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Abstract

A formal model of program complexity developed earlier by the authors is used to derive
evaluation criteria for program complexity measures. This is then used to determine
which measures are appropriate within a particular application domain. A set of rules
for determining feasible measures for a particular application domain are given, and an
evaluation model for choosing among alternative feasible measures is presented. This
model is used to select measures from the classification trees produced by the empirically
guided software development environment of Selby and Porter, and early experiments
show it to be an effective process.

Index terms: Program complexity, program measurement, measure evaluation, selection criteria,
optimization

1 Introduction

A goal for software engineering is the generation of high quality software, and the role of measure-
ment is to be able to determine when that attribute has been achieved. With program complexity,
we want to predict those external properties of a program, such as reliability, understandability,
and maintainability, through more tangible internal measures that capture concrete aspects of a
program, such as control flow complexity (e.g., McCabe’s cyclomatic number [12]), volume (e.g.,
statement count and Halstead’s software science measures [11]), or information content (e.g., prime
program complexity [1]). In this paper we consider various criteria which aid the selection of
internal complexity measures to predict those external properties.

Internal measures depend only on the program that is subjected to study, while external mea-
sures may depend on other properties [8, 9]. For example, the external measure understandability



depends on both the program and the observer trying to understand it. Given two programs,
one straight line without branches and the other structured, a programmer might more easily un-
derstand his own poorly structured one than a more structured version written by someone else
[17].

While external measures have the most impact on the software development cycle, they are
harder to quantify than internal ones. As a result, research strives to derive good internal measures
[11, 12] and to establish correlations between internal and external measures by empirical study
[2, 4, 15]. However, there is no systematic way to use these studies to aid the selection process.

One approach has been to develop formal axiomatic models of complexity [10, 13, 14, 18, 20, 22].
In our model [18] we differentiate between complexity being an inherent property between two
programs and a measure being an approximation of this property. We base the selection criteria
presented here on this formal model.

In this paper, we first summarize our earlier complexity model as a set of testable conditions on
potential measures in order to determine feasible measures. We then provide evaluation functions
for choosing among the feasible measures. Finally we apply this selection process to Selby and
Porter’s empirically guided software development environment [16] to show improvement on the
predictive behavior of this system by selecting measures based on our criteria.

1.1 Model Overview

In our model of axiomatic program complexity qualitative comparisons are made through the use
of complexity rankings, which define pair-wise relationships on programs. To approximate those
rankings, we use measures to map programs into real numbers.

The axioms summarize essential common properties. They define what programs should be
comparable and what universal characteristics these rankings and measures must satisfy. A classi-
fication scheme describes relevant subclasses of complexities, sorting out commonalities and differ-
ences among them.

If we view measures as points in a measure space, the axiomatic requirements prescribe the
boundary conditions of the feasible region where measures are to be selected. Usually there are
multiple measures falling inside the feasible region (by satisfying all the boundary conditions).
To select among them, a set of scaling functions is constructed by assessing relative effectiveness
of aspects of the measures to compute a dominance relation between measures. For example, if
we want to maximize values of a vector of measures, a simple vector comparison using “<” can
effectively determine the dominance relation, e. g., if A < B, measure A is eliminated.

Due to the multi-dimensionality of measure evaluation, there are usually multiple measures
where no dominance relation holds among them. Therefore we need to select among the remaining
measures using some objective function. The objective function is formulated by evaluating the
relative importance of and trade-off among scaling dimensions, assigning appropriate weights to
them, and computing the weighted sums for the remaining measures. The final selection is done
by comparing these weighted sums.

1.2 Notational Conventions

In this paper, the following notation will be used.

e The term program means either a complete program or program fragment.



BC;.

A function V defined on a set of programs will have domain D(V). P and @ will represent
programs in D(V), i.e. (P,Q € D(V)). We will usually omit ‘€ D(V)’ as being understood.

A program P can be represented graphically by an abstract syntax tree, AST(P).

For programs P and Q, IN(P, Q) is true if P is a subprogram of Q. (i.e., AST(P) is a subtree
of AST(Q).)

If IN (P, Q) is true, then dist(P, Q) represents the number of edges (i.e., number of nodes+1)
between the root of AST(P) and the root of AST(Q).

The cardinality of a set S is denoted as |S|. D(V) is assumed to be countably infinite.
R is the set of real numbers; A/ is the set of natural numbers.

We assume a set of properties (axioms) that valid complexity measures must possess. We
call these boundary conditions as they define the feasible region when individual measures
are viewed as points in the (multi-dimensional) measure space. We label the i** boundary
condition as BC;. If a measure V satisfies BC;, we denote it as BC;(V).

