
030&4573/84 $3.00 + .oO
Pergamon Press Ltd.

DATA COLLECTION AND EVALUATION FOR
EXPERIMENTAL COMPUTER SCIENCE RESEARCH

MARVIN V. ZELKOWITZ

Department of Computer Science, University of Maryland, College Park, MD 20742, U.S.A.

Abstract-The Software Engineering Laboratory has been monitoring software devel-
opment at NASA Goddard Space Flight Center since 1976. This report describes the
data collection activities of the Laboratory and some of the difficulties of obtaining
reliable data. In addition, the application of this data collection process to a current
prototyping experiment is reviewed.

I. INTRODUCTION

There is a significant need to collect reliable data on software development projects in order
to provide an empirical basis for making conclusions about software development meth-
odologies, models and tools. However, such data is usually hard to collect and even harder
to evaluate. Software is a multibillion dollar industry where 100% cost overruns are
common, and maintenance activities can take up to 70% of the total cost of the system [l 11.
The availability of reliable data to evaluate competing software development techniques is
crucial.

As Lord Kelvin stated, “I often say that when you can measure what you are speaking
about, and express it in numbers, you can know something about it, but when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind”. The lack of
adequate measures is certainly a problem in the software industry today.

Many of the recent analyses of the software development process are based on data that
is obtained from university experiments. Students often program special problems whose
results are subjected to analysis. This gives the researcher the IO to 100 data points necessary
for statistical validity of the results. However, by virtue of being part of an academic
program, such experiments are necessarily small and usually involve inexperienced pro-
grammers. There is a need to extend the scope of these experiments to a level appropriate
to the multibillion dollar industry.

Most software development data in industry has been collected after the fact. That is,
a project is built and then a pile of documents are handed to a research group for
evaluation. Often, critical information is missing and the results are not what one would
expect. Rather than following the model of archeology-the study of dead software
projects, software evaluation must model sociology-the study of living software societies.
Data must be collected from ongoing projects, but the software sociologists must not
impact the objects of their study. Given the need to finish projects on time and within
budgets-a goal too often missed-it is difficult to justify spending money on data
collection and evaluation activities.

Specifically to address these problems, the Software Engineering Laboratory (SEL) was
set up within NASA Goddard Space FlightCenter in 1976. The goal was to study software
development activities within NASA and report on experiences that will improve the
process. This report describes the SEL and its experiences over the last six years.

2. THE SOFTWARE ENGINEERING LABORATORY

In 1976 the SEL was organized to study software development within the NASA
environment. More specifically, its primary charter was to monitor the development of
ground support software for unmanned spacecraft. Each such system was typically 30,000
to 50,000 source lines of Fortran and took from 8 to 10 programmers up to two years to

269

770 M. V. ZELKOWITI.

build. While this environment is not representative of all software development environ-
ments, SEL experiences are generalizable in some respects:

(a) Ground support software includes several program types such as data base functions,
real time processing, scientific calculations and control language functions. The software is
largely implemented in Fortran.

(b) By looking at a relatively narrow environment, data collected from many projects can
be compared. Thus we get some of the benefits of a carefully controlled experiment without
the expense of duplicating large developments. We do not have the problem of looking at
a variety of projects, like compilers, COBOL programs, ground support software, MIS
programs and then trying to say something consistent about all of these.

To date, 46 projects have been studied, containing over 1.8 million lines of code. Over
150 programmers participated in these projects, and the data base contains over 40 million
bytes of data. The general SEL strategy is to carefully monitor a project and regularly
collect data during its development. The data is then entered in the SEL data base for
analysis. The purpose of this report is not to dwell on specific research results based on
this data (See, for example [8] for a collection of published papers about the SEL) but is
concerned with the problems of collecting data, and what we have learned from this
process.

3. DATA COLLECTION

3.1. Model generation
In order to fully take advantage of the available data, it must be known what

information is desired. The models and measures that are to be investigated must be
defined. A random data collection activity will usually miss relevant data, and then it will
be too late to try and recover that information.

In the SEL, two classes of measures were identified for study, and the data collection
activities were oriented around those areas. The initial activities included:

(a) Process measures. Evaluating personnel andcomputer resources over time was a clear
need. One activity was to try and validate models that others have identified (e.g. the
Putnam Norden Rayleigh curve [1]) while another activity was to try and build new models
to fit the empirical data (e.g. the Parr curve [7]). Once models were identified, their
predictive nature was studied as a means of resource scheduling.

