
Volume 3, number 2 INFORMATION PROCESSING LETTE,RS November 1974

operating systems

Received 2 July 1974
Revise, version received I(! September 1974

program modularity rt%ource allocation software reliabfi:y

1. Introduction

Operating system design was once a complex art
that few understood (including many of the designers),
but it is slowly becoming a science where many of the
fundamental ideas are cry&&zing into a set of basic
axioms. The purpose of this paper is to present one
set of ideas and show how they can be developed into
a reliable system. The system will be hierarchically
structured and has a powerful protection mechanism
that allows for reliable system operation. Due to in-
creased use of communications between computers,
it is felt that operating system design should reflect
this development and allow for networks of computers.

2. opemting system stnsctum

An operating system consists of a set of indepen-
dently executing programs called processes, Each of
the processes execute on one or more central proces-
sors - usually in a multiprogrammed manner. Thus at
the most primitive level, two system operations must
be defined - process communication and process
creation.

2. I. Communication

Process communication is usually implemented by
one or more of th;: wing techniques: shared
memory, hardware instructions and message
communication. It wj% be shown later that share

STRUCTURED OPERATING SYSTEM ORG

Martin V. ZEIXOWITZ
Depwtment of Computer Science, University of Mwyland

College Park, Maybnd 20712, USA

memory has certain drawbacks in order to keep
processes isolated, thus it will be assumed that all
commlJnication is via messages. The enction of the
trap instruction will be to invoke operations in the
primitive operating system (called the kernel) which
provides the basic functions of process creation and
process communication.

A medsqge is simply a stream of characters. In
order to implement them an I/O mechanism for
processes must be established. It will be assumed that
all messages are handled via parts [8]. A port can be
+wed as an entrance into a process. A process is
provided with the primitive operations (via trap in-
structions) of allocating a port, sending a message to
a port owned by some process and receiving a message
from a ptirt that it itself owns. When sending s
message, a process either may request that execution
be suspended until the process receiving the messages
replies, or may continue processing and wait for a
reply at a later time. It will be assumed that each port
has a unique name, and processes have the ability of
passing the name to selected other processes.

This ability to pass port names selectively leads
to two important features in operating system dedgn
- the creation of capabih ties and the establishmeat
of a protection scheme. The process that is to create a
new function first establishes 3 port for that functiorn.
Any message then received on that post is interpreted

2 INFORMATION PROCESSU+KZ LETXXRS

functior~ With this interpretation,
message to this port is equivalent

be (the capability

be able to forge a merge to an unauthor-

terns are usually designed using an abstract
machine approach [1,2]. This is sometimes
an “onionskin” design. At the lowest level is the

hardware of the m&ine. Using this hardware
new operations are i,q&mented for the

zvel virtual machine. Process creation and
are such operations. Using this
1 machine is implemente:l

tie operations, until the frr;d
which contains such pnimi-
ucation, accessing file sys.

n to port concept explained
allow this hierrarchy to be readily im-

. It WV@ be assumed that each process has
ted capability uectGlr passed to it by the
at created it. This vector contains a subset

ilities (ports) avaJlable to i& creator. A
either add or delete entries from its

rty vector and a process (if it has the capability)
. pass a port name to another process. A process

only communicate with yorts that are in its
capability vector, and thus a s:rPlctured cornmunich-
tion scheme can be organized among ail of the proces-

in the system - a strict hieratchy if the cayability
rtname does not exist, and a more general
that capability is passed.

2.3. E~XMS

An important aspect in any system design is the
processing of errors. Hardware errors generally either
haIt a machine of nothing is specifBd about an er!ror,
or will activate an error routine if something is speci-
fied (an interrupt is “enabled”).. This anaiogy can be
implemented in the virtual madhine design. At any
level if a process has not anticipated an error, then
the process will be terminated; if it has anticipated
the error, then the appropriate error routine will be
executed. This organization can be impjiemcnted as
cn extension to the capability vector, &led the
ir8gemq.M vector.

At the lowest level the interrupt vet tor is essen-
tialty the ta;dwc .e interrupt mechanisms of the
hardware. For each type of hardware mterrupt (in-
cluding the hardware trap instructors) the kernel of
the system will enable the appropriate interrupt
routine via a message to the port of the routine that
process~:;jr the interrupt. (Of course the system must
be sure that for time-critical interrup~ts, such as those
that effect moving peripheral devices, the messages
to these interrupt ports be given high priority and be
processed immediately3

At each successive level., for each capability that is
passed to a process via the capability vector, a port
name is passed as an interrupt vector entry. If a
process sends a message to a function that generates
an error condition, the trilled proc(:ss will generate
an error reply. This reply is intcrpr&d by the kernel
as a message to the port in the interrupt vector entry
that corresponds to the capability just invoked.
Usually there will be a suspended process waiting for
a message on this interrupt port. This interrupt
procesrr can either halt tlhe process in error or send a
“norm al” reply.

If a process wishes to process its own errors, it has
the capability (if passed it) to alter its interrupt vector
with at port name it owns. In thi% manner error condi-
tions ,Gther stop a process by being reflected as a
mess2rge to an anccSstor process, or are error replies to
the process (on a port possibly different from the
normal reply port).