2 The Feasible Region for Complexity Measures

Basic Axioms

One major use of complexity information is to choose among functionally equivalent solutions to
specific problems. For any functionally equivalent program set, an acceptable measure must be
defined for all or none of the programs in it. Therefore:

An acceptable measure must compare between functionally equivalent programs:

BC;: (VP, Q)(Functionality of P = functionality of Q)AP € D(V) = Q € D(V)

Software development is an incremental process. Effective measures must compare component

and composite programs. Therefore:

BC,. An acceptable measure must compare between component and composite programs:

BC,: (a): (YP,Q)(IN(P,Q) AP € D(V) ) = Q € D(V)
(0): (YP,Q)(IN(P,Q)AQ € D(V) ) = P € D(V)

When a complexity measure is defined over all programs, BC; and BCs are trivially true:

Theorem T1: Given measure V,(VP)P € D(V) = (BC1(V) ABC2(V))



Monotonicity of Program Composition

In general a composite program is more complex than any of its components. However, there are
exceptions when contextual information may help reduce such complexity. For example, an if-then-
else statement may be easier to understand than either the then or else component alone. However,
as programs get larger, the general trend must be followed otherwise infinitely large programs will
paradoxically have low complexity. Therefore:

BC3. An acceptable measure must assign sufficiently large values to sufficiently large programs:
BCs: (3k)(VP, Q) (dist(P,Q) > k) = V(P) < V(Q)

For any measure V), there is some constant k& such that non-monotonicity of two programs is
limited by a distance of at most k in the abstract syntax tree (See Figure 1). For example, %,
where n is a measure of program size (e.g., the number of lines), cannot be a complexity measure
because it violates this condition.

In our earlier paper, boundary condition BC, differentiated between a complexity ranking and
a measure approximating that ranking. This is a crucial property in our evaluation criteria, and

we will return to this after we describe the next condition.

Discriminating Power of Measures

An acceptable measure must assign different values to different programs sufficiently often. For
example, the knot count [21] for any structured program is always 0 which would make it an
inappropriate measure for a program universe consisting exclusively of structured programs [20]. In
what follows, we consider the mapping function V to regions of size § (called a d-region). Therefore:

BC5. No §-region around any point v can totally dominate a measure in the sense of having almost
all values clustered around this region, i.e.,

BC;s: (Vk € R)(36 > 0)(38) |S| is infinite A P €S = V(P) ¢ [k— 6,k + 0!

If p, = prob(V(P) = v) is the probability of having value v, we can define the probability of a given
program P having a value within this region as:

prob(V(P) € [k — 0,k +6]) = Z j
k—0<v<k+d

This distribution, which defines the probability mass function (pmf), is described by the set of
pairs {(v, py)}. The projections of {(v, py)} yield {v}, the set of points on the measurement scale
which have some program with that complexity, and {p,}, the probability bag?.

In the special case that the universe of programs |U| is infinite but |{(v, p,)}| finite, the
condition Y p, = 1 makes BCj5 reduce to the requirement that p, # 1, or equivalently, p, < 1.

Lets return to BC4. Since we are only concerned about feasible measures, we want all measures
V to agree with boundary condition BCy:

!Original model used following probability definition: (V& € R)(36 > 0)prob(V(P) € [k — 6,k +6]) < 1
*{p,} is a bag instead of a set because there might be multiple points v with the same ps.




BC4. An acceptable measure agrees with its ranking.

Where R (P, Q) defines a ranking between programs P and @, with P no more complex than
Q3

This is an essential property that we wish to be true for each measure that ranks the complexity
between any two programs. It clarifies when we can apply measurement theory to a candidate
measure. If there is a ranking between programs P and @), we want to assume that our candidate
measure mimics this property.

Unfortunately, BC, is undecidable (e.g., let R(P, Q) exist if Turing machine P halts in fewer
steps than Turing machine @)). Therefore, we will weaken it somewhat, and state that a measure
is a feasible complexity measure if it obeys the other boundary conditions. In other words:

BC, . Feasible complexity measures satisfy our boundary conditions.

BCy: A complexity measure V is a measure which satisfies
conditions BC1,BCy,BC3 and BCs.

2.2 Classification of Measures

Boundary conditions BC; through BCjy provide minimal requirements on measuring complexity.
However, there are constraints imposed by external factors. For example, if a measure is needed to
assess the effects of various indentation rules on program comprehension, a control flow measure
such as cyclomatic number which ignores presentation characteristics is obviously a wrong choice.
As a result, a classification scheme defines a boundary condition used to reject inappropriate mea-
sures.