The generation and correction of errors is another activity that has important economic
consequences. However, few models are available to build upon, so there was a need to
develop new models of errors and investigate their effects upon performance.

(b) Product measures. The size, structure, and complexity of software are other
important economic factors to consider. The evaluation of measures such as the software
science measures of HALSTEAD [5], the cyclomatic complexity of MCCABE [6] and other

measures developed within the SEL was another early goal.

Reliability is a critical activity in most environments. In our particular environment,
the software that was previously developed was highly reliable (typically under 10 errors
in an operational system), so that reliability, while important, was not a primary driving

force in organizing the SEL.

3.2. Forms generation
The first process in evaluating empirical data is the data collection activity. Ideally, you

would like the process to be automated and transparent to the programmer. However, this
was not possible in this situation. We were interested in the human activities of software
development. Thus we needed detailed information about how programmers spend their
time. Because of this, a decision made early in the life of the SEL was that some data would
be manually collected using a series of forms.

There is a significant tradeoff consideration at this point. If we tried to collect too much
information, programmers would object to the interference of the data collection activity
on their work. If too little information was asked, then there would be little point in
collecting it.

We first developed an initial set of reporting forms. These have been revised several

Data collection and evaluation for experimental computer science research 271

times since then. Each time certain fields were clarified and the amount of information
sought decreased somewhat. At the present time, the effort required to fill out the forms
is not significant. Initially seven forms were developed. However, only three are used
heavily. These seven forms are:

(a) Resource summary. This form lists the number of hours per week spent by all
personnel on the project. This information is obtained mostly from the weekly time cards
supplied by the contractor. It is easy to obtain this data, and causes little overhead to a
project. However, it is very useful for monitoring global resource expenditures, especially
in conjunction with the following Component Status Report.

(b) Component status report. This form is submitted weekly by each programmer. It lists
for each component of the system (e.g. Fortran subroutine) the number of hours spent on
each of nine categories (e.g. design, code, test, review, etc.). The detail required by this form
initially caused some concern; however, in looking over past forms the average pro-
grammer worked on only S-10 components per week and only 2 or 3 activities per
component. Thus the overhead was not excessive. While the data is only approximate to
the nearest hour, we believe that it is more accurate than many other data collection
procedures.

For example, many research papers give percentages for design, code, and test on a
project. However, these are usually taken from resource summary data and calendar date
milesones. If a design review occurs on a Friday, then all activities up until that date are
design, with all activities the next week being code. In the SEL environment, there was
approximately a 25 percent error in using calendar dates for percent effort [4]. On four
projects, approximately 25 percent of the design occurred during the coding phase, while
almost half of the testing occurred prior to the testing phase (Fig. 1). The Component
Status Report is critical for a proper view of development activities.

(c) Change report form. This form is completed after each change to a component is
cornpleated and tested. Due to the number of changes that a component undergoes during
early development, there was no attempt to capture this data before the component was
“complete” (i.e. through unit test). Note that we are capturing “changes” and not simply
“errors.” All modifications, due to errors or other considerations such as enhancements,
are tracked.

Besides identifying the type of change, this form also identifies the cause of the
change-they are not always the same, although programmers have difficulty separating
the two. The form also asks for information on the time to find and correct an error, and
what tools and techniques were used in the process.

PROJECT BY DATE BY PHASE

A 22.1 49.6 21.6 30.7 44.7
B 22.2 68.2 9.5 34.1 45.6
C 27.4 61.6 11.0 36.8 48.7
E 30.2 52.3 17.4 42.0 50.4

(a) Per cent design, code and test by milestone date and actual task

24.5
20.2
14.5
7.6

%DESIGN DURING %CODE DURING %TEST DURING
CODE TEST DESIGN & CODE

A 23
B 38
C 25
E 25

(b) Per cent effort during another phase

27 49
4 67
8 56

21 24

(Data collection began after the design phase of project D, so it is omitted here.)

Fig. 1. Task breakdown by phase and date.

212 M. V. ZELKOWITZ

In some enviornments, the introduction of this form might cause programmers to
object; however, this was not the case in our environment. A standard change monitoring
procedure was in place, so we simply changed the form that this branch of NASA GSFC
was using before the SEL was created.

