Since
the loop will exit when this predicate is false, b = (x>lOO) and
(yox+l), giving the partial solution

while (x>lOO) and (y<>(x+l)) do
id)

D.I. Is range(f) c domain(t)?
Sincefis defined for all input, domain(n includes all values

of x and y. Range(t) is some subset of (x,y), so condition D.1
is true.

D.IV. Develop d so that all values are preserved for f.
To find a function [d] that preserves the values needed forf,

y needs to become x+1. So let d = (xy := x,x+1). Our solution
is now

D.11. For (xy) E rangev), do we have an identity func-
tion, that is,f(x,y) = (x,y)?

There are two cases forx: x>lOO andx1100. For the case
of ~~100, we have from the specification that (x,x+1) E
rangem, andf(xJ+l) = (x,x+1), which is an identity. For
the case where x1100, we know from the specification that
f(x,Y) = kY>.

while (x>lOO) and (yox+l) do
{ x,y:=x,x+l 1

or just

while (x>lOO) and (yox+l) do
y:=x+l

D.V. Show that the loop must terminate.
D.111. Find [b] that evaluates to true in domain(f) -range(f) We know that b is false on the range of the while statement.

and false in range(f). Thus, if we can prove that the loop terminates, the current
Find a predicate b that is false on its range and true values of x and y when the loop terminates must be a feasible

elsewhere. Since we want y to take on the value x+1 or x to solution.

38 COMPUTER

major difference from other verification
techniques is that it forces the programmer
or designer to consider the functionality of
the program as a whole, and it requires the
designer to design data structures with op-
erations that operate on those structures.
Since this is central to the data abstraction
model of program design, this technique is
quite applicable to current thinking about
programming.

T he technique presented here was
quite manual, with the develop-
ment of trace tables that grow in

complexity as the number of conditionals
increases. However, much of the process
can be automated. For example, most of
the details in a verification proof consist of
keeping track of the various trace table
executions. But this is a mechanical, syn-
tactic property of programs, and a comput-
er is ideal for carrying out such repetitive
tasks. At the University of Maryland, we
implemented an extension called FSQ to
the Support integrated environment to fa-
cilitate such proofs.* The goal is to develop
a semiautomatic system that guides the
user into making the correct decisions.
This should greatly ease the problems in
developing such proofs.

Program verification - whether using
this functional approach or some other ap-
proach, like axiomatic or algebraic cor-
rectness - is not an easy task. However,
programming is not easy, and the need for
correct programs is great. Using the func-
tional correctness method described in this
article will not guarantee simplicity in de-
veloping large correct programs, but it does
provide a methodological basis for devel-
oping correct programs.

The method described in this article adds
to the current set of techniques addressing
the important, but extremely difficult,
problem domain of program verification.
The software engineering field still has a
long way to go before program verification
becomes an accepted activity in all pro-
gramming developments. This article sim-
ply describes another tool that can be eval-
uated along with the others in determining
the best approach towards good engineer-
ing of software. n

Acknowledgments

I thank Victor Basili and John Gannon for
their helpful comments on earlier drafts of this
article, and also thank the referees who greatly
improved its quality.

Partial support of this work was obtained 7. E. Dijkstra, “On the Cruelty of Really
from Air Force Office of Scientific Research Teaching Computer Science,” Comm. ACM,
grant 90-0031 to the University of Maryland. Vol. 32,No. 12,Dec. 1989,~~. 1,398.1,404.

8. M.V. Zelkowitz, “Evolution Towards a

References
1. C.A.R. Hoare, “An Axiomatic Basis for

Computer Programming, Comm. ACM, Vol.
12, No. 10, Ocr. 1969, pp. 576-580, 583.

2. J.V. Guttag and J.J. Homing, “The Algebra-
ic Specifications of Abstract Data Types,”
Acta Infnrmaticu Vol. 10, No. 1, Jan. 1978,
pp. 27-62.

3. H.D. Mills, “The New Math of Computer
Programming,” Comm. ACM, Vol. 18, No.
I, Jan. 1975, pp. 43-48.

4. J.D. Gannon, R.G. Hamlet, and H.D. Mills,
“Theory of Modules,“IEEE Trans. Software
Eng., Vol. 13, No. 7, July 1987,~~. 820-829.

5. H.D. Mills et al., Principles of Compufel
Programming: A Mathematical Approach,
William C. Brown, Dubuque, Iowa, 1987.

6. H.D. Mills et al., “Mathematical Principles

Specifications Environment: Experiences
with Syntax Editors,” Irzformation and
Software Technology, Vol. 32. No. 3, Apr.

19 1990, pp. 191. ‘8,

Marvin V. Zelkowitz is a professor of comput-
er science at the University of Maryland, Col-
lege Park, with appointments in the Department
of Computer Science and the Institute for Ad-
vanced Computer Studies. His research interests
are in software engineering, programming envi-
ronments, measurement, and compiler design.

A member of ACM and a senior member of
IEEE, he is a past chair of ACM SIGSoft and of
the Computer Society’s Technical Committee
on Software Engineering. He obtained a BS in

for a First Course in Software Engineering,” mathematics from Rensselaer Polytechnic Insti-
IEEE Tran.s. S@are Eng., Vol. 15. No. 5, tute and MS and PhD degrees in computer sci-
May 1989, pp. 550-559. ence from Cornell University.

KING FAHD UNIVERSITY OF
PETROLEUM 81 MINERALS
DHAHRAN 31261, SAUDI ARABIA

MPUTER ENGINEERING DEPARTMENT
The Computer Engineering Department seeks applications for faculty
positions at all levels. Preference will be given to experienced applicants at
the associate and full professorial ranks. Applicants must hold a Ph.D.
Degree in Computer Engineering or related areas. Individuals with demon-
strated research records and teaching experience in one or more of the
following areas will be considered: Fault Tolerant Computing, Data Communi-
cation and Computer Networks, VLSI and Design Automation, Robotics,
Computer Architecture. Teaching and research at the Department aie
supported by a VAX lll7800, a fully equipped, Computer Graphics Center,
as well as a University Data Processing Center that has AMDAHL 5850 and
IBM 3090 mainframes. In addition, research and teaching laboratories in the
department includes: Design Automation Lab, Digital System Design Lab,
Microprocessor Systems Lab, Printed Circuit Board Facility, Robotics Lab,
and Computer Communication Networks Lab.

KFUPM offers attractive salaries commensurate with qualifications and
experience, and benefits that include free furnished airconditioned accommo-
dation on campus, yearly repatriation tickets, ten months duty each year with
two months vacation salary. Minimum regular contract for two years,
renewable.

Interested applicants are requested to send their Curriculum Vitae with
supporting information not later than one month from the date of this publica-
tion, to:

DEAN OF FACULTY AND PERSONNEL AFFAIRS
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DEPT NO. 9053
DHAHRAN 31261, SAUDI ARABIA

November 1990