Complexity may be required from a measure that is either: a wvertical classification which de-
pends on the computational model upon which the measure is defined; or a hierarchical classification
which deals with the complexity relationship in composite-component programs pairs:

Abstract Functional Context Free Primitive
Vertical ! Non Functional Hierarchical mhext Tr Non Primitive
Non Abstract Interactional

Measure Classification

o Abstract measures depend only on abstract syntax trees of the program which contain seman-

tic information but not features such as comments or blank spaces; non-abstract measures
depends on both (i.e., (3P, Q)AST(P) = AST(Q) ANV(P) # V(Q)).

e Functional measures are invariant to object (e.g., variable) renaming where programs with iso-
morphic abstract syntax trees have the same complexity (i.e., (VP,Q)AST(P) = AST(Q) =
V(P) = V(Q)). non-functional measure are not invariant to renaming (i.e., (VP,Q)P #
QNAST(P) = AST(Q) = V(P) #V(Q))-

3The implication is explicitly not bi-directional in this axiom. If there exists a numerical comparison between two
programs, there may not necessarily be a ranking between these programs.




e A measure is contezt free if a program has the same complexity regardless of where and how
it is used; otherwise it is interactional (i.e., (3P, P")IN(P,Q) NIN(P',Q')AP=P' ANQ #
Q' = V(P) #V(P'));

e A measure is primitive if two programs which consist of the same elements must have the same
complexity regardless of the structure (i.e., (VX)(IN(X,P) < IN(X,Q)) = V(P) =V(Q));
otherwise it is non-primitive.

The analysis carried out before measure selection determines what type of measures are to be
used. This information defines our target class, which is the broadest class where all the require-
ments are satisfied.

For example, if the target class is non-abstract, abstract measures are rejected since the as-
sessment is impossible (e.g., the effect of use of blank lines on program comprehension). On the
other hand, if an abstract measure is required, non-abstract ones are potentially valid because they
depend on both the AST and presentational features. Their suitability depends on whether they
contain certain information, which is beyond the use of our classification scheme.

We presented the partitions of the classification in a specific order. The second (lower) subclass
is stronger than the first (upper) in the sense that more information is needed to compute measures
in the former subclass. We use this to differentiate among the feasible measures identified by BCy:

BCg: All measures from a class weaker than the target class are rejected.

All acceptable measures must satisfy all the boundary conditions. We use these to screen out
unacceptable measures.

Example 1: Statement counts

Consider all non-null Pascal programs. Define complexity measure S1, as S1(P) being the statement
count of program P, and a related statement density measure So as:

1
So=1— ——
S1(P)
So is an attempt to provide a normalized size for Pascal programs, with trivial one statement
programs measuring as 0 and very long programs approaching 1. Evaluating these according to
our boundary conditions yields:

e BC; and BC, are both satisfied by S; and S5 because both measures are valid on all programs
(Theorem T1);

e BCj is satisfied because both S; and Sy are strictly monotonic. When program P is a
component of program @, we know that ) has more statements than P, thus S1(P) < S1(Q).-
Similarly, It is easy to show that Sp(P) < So(Q) which satisfies BC3 for Sa;

e BC; (and therefore BCy) is satisfied by S; but not by S;. Any region of finite length
on measurement scale S; contains only a finite number of programs and will satisfy BCy.
However, in the case of So, given any § > 0, we have

|S2(P) ¢ [1 — 6,1+ 6])| is finite



violating BCs5, since the number of programs that have measure values between 0 and 1 — 6,
which is the number of programs of finite length (satisfying S;(P) < %), must be finite.

The density measure S; is rejected due to the violation of BCs, while the statement count measure
S1 is potentially acceptable. Whether S7 remains acceptable depends upon what target classifica-
tion is needed.

Example 2: Using classification axiom

If we wish to investigate the relationship between programming comprehension and program doc-
umentation, we need to use a non-abstract measure (i.e., the target class is non-abstract). Alter-
natively, if we are interested in assessing object program size, due to the fact that comments and
blank lines are ignored when compiled, abstract class is the target class.

Since the non-abstract class is stronger than the abstract class, boundary condition BCg in-
dicates that all measures from the abstract class, such as cyclomatic number which contains no
information on program documentation, will be discarded. In the non-abstract class, we can further
infer that:

1. A total line count (including all physical lines) might be acceptable because it is correlated
with our size assessment (e.g., previous Example 1);

2. A blank line count is rejected because it is irrelevant.

On the other hand, if programming effort is to be predicted, measures from both the abstract
and non-abstract classes need to be used. This is because both the executable lines as well as
comments, blank lines and indentations used to document the program consumes programming
effort.