These three forms provide the most important data collected by the SEL. Four other
forms have been created and used with limited success. These are:

(d) Component summary. This form identifies the characteristics of each component in
a system. It gives the size, complexity and interfaces. The goal was to have this form filled
out at least twice-once when the component was first identified during design, and again
when it was completed. Our experience was that the initial form was filled out before much
relevant information was known, and the data on the final form could be extracted
automatically from the source code data base.

(e) Computer run analysis. An entry on this form is filled out for each computer run
giving characteristics of the run (execution time, purpose of run, components processed)
as well as whether the run met its objectives. This is one form that could be automated.
However, the usual range of operating system “Completion Codes” is inadequate for many
purposes. For example, a debugging run that was expected to fail at a certain statement,
but ran to a successful exit, would have a statisfactory completion code, yet it was a failure
as a run since the desired error did not occur.

An interactive job submittal system could help. Before any run, the system could
prompt for some of this information. After the run, the system could ask what happened.
Since the current NASA environment consists primarily of interactive editing with batch
processing, such an online process would have been difficult to implement.

(f) Programmer analyst survey. This form attempts to characterize the experiences of
the programmers on the project in order to get a general profile of the project tea.
However, we immediately ran into confidentiality problems concerning personnel records.
We never got the detailed information that we desired, but have obtained general
comments on each programmer-although the goal is NOT to rate programmers. If there
is any hint of any of this data being used for any sort of personnel action, then compliance
drops sharply and the value of the data becomes open to question.

(g) General project summary. This is a form that provides a high-level description of a
project. Since the software is developed by NASA and contractor personnel, the form is
somewhat superfluous and the information is entered directly into the data base.

An important consideration in forms development is consistency in collecting data.
Along with each form a detailed instruction sheet was developed, as well as a glossary of
relevant terms like “component, ” “line of code,” and “life cycle phase.” For example, we
chose the name “component” rather than “subroutine” or “module” simply because those
terms were well known (with alternative meanings) and we did not want to evoke any
preconceived but wrong image in the minds of the participants. Even so, there was a great
deal of confusion about the meanings of the various terms. During the early days of the
SEL, many meetings were held to explain the process to programmers. Since each
programmer worked about one year on a project, after six years there is a large core of
personnel experienced in filling out our reporting forms.

3.3 Data processing
After being filled out, each form is entered into a data base on a PDP 1 l/70 computer.

In addition to the forms previously described, analyzers were run over the source programs
to extract additional information, including lines of code and other measures such as the
Halstead software science measures.

Another step in forms processing is data validation. Someone must review the forms
as they are submitted. This is expensive, but necessary. It is a quick way to catch and
correct errors. In addition, the data entry program should check for data consistency and
value ranges. For example, if the program is to read in input in the formal MMDDYY,
then a month input that is not a number in the range from 01 to 12 must be rejected. A
field requiring an input of A, B or C should reject any other value. Even though we
manually check each form, a validation program was more effective for catching errors.

Data collection and evaluation for experimental computer science research 213

All forms, especially the change report form, need to be reviewed by SEL personnel.
Two common errors in the Change report form are to turn in one change report form
which actually represented several errors, and the submission of multiple forms for the
same error. From earlier work over half of the change report forms were modified
following a careful study of each form. This is an expensive process, but needs to be done
in order to have accurate data about your environment.

Redundancy of data is another important consideration. Collecting the same or similar
data on multiple forms allows for cross validation. There ahould be a reasonable
correlation between the collected values. The resource summary and component status
reports have been easiest to validate. The Computer Run Analysis form is important for
validating some of the change report data; however, limited availability of this form has
handicapped some of this validation work. Because of that, it is important to manually
check each change report form for selected projects.

4.1 Previous research

4. RESEARCH ACTIVITIES

Research in the SEL has centered on resource and error models and on predicting
software productivity. ([8] is a collection of relevant papers published over the last few
years.) Perhaps the most important conclusion-although obvious in hindsight-which is
relevant to this current discussion is that there is no typical software development
environment.

All models include parameters-factors which represent variables in that environment
(Fig. 2 represents a list of factors from the SEL as well as two other studies [3, lo]). When
models based on other environments are applied to the NASA environment, they
invariably fail. Does that mean that NASA is different? unique? much better or much
worse than other environments? For example, SEL programmers show much higher
productivity in lines of code per week than in other organizations. Does that mean that
other organizations should pirate away NASA’s staff?