T!Es organization should no5 incur significant

Volume 3, number 2 ’ INFORMATION PROCESSINC LETTERS November 1974

(b)

-0 CBPABILITY

-- x3tlmRIJPr

(d)

Fig. 1. Using apabity vectors to create virtwl mhines.

overhead in message transmission; however, it will
probably incur some overhead in
responses. The problem with eqo
condition may not effect the %;. .dess causing the
error because the interrupt vector may actually be

sent, and thus more

operation clearer. In

creation (port &i), yioc~ti communication c
and the ability to alter the interrupt vector
Port D is an error port for all 3 functions. The kernel
creates the process ma:tager and provirjes it with1 a

capability vector (fig. 1 b). The process manager en-
ables its own interrupts by changing the interrupt
vector entries (fig. Ic) using its capabirty to port C.
Fimlly the process manager tests a rew version of the
process manager in a controlled virtual environment.
It creates a new process manager process with modi-
fied capability vector (fig. Id). Requests for process
creation and process communication will be inter-
cepted by ports F and G so that the old process
manager can monitor the new process’ behavior, and
can simulate the requests by using its own capabil-
ities to ports A and B. In this example the tested
process is still given capability C, the ability to
change its interrupt vector. In this example, the
operation of the new process is under complete _
control of the original process manager, and proper
reliable operation of the system can continue.

3. System reliability

An investigation into some of the ideas of
structured programming shows that the above system
organization uses attributes that result in well-
structured systems. The following are some of these
design considerations.

3. I. Module and data independence

Systems should be designed with minimal sharing
of data structures across independent modules since
basic data structures can be altered more easily if
they are referenced in only one ro1.r tine [6,9]. Only

that routine need be altered should the structure
change.

Modules should be explicitly defined as a set of
input/output relationships [S]. NO moduk sh.M
asume any implied structure within another module.
This LOWS one module to be updated and changed
independently from other modules. It also pre-
vents certain errors s

VduzIIte 3, number 2 INFXRMATI0N PROCESSING JJXTERS November 1974

nt to the rest df the system_
attributes are preserved by the p3ceding

design, since iti c:;rnmutication is via messages
ts. gotice that dati :hared in 4 common address

not neces&ly preser\re these attributes
may be influenced not only by its

t relationships, but also by the state of
m+&r module due rto its &ared data. Vii shared

it is often possible to (inadventently) moni-
regress of one routine by another, and thus
mptions about its behavior, which may

f the modules is altered.
have predetermined formats that

ndent of tee algorithms (or nu&nes) used
to create the messages. This enhances the independent
nature C& processes, and possibly allows processes to

iy communicate between two different computers
irr a computer n&work.

32. terns me Mythically &fimd

8ysterm rue hierarchical using the proposed capa-
ty vector since each process in the system is created
some o&s process with the creator process having

control of this capability vector. Only processes that
be been pa&d a process’ name can communicate
with it, and ttaus the communications path is secure.
This allows ftlr certain functions to be implemented
at one level of the system by being added to the capa-
bility vector) and to be deleted at another lev.4 by
be@ deleted from the capability vector.

The of a system using ports for all commu-
nicatio a capability and interrupt vector to
control communications paths can lead to a welt-

tuted hierarchically designed operating system.
p:ocess is effectively isolated from all other

processes, yet the design allows for a reliable protec-
tion system where some but not all processes have

to certain f&c tions.
type of organization will become more sigr iR-

& increased use of computer networks. With
o-w cost of r&icomputers and the increased

reliability of a set of small m.achines over a single large
one, many applications will be distributed over net-
works of computers. Since processes need to know
only a port name, rather than the location of a
process, it is ~~ossible to design a distrfbuted operating
system wheiz processes execute on several different
machinea, ant1 can easily communicate [3,4,7). This
organization :-void,s the problems associated with
trying to make an operating system that uses shared
memory operate in a distributed manner across
several machines. it is felt &at the precedi
more readily allow for this type of implementation
with such ideas as load sharing and resource sharing
networks as the major beneficiaries of such design.

Acknowledgement

Some of the ideas expressed in this paper grew out
of discussions held with W. Michael Lay during the
initial design ph,ases of the distributed computer net-
work project at the University of Maryland.

Referernoes 6
b

P. Brinch Hanson, The Nucleus of a Multipro~amming
System,C. ACM 13 (1970) 238-241.
E. Dijkstra, The structure of the THE multipro~~
system, C. ACM 11 (1968) 341-356.
D. J. Farber rrnd KC. Larson, The gstem architecture of
the distributed computer system. Symp. Computer
networks, Polytechnic Inst. of Brooklyn (April, 1972).
WM. Lay, D.L MiUs aad M.V. Zelkowitz, Opera*
systems architecture f& a dWriWcd olomputw netwark.
Computer Networks: ‘.lcrends and Applications, IEEE
Computer hiety Wa&ington chapter and National
Bureau of S~tandards, Gaithersburg, Md. (May, 1974)
pp. 39-44.
D. Pamas, A technique for softaware module specifkation
with exampIes, C. ACM 1s (1972) 330-336.
D. Runas, On the criterle to be used in decomposing
systems into modules, C. ACM 15 (1972) 1053-1058.
R.H, Thomas and D.A.‘Hendersog, McRoss - a multi-
computer programmi,ng system. AFIPS Spring Joint
Computer Conf. 40 (1972) 281-293.
D. Waldegr, A system for irrterprocaes communication in
resource slharing coargulet networks. C. ACM 15 (197 2)
221-230.
W. Wulf and M. Shaw, Gtdd. variable considered harm-
ful. SIGPLAN Notices 8 (1973128-34.