3 Evaluation Scales for Complexity Measures

The boundary conditions so far provide feasible acceptance criteria. However, to compare multiple
acceptable measures, we need evaluation scales. Consider two measures of program paths: one has
2 clusters of trivial (sequential code only) or non-trivial (other control structures used) programs;
another measures up to N clusters (e.g., some measure of loop structure). Both may be valid
according to BCjs, but we suspect that the latter tells us more about program structure.

Multi-valued scaling has been used to evaluate software designs [6] where a triple (B, S, W)
defined the basic requirement B, the scaling functions S for candidate solutions, and weight W of
various attributes. We follow a similar approach to evaluate the suitability of remaining complexity
measures after the elimination of non-feasible ones.

Boundary conditions BC; and BCs are intrinsically binary predicates, thus there is no scal-
ing associated with them. However, the distribution associated with BCs and the proportion of
programs holding monotonic properties associated with BCjs are multi-valued quantities, naturally
leading to evaluation scales.
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Figure 1: Monotonicity of composition

3.1 Evaluating the Monotonicity of Measures

Boundary condition BCj3 states that no measures should continuously assign lower values to suc-
cessively larger programs. This allows local deviations from monotonicity but requires a general
monotonic trend as in Figure 1. If programs are produced using some incremental or cumulative
development method where restructuring is usually avoided, a monotonic measure might be able
to predict the size and the development cost more accurately than a non-monotonic one.

Once the monotonicity of the underlying property is known, we can compare measures in terms
of their conformance. To compare quantitatively, we define our scale to capture both the extent
and frequency of non-monotonic deviations to the general trend of monotonicity.

Definition: The period of monotonicity 7', which captures the extent of non-monotonicity, is the
minimum k (7 = min{k}) such that monotonicity property BCs, (VP,Q) ( dist(P,Q) >
kE = V(P) <V(Q) ), is satisfied.

Definition: The period of strong monotonicity S is the minimum & (S = min{k}) such that strong
monotonicity, (VP, Q) ( dist(P,Q) >k = V(P) < V(Q) ), is satisfied.

BCj3 must to be true if k is greater than or equal to T', or:
(Vk > T)(VP, Q)(dist(P,Q) > k = V(P) < V(Q)

The higher the period of monotonicity, the greater the extent of non-monotonic deviations. When
T = 0, the measure in question is strictly monotonic.

For example, McCabe’s cyclomatic number is monotonic (period 0), but not strongly monotonic,
since adding statements may not change the cyclomatic number (e.g., adding sequential statements).



It has no period of strong monotonicity (S = o), because one can add sequential statement
indefinitely without changing its cyclomatic complexity. On the other hand, statement count and
prime program complexity [1] are both strongly monotonic of period 0.

3.2 Evaluating the Discriminating Power of Measures

Among the many measures that satisfy that condition BCs, some may possess a better distribution
than others according to some criteria such as predictive power, value of information or simplicity.
Consider two module data complexity measures: 1) one binary-valued measure with complexity 0
for modules without any variables and complexity 1 for all others; and 2) a measure which returns
the unique variable count (7y of software science [11]). We would assume that the latter provides
more information than the former. Elaborating boundary condition BCj leads to a scale to evaluate
how well a measure facilitates comparison by assigning appropriate complexity values to programs.

When the distribution of the underlying property that we are trying to predict or control is
known, a good measure should correlate closely with this property, possessing a distribution as
close to this underlying distribution as possible. We need a scale to assess the proximity between
these two distributions.

In the following, we assume that the underlying property has a uniform distribution. Therefore,
a measure that gives a uniform distribution with maximal distinguished points would be ideal.

We are interested in knowing that two points on the measurement scale V are different from
each other so that comparisons can be made. How much they differ is of less interest to us, since
we use such values to rank complexity between programs rather than compute their absolute value.
For example, the horizontal distances in Figure 2 are not important, only their relative positions.
Our evaluation scale of measure distribution should only depend on the bag of probability {p,}
rather than the whole pmf defined by the set {(v, py)}(see Section 3.1).