Perhaps, but another explanation becomes apparent when NASA’s environment is
studied in detail. In the SEL, most of the projects are similar ground support software
systems. Thus the top level design for these projects are similar. Programmers are experts
at this particular problem-thus high productivity. Many factors affecting requirements
and design do not apply here. On the other hand, a contractor that bids on a variety of
projects-an operating system, a compiler, a data base management system, an attitude
orbit determination program, etc. does not build an institutional knowledge about any one
particular environment. Requirements and design factors now become significant in this
environment and productivity drops.

All companies operate in a different manner. Company policy as to working conditions,
computer usage (batch or interactive), leave policy and salaries, management, support
tools, etc. all effect productivity. Thus each organization (probably even separate divisions
within a single organization) has a different structure and a different set of parameters.

For this reason, one must first calibrate any model to be applied. First develop a
quantitative relationship using many factors. Choose those factors relevant to your
environment. Calibrate the equations based upon previous projects, and then use the
calibrated model for prediction [2]. It is this important calibration step that is missing from
most models.

For example, if a baseline equation is given by:

Effort = a * size + b

then one can fit a and bfrom historical data; and the units of size can be determined from
those relevant to your environment-such as lines of code, lines of source (including
comments), number of modules, number of output statements, etc. Thus instead of a single
model, there is a class of models tailored to each environment.

173

Waiston and Felix:

M. v. i%LKOWITZ

Customer experience
Customer participation in definition
Customer interface complexity
Development iocntion
Percent programmers in design
Programmer qualifications
Programmer experience with machine
Programmer experience with language
Programmer experience with appiicati~~n
Worked together on same type of problem
Customer originated program design changes
Hardware under development
Development environment closed
Dev~iopment environ~nent open with request
Development environment open
Development enviroment RJE
Development environment TSO
Percent code structured
Percent code used code review
Percent code used top-down
Percent code by chief-programmer teams
Complexity of application processing
Complexity of prorgdn flow
Complexity of internal ~omsnunicatio!~
Complexity of external communication
Complexity of data-base structure
Percent code non-math and l/O
Percent code math and computational
Percent code CPU and I/O control
Percent code fallback and recovery
Percent code other
Proportion code real time of interactive
Design constraints: main storage
Design constraints: timing
Design c(~nst~llnts: I:0 capability
~Jnclassilied

Rochm:

Required fault freedom
Data hase size
Product complexity
Adaptation from existing software

Execution time constraint
Main storage constraint
Virtual machine volatility
Computer response time
Analyst capability
Applications experience
Programmer Capability
Virtual machine experience
Programming language experience
Modern programming practices
Use of software tools
Required development Schedule

SEL:

Program design language (deveiopment and design)
Formal design review
Tree charts
Design formalisms
Design/decision notes
WaIk-through: design
Walk-through: code
Code reading
Tod-down design
Top-down code
Structured code
Librarian
Chief Programmer Teams
Formal Training
Formal test plans
Unit development folders
Formal documentation
Heavy management involvement and control
Iterative enhancement
Individual decisions
Timely specs and no changes
Team size
On schedule
TSO development
Overall
Reusable code
Percent programmer &Tort
Percent management effort
Amount documentation
Staff size

Fig. 2. ~nvir(~nlnent factors

Over the past few years various methodologies have been studied by the SEL. A current
SEL activity is the development of software prototypes. Currently software is designed,
built and delivered. Rarely is the product evaluated in advance. However, the use of
engineering prototypes in a preliminary evaluation is starting to be discussed by software
eIl~ineering professionals 191.

While the term is appearing with increasing frequency, what does it really mean? Is it
a quick and dirty throw-a-way implementation or a carefully designed subset of a final
implementation? What are the cost and reliability parameters for a prototype compared
to a full implementation.

Currently data on the subject is meagre and usually based on small projects [12]. The
SEL is now investigating a larger implementation with some techniques as applied to
previous SEL. projects.

Briefly, the target impIementation is an integrated support system for flight dynamics
research. Currently, experiments (NASA scientists), in trying a new spacecraft model (e.g.
a new orbit calculation) must understand the structure of the existing system, access the
Fortran source modules, modify them, rebuild the operating program, test it, and then run
the experiment----a complex and costly process, The new system is expected to “under-
stand” several flight dynamics systems and to provide a higher level command language

Data collection and evaluation for experimental computer science research 215

that guides the experimenter through the process of building a new version of a system,
even if the experimenter is not thoroughly familiar with the existing system. This system
is basically a command language interpreter with a complex data dictionary describing the
underlying flight dynamics subsystems.