We need scales similar in concept to the classical definition of variance or skewness [7]. How-
ever, they cannot be directly used to capture what we want. First both are sensitive to values of
complexity in addition to the probability associated with these values. To overcome this shortcom-
ing, a transformation has to be carried out to get a point rather than value distribution (which
is equivalent to an equal distance value distribution). In addition, they impose order on the
original (orderless) {p,}. For example, two measures V; and V3 in Figure 2 have distributions:
{{v1,0.6), (v?,0.2), (v3,0.2)} and {(v3,0.2), (v%,0.6), (v3,0.2)} respectively, resulting in V1 having
larger variance than V3 although they have the identical bags {p,}. But, for our purpose of com-
parison among programs, both are equally good.

Skewness evaluates the symmetry of a measure distribution. For example, a single cluster (by
itself symmetric) is not as good as a distribution with 2n + 1, where n > 1, symmetric peaks,
although they both have skewness 0.

Uniformity Scale

We define our scale to capture: 1) the number of distinguished points on the measurement scale
(e.g., 4 for V4 and 3 for V1 and V3 in Figure 2); and 2) the uniformity of these points. We define
a general scale to evaluate the desirability of distributions:

Distribution Scale DS; : For any given measure V, region length § > 0 and probability threshold
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Figure 2: Distributions of complexity values

€ > 0, the scale DS; is defined to be the pair (n,d) where n is the number of regions satisfying:
pr = prob(kd <V(P) < (k+1)§) > €
Or equivalently, n is the cardinality of probability bag * {py | px > €}. And:

0 if n=0

d= 1
n( Zk(ﬁn_—pk)z ) = Zk(l%p’“)z otherwise

which is the normalized standard deviation of the probability bag {py | pr > €}.

Notice that % is the probability of getting any v if it is uniformly distributed. It is also the mean of
the bag {pr}. Thus, the standard deviation d of the bag gives us a good estimate of how different
this is from a uniform distribution. Finally, it is normalized by scaling the bag {px} by n (which is
equivalent to setting the mean to 1).

In the case where |{(v,py)}| is finite, the above scale computation can be simplified, with e = 0
and ¢ to be the shortest distance between two successive points with non-zero probability, i.e.,

5 = min[V(P) - V(Q)|

In this case, any region [kd, (k + 1)d) contains at most one point with non-zero probability, thus the
number of non-zero probability points is the same as the number of non-zero probability regions.
We only count the points with non-zero probability and calculate the normalized standard deviation
(d) of the probability bag {py | px > €} of these points, — a much reduced computational task.

To use the scale DS; for measure selection, holding everything else equal, the measure with
maximized n and minimized d will be selected. The dominance relation condition between two
measures V1 with (n1,d;) and Vo with (ne,ds) is defined to be: (n; > n2) A (di < ds) but not both
“=" hold. The dominated one will be eliminated.

“{pr} is a bag instead of a set because there might be multiple regions [k, (k + 1)§) such that py is the same.
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Example 3: Measure Evaluation

Consider three measure V1, Vs, and V3 with the probability distributions shown in Figure 2. The
evaluation using scale DS; is summarized below:

V1 Vs Vs
n 3 4 3
d | 0.7483 0.3464 0.7483

To illustrate the computation of d, we consider that for Va3, n = 4, and the bag {px} =
{0.2,0.2,0.2,0.4}. Therefore:

= 0.3464

\/(1—4*0.4)2+3*(1—4*0.2)2
d = .

In this example although V; and V3 have different distributions of complexities, the (n, d) pairs
are identical due to the identical bags {p,}.

Assuming everything else equal, Vo will be selected over Vi and V3 by scale DSy due to the
dominance relation holding among them. This conforms with the picture, that Vo possesses more
evenly distributed complexity values (as captured by d(V5)) over a larger set of distinguished points
(4 vs. 3).

3.3 Selection of Multiple Measures

Some preliminary selection can be made using dominance relations. We say a measure V1 dominates
another measure Vs if V1 is evaluated to be better than or as good as (but not all equal) V5 on every
relevant scaling function. However, under most situations, dominance relation holds for only a very
few measures. There may be conflicting results by different scales, because program complexity and
complexity measures are inherently multi-dimensional. The scaling functions derived to evaluate
individual aspects of complexity measures may not be adequate for the overall evaluation and the
selection of complexity measures. In what follows, we describe a general evaluation and selection
technique, taking into account all those individual evaluations by different scales as well as the
interactions and trade-off among them.

Scaling Vector and Measure Elimination

If V[i] is evaluated to be better than V[j] using scale Si, as long as V[i] is no worse than V[j] under
scales other than Sy, we can conclude that V[i] is better than V[j]. This global dominance relation
can be formally formulated, using the global scaling vector G, as follows:

Global Scaling Vector: Let dim(X) be the dimensionality of vector X. The dimensionality of
the global scaling vector G is defined on relevant scales {S;} as:

dim(G(V)) = Zdim(Sj %)

11



The i-th element of G(V), G(V)[i], is defined successively as:

. S;(V)[k] if maximizer
GOl = { —S; (V)[¥] if m?nimizeer

until all individual scaling dimensions S;(V)[k| are exhausted. S;(V)[k], the k-th element of
scaling S;, is a maximizer if larger values are more desirable, and a minimizer if the opposite
is true.’

Dominance Relation: A measure V; is said to dominant another measure V; if
(G(Vi) 2G(V;) ) AER)(G(Vi)[k] > G(Vj)[K] )
Using this dominance relation, we can eliminate all dominated measures.

Evaluation by an Objective Function

It is unlikely that a single measure dominates all others. To select among those measures, we
need to assess the relative importance and trade-off of each scale. Generally speaking, under
different environments with different goals, different scaling functions have differing importance.
An objective function needs to be derived to capture the relative importance of each scale and to
be used to make the final selection.

The result of this assessment is that a weight of importance is assigned to each G(V)[i], which
forms the weight vector W. Notice that unlike G, W is independent of measures, i.e. W is the
same for any given measure V:

(Vi, 5, k) WV k] = W(V[j])[k] = WIK]

At the present time, determination of the weights W is still a subjective activity. However,
techniques, such as the equilibrium probability in [6], can be used to help the user determine
subjectively which scaling function is most important in that particular application.

The objective function to be used for the final selection is simply the dot product of G(V) and
W. The selection problem reduces to the optimization problem among all V[i] that satisfy all
boundary conditions:

max (fi = Z G(Vi)li] * W[J]))
j

Since all measures not in the feasible region were eliminated in the previous stage, the final selec-
tion is a simple unconstrained optimization problem. A maximization algorithm can be employed
to find the solution (or solutions if multiple measures have the same objective function value).

Measure elimination using dominance relations can be combined (or merged) into this final step
of selection. If V; dominates V; then f; > f;, and as a result of maximization, V; will be eliminated.

®Other possibilities can be handled in similar fashion. For example, if the target is T and it is equally undesirable
to over-shot as under-shot target, then the symmetric distance of | — S;(V)[k]| can be used in definition for G(V)[¢].
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4 Measure Selection for Classification Trees

The selection process uses the following general framework of software measurement including goal
and environment analysis, measure selection, refinement and feedback:

1. Analyze the environment and goal to identify, classify and establish relations of relevant en-
tities, attributes and properties.

This analysis focuses on external usage of the measures (the goal) and the external constraints
(the environments). They restrict the use of certain measures, and discriminate among others.
2. Make the selection of candidate measures.
This process can be further subdivided into three steps, corresponding to the previous sections
in this paper. To summarize, we need to:
(a) Reject all measures falling outside the feasible region using boundary conditions.
(b) Evaluate specific aspects of measures using evaluation scales.

(c) Aggregate individual evaluation scales and make the final selection.

3. Fine tune the measures in consideration of aspects not considered in step 2.

The best available measure selected may not match the goal and environment perfectly. In
such cases, fine tuning is performed to derived a better measure based on the one selected.

4. Use the measures selected and feedback all relevant information.

Under use, problems might be found, modifications and adjustments made, and lessons
learned. These may reflect weakness of certain axioms, improper classification, inadequate
training, or improper use etc. All these provide valuable information, to perfect the axioms
and classification, to improve the selection process or to refine the fine tuning.

This framework resembles Basili’s GQM paradigm [3]. Step 1 roughly correspond to the Goals
and Questions formulation in GQM, while Step 2 corresponds to the selection of Metrics in GQM.
Steps 3 and 4 provide the important feedback needed to improve the process.

4.1 Classification trees

The following is an example of measure selection [19] for Classification Tree Analysis (CTA) based
upon an earlier study by Selby and Porter [16] where complexity measures are used to construct
classification trees of modules to identify critical (in terms of cost and faults) components in a
software development environment. Our study consisted of the following:

Environment: Sixteen software systems, ranging from 3000 to 112,000 lines of FORTRAN source
code, were selected from NASA ground support software for unmanned spacecraft control [5].
Each required between 5 and 140 person-months to develop over a period of 5-25 months by
4-23 persons. Each project contained from 43 to 531 modules, totalling over 4700 modules.
These modules are the objects on which the analysis in the study is based.

13



Data: There are 74 attributes, each quantified by a specific measure, for each module divided into
three broad categories: fault, effort, and style (or complexity), summarized in Tables 1, 2,
and 3. In each of the tables, we deliberately separated measures into two groups: 1) derived
measures of averages in the form of z per y (e.g., faults per 1000 source lines), and 2) other
measures.