This program is quite different from existing software produced by NASA, so the plan
is to prototype it first. Two classes of data will be obtained from the prototype.

(a) Characteristics of the process. The Computer Science world has little information
available about prototyping, thus this data will add to the general knowledge about this
process. What does the life cycle of a prototype look like? How much time is spent in
design? code? test? Are errors crucial or can they be side-stepped in the prototype
somewhat by “eliminating” the offending feature in the requirements?

Similarly, how does prototyping effect the later full implementation? Will design be
easier? Will productivity be higher? Will the overall cost of the system plus prototype be
less than the cost of just the full system? Will reliability be higher or the interface more
“user friendly?”

(b) Predictive nature of the prototype. Once a prototype is built, is it successful? How
does one measure success? Will the full system be successful based upon an evaluation of
the prototype? A set of measures will be built into the prototype to provide some of these
answers.

A baseline study will be made of how experiments are conducted-the cost of machine
and people resources will be measured. Some of these experiments will be repeated with
the prototype to derive a cost. These will be used to predict the cost of using the full system.
If acceptable, then the design will be used for the full implementation, if not, then the
design will be modified to correct the problem in the full implementation.

In addition, data will be collected on how often features are used in the prototype, and
also how often the prototype is being circumsized in order to provide features that
currently do not exist but are needed by the users.

Once the final system is built, the predictive model can be validated in order to aid in
developing a theory of software prototypes.

CONCLUSIONS

The Software Engineering Laboratory has been in existence for six years and has studied
over 40 projects. The empirical data that has been collected supports several conclusions:

(1) Data collection is hard and expensive. It must be dynamically collected during the
development of a project and not after completion.

(2) Data must be validated. Error rates on manually filled out forms are high. A lack of
standardized nomenclature for the field hurts consistency. Much effort must go in training
personnel to understand the data collection methodology.

(3) Each software development environment is unique. Baseline equations must first be
calibrated with past projects before a model can be used in the future.

(4) Little is known, but much is being said, about software prototypes. The SEL is
currently studying this issue as part of its ongoing activities.

Acknowledgements-This paper was supported by NASA grant NSG-5123 to the University of Maryland. The
SEL is under the direction of Frank McGarry of NASA GSFC. Dr. Victor Basih directs the University of
Maryland activities of the SEL, and Jerry Page is the coordinator for Computer Sciences Corporation. The results
described in this report were developed by the author, the above mentioned persons, as well as several graduate
students at the University of Maryland and researchers at CSC. The author is indebted to David Card of CSC
for his detailed comments on an earlier draft of this paper.

REFERENCES

[I] V. R. BASILI and M. V. ZELKOWITZ, Analyzing medium scale software developments. Proc. 3rd
Int. Co& on Software Engineering, Atlanta, Georgia, May (1978).

[2] V. R. BASILI, Models and metrics for software management and engineering. ASME Advances
in Computer Technology 1, January, (1980).

216 M. V. ZELKOWITZ

[3] B. BOEHM, Software Engineering Economics. Prentice Hall, Englewood Cliffs, New Jersey (1981).
[4] E. CHEN and M. V. ZELKOWITZ, Use of cluster analysis to evaluate software engineering

methodologies. Proc. 5th Znt. Conf. on Software Enginerring, San Diego California, March
(1981).

[5] M. HALSTEAD, Elements of Software Science, American Elsevier, New York (1977).
[6] T. MCCABE, A complexity measure. IEEE Trans. Software Engng 1976, 2, 308-320.

[7] F. PARR, An alternative to the Rayleigh Curve model for software development. IEEE Trans.
Software Engng 1980, 6, 291-296.

[8] Collected Software Engineering Papers, Vol. 1, SEL-82-004, Code 582.1, NASA GSFC, July
(1982).

[9] ACM SZGSOFT Software Engineering Symp., Workshop on Rapid Prototyping, Columbia,
Maryland, April (1982).

[lo] C. WALSTON and C. FELIX, A method of programming measurement and estimation, IBM

Systems J. 1977, 16, 54-73.
[l l] M. V. ZELKOWITZ, A. C. SHAW and J. D. GANNON, Principles of Software Engineering and

Design. Prentice Hall, Englewood Cliffs, New Jersey (1979).
[12] M. V. ZELKOWITZ, A case study in rapid prototyping, Software Pra. Exp. 1980, 10, 1037-1042.