Goal: The goal is to identify critical components, specifically to identify components with high
cost and many faults.

Process: There are 6 parameters to be selected (for more detail, see [16]):

1. Goal (the attribute to be estimated): effort or faults;
2. Awailability: whether an attribute is available early in development cycle;

3. Ewaluation Function Heuristic: selecting attributes (measures) to generate classification
tree;

4. Tree Termination Criteria: the least proportion of positive or negative instance to make
a prediction (thus to terminate a tree);

5. Number of Projects in the Training Set: the data from the most recent n projects (1 <
n < 15, the training set) are used to estimate the result on the next project (the singleton
testing set);

6. Ordinal Grouping of Attributes: either quartile or octile.

The identification of those critical components (parameter 1) are through the classification
trees for modules based on some historical data (parameter 5). At each interior node of the
tree, a measure (or an attribute) is used to separate modules into various sets according to
measure values (parameter 6). A high risk module is one with cost or faults at the upper
most quartile or octile. If more than a certain portion (parameter 4) of modules in a specific
set are high risk (or low risk), the set is said to be high risk (or low risk). Otherwise another
attribute is used to further separate among these modules.

Performance Measures: When using the classification tree on the test data, a number of per-
formance measures can be obtained depending on the match between predicted high/low risk
modules and actual high/low risk modules, as follows:

e (Coverage: Percent of modules where positive or negative predictions are made;
e Accuracy: Percent of modules where prediction and actual data agree;

o (Completeness: Percent of actual high risk modules correctly predicted;

Consistency: Percent of predicted high risk modules who are actually high risk.

4.2 Application of Model to CTA

Suppose we are trying to decide the cost by estimating the total development effort based on 1)
the historical data between program complexity and effort, and 2) the new software system, whose
complexity can be easily measured. Historical data consist of one project with 43 modules (the
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€rrors

faults

fault isolation effort

fault correction effort

fault implementation effort
multiple module faults
modifications

changes

change isolation effort
change correction effort
change implementation effort
multiple module changes

errors per 1000 executable statements

errors per 1000 source lines

fault correction effort per 1000 executable statements
fault correction effort per 1000 source lines

faults per 1000 executable statements

faults per 1000 source lines

Table 1: Fault and Change Attributes

total development effort per 1000 executable statements
total development effort per 1000 source lines
percent code effort of total development effort

total effort percent design effort of total development effort
overhead effort design effort per code effort

design effort design effort per comment

code effort design effort per function call

test effort design effort per module call

design effort per function plus module call
design effort per input-output statement
design effort per input-output parameter

Table 2: Development Effort Attributes

15




Meets BCj;

Fails BC;

assignment statements
input-output statements
input-output parameters
source lines

comments

source lines minus comments
executable statements
function calls

module calls

function plus module calls
cyclomatic complexity
operators

operands

total operators

total operands

decisions statements
format statements

origin

assignment statements per 1000 executable statements
input-output statement per comment

input-output parameters per comment

input-output statements per 1000 executable statements
input-output statements per input-output parameter
input-output statements per 1000 source lines
function calls per comment

function calls per input-output statement

function calls per function plus module call

function calls per input-output parameter

function calls per module call

module calls per comment

module calls per input-output parameter

module calls per function plus module call

module calls per input-output statement

function plus module calls per 1000 source lines
function plus module calls per input-output statement
function plus module calls per input-output parameter
function plus module calls per 1000 executable statements
function plus module calls per comment

cyclomatic complexity per 1000 source lines
cyclomatic complexity per 1000 executable statements

Table 3: Design and Implementation Style Attributes
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training set) while the current project consist of 176 modules (the test set). Based on previous
experience with CTA, 1) the quartile grouping of attributes is to be used for practicality of tree
branching factors; and 2) tolerance level is set to be 25%.

External attributes were not used as we were trying to evaluate internal properties. Based on
this analysis, only the complexity (or style, as is called in [16]) measures, rather than various effort
or fault measures, were selected to construct the classification tree (Figure 3). This reduced the
candidate measures from 74 to 40.

All candidate measures satisfy boundary conditions BC; (comparing functionally equivalent
programs), BCy (comparing component-composite pairs), and BCs (no single cluster). However,
many of the measures do not satisfy BCgs, the general monotonicity axiom. These measures are
measures of averages such as assignment statements per 1000 executable statements, which may
be correlated with average effort per 1000 lines or so, but not with the total development effort.
Therefore these measures were eliminated. This reduced the candidate measures from 40 to 18,
with the candidate measure set S being the left half of Table 3.

To see that BCg (i.e., eliminating weaker class measures) is satisfied, we notice that both
syntactical structures as well as features such as comments consume programming effort. Both
abstract and non-abstract measures provide some information, and correlate to total programming
effort. Therefore measures from both these classes are potentially acceptable. On the other hand,
interaction between component-composite program pairs are not a major concern, because the
programs are studied at the module level only.

Given 18 remaining measures that meet BC; through BCg, we next use our scaling and objec-
tive function to determine which of them best predicts total effort. The 18 measures are all strictly
monotonic.

To use the discriminating scale DS, we have to adjust it according to the environment. The
underlying distribution, as we assumed, is a four region distribution (grouped into four quartiles)
determined by historical data. We combine this scaling activity into the aggregated evaluation over
all four regions. A quartile of modules is positively identified if more than 75% of the modules
(tolerance level: 25%) have the upper most quartile of effort. The negative sets can be similarly
identified.

Let m;(V) (i = 1,2,3,4) be the number of modules in quartile i using measure V; p;(V) be
the proportion of modules in m;()) belonging or to the upper most quartile of effort; and n;(V)
be the rest in m;(V). As a result, a quartile is positively identified if p;(V) > 0.75, and negatively
identified if n;(V) > 0.75.

To formulate the objective function for the aggregated selection, we need to evaluation the
contribution of each quartile. We can weigh them by the number of modules falling into the
quartile. Therefore, we formulate our selection criteria as:

4
max > {mi(V) * pi(V) + ma(V) = ni(V)}
Ves p:(V)>0.75vn;(V)>0.75

This selection criterion maximizes the number of modules in positively or negatively identified
quartiles. For each of the quartile neither positively nor negatively identified, another measure
is selected using the same criterion. The process continues until all modules are identified or all
measures are exhausted.
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Figure 3: Classification Tree

Actual Actual
+ — total + — total
Predicted + 7T 17 24 Predicted + 7T 32 39
— 4 143 147 — 4 129 133
total | 11 160 171 total | 11 161 172
a. modified b. original

Table 4: Prediction Result

4.3 Results of CTA Application

Figure 3 gives the classification tree constructed from training data. Each non-terminal node has
an associated measure on four exiting arcs. Each arc has a pair of numbers (lower bound to its
left and upper bound to its right), representing the range of measured complexity of modules. A
terminal node is marked by either a “4”, a “—”, or a “?”, representing that the modules in the node
is positively, negatively, or not identified respectively. This allows each module to be successively
classified into finer and finer classes, and ending up in positive, negative or unknown classes at the
terminal nodes of the tree.

Using the tree on the test data with 176 modules, various predictions can be made (Table 4.a).
To compare the relative effectiveness of the selection process, we also generate the classification
tree using the original CTA tools, and summarize the result in Table 4.b. To ensure meaningful
comparison, only the 18 complexity measures are used. Assuming our specific goal and environment,
the original selection method will select from 40 different complexity measures.

Table 5 gives the comparison of modified and original classification trees according to each
performance measure, as well as compares the result with random guessing. Prediction made
by both the modified and original CTAs are better than random guessing. All the performance

18



performance measure | modified original random
not identified 5 4
correctly identified 150 136
incorrectly identified 21 36
coverage 97.16% 97.72% 100%
accuracy 87.711% 79.06% 75%
completeness 63.63% 63.63% 25%
consistency 29.16% 17.94% 25%

Table 5: CTA Performance Comparison

measures except coverage using the modified classification tree are an improvement to the original
CTA, and coverage is quite comparable. In an earlier paper [19], additional examples are given
demonstrating the value of this process.

5 Conclusion and Future Research

In this paper, we developed a technique for general complexity measure selection, based on our
earlier formal model of complexity. The general selection problem is formulated as a constrained
optimization problem, with clearly defined steps for determining the feasible region, choosing among
feasible measures, and aggregating these individual evaluations for the final selection.

While the viability and the effectiveness of the technique was demonstrated by various examples
throughout the paper, a more conclusive evaluation needs to be done on a set of real-life software
measurement projects. The initial result of this, which is summarized in Section 4.1, looks very
promising, and we expect similar results using multiple sets of test data.

By basing measure selection on a formal model of program complexity, we are able to intelli-
gently choose from among numerous candidate measures, as our CTA study demonstrates. Giving
this field a scientific basis is an important prerequisite for applying these techniques in industrial
applications.
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