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ABSTRACT 

As software becomes increasingly complex, two attributes of the system life cycle are 
taking on more important roles. We need the ability to formally specify the functionality of 
the systems we build in order to minimize costly development problems and, with long life 
times, we need the ability to enhance existing systems with new features in order to prolong 
their usefulness. This enhancement process also needs a mechanism for formally defining 
any new functionality on data objects placed upon the system. This paper describes the AS* 
research project which is addressing this issue. AS* is a language-independent specification 
language embedded within an existing programming language for the purpose of providing 
extensions to existing systems. This paper discusses the designs of AS*, the structure of 
the prototype implementation, and describes some early experiences using the system. 

1. INTRODUCTION 

As software becomes increasingly complex, two attributes of the system 

life cycle are taking on more important roles. We need the ability to formally 

specify the functionality of the systems we build in order to minimize costly 
development problems, and with long life times, we need the ability to enhance 
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existing systems with new features in order to prolong their usefulness. The 
role of formal specifications (e.g., algebraic, axiomatic, functional, or oper- 
ational specifications) is currently of great interest within the computer sci- 
ence research community as a means to address the first of these problems. 

However, formal specifications are not created in a vacuum. The under- 
lying system that was initially specified will evolve and change, and the need 
to make enhancements to the basic system (and hence change the underlying 
formal specification) will be an ongoing life cycle concern. 

In enhancing a system with new features, the “established” research model 
requires a development group to refine the requirements, redo the specifi- 
cations, modify the design and alter the code. But before a system is altered, 
what we usually have is a requirements document long unused, an out-of-date 
specification that might have reflected the original goals of the project, a 
design that is undoubtedly incomplete or incorrect and a source program that 
ultimately needs to be modified. Traceability of new source code feature back 
through design, specifications, and ultimately back through to the require- 
ments is certainly a need, but we have no effective mechanism to achieve 
that today. However, in order to enhance a system, in the midst of all this 
apparent confusion, we do have one clear advantage over the original de- 
signers of the system-we have a running source program that can provide 
the basis of an “oracle” for testing new enhancements. 

We have been studying this problem within the context of an executable 
specifications language which we have named AS* (for Algebraic Specifi- 
cations extended). The goal is to design such a specifications language that: 
(1) has the formal properties needed to correctly specify system functionality; 
(2) can be compiled into executable programs; and (3) can be added to existing 
systems in order to provide for system enhancements. By developing such a 
language, we see its introduction into the software life cycle as follows: 

(1) A new feature is modeled (i.e., specified) by the specifications lan- 
guage . 

(2) The feature is automatically tested (i.e., prototyped) in the context of 
the existing system for appropriate behavior. 

(3) The feature is designed in the native programming language in a more 
efficient manner. 

(4) If necessary, parts of this new implementation are redesigned to further 
increase the efficiency of the new system. 

(5) At any time we can execute our correct model (i.e., step (2) prototype) 
in order to ensure that each successive change or enhancement doesn’t change 
the desired functionality. 

This approach differs from others [9, 101 in that the specifications are ex- 
ecuted within the context of a running system in order to test its behavior. 
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Thus, while other models can simulate the behavior of an entire system as 
part of a system design activity, they are at a loss at simulating small exten- 
sions within a larger existing product-the essence of the important main- 
tenance aspect of the life cycle. 

In Section 2 of this paper we describe our AS* speci~cation language and 
we describe our initial implementation of a Pascal environment containing 
AS* specifications (ASPascal). Section 3 gives some initial experiences in 
using our prototype development tool. 

2. AS* 

Software design consists of the creation of complex data objects, usually 
referred to as abstract data types, and the definition of functions that operate 
on these abstract objects. Several models for specifying programs have been 
developed including inductive assertions 13, 61 and algebraic specifications 
14, 51. We are using algebraic specification technology consisting of a series 
of axioms or equations relating the operations of the abstract type to each 
other, as our basic model. 

The Knuth Bendix algorithm [8] applied to these specifications defines a 
proof of adequacy by showing the equivalence of supposedly equal terms to 
the same constant terms. Since the Knuth Bendix algorithm uses an ordering 
transformation that converts one term to a “simpler” term, the aIgo~thm 
defines an operation that can be “executed” and proven to terminate. There- 
fore, any set of axioms that is “Knuth Bendix” can be transformed mechan- 
ically into a series of transformations that can be executed. It is this trans- 
formation that is the basis for our executable specifications. 

Similar to the initial algebra approach of other term-rewriting systems [2, 
71, an AS* specification contains three features: (1) a sort name which defines 
a new abstract object and its cons~r~rcrors, functions to build objects of that 
sort; (2) a signature which defines the fun~tion~ity of set of defined ope~~r~~~~ 

and constructors for manipulating the abstract sort objects; and (3) a set of 
equations (or axioms) which inter-relate the semantics of the defined oper- 
ations and constructors. 

Specifications can be generic or explicit. A generic specification is a schema 
that resides (usually) in a program library and contains parameters (variables, 
operations, and other sorts) that are instantiated when the specification is 
used in an actual program. An explicit specification is a refinement of a generic 
specification that substitutes actual arguments for the specification param- 
eters. 
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/ 
(1) sort sequence [zort something/ is 

(2) con8ttuctor 

fst epsilon; 

l-4) cons : somefhing, sequence; 
(5) operation head : sequence + something is axiom 

${ 
head(epsilon) == ?; 
head(eons(X, Y)) == X; 

(81 end; 

Fig. 1. Example of sequence specification 

Figure I gives a simple example of a specification for a sequence. Line (1) 
specifies that we are defining a class of objects of sort sequence, and indicates 
that the new object will require an internal sort something that will be specified 
in a later binding. Lines (2)-(4) define the two constructors needed to create 
an object of this sort: epsilon to return the empty object of sort sequence and 
cons which takes an element and a sequence and returns a new sequence with 
the element in it. The function~ity of each constructor is given after its name 
with the sort name sequence implied as last (e.g., epsifon returns an empty 
sequence and cons requires a something and a sequence and returns a se- 
quence). Epsilon initializes objects of this sort and cons creates complex ob- 
jects. 

This object is manipulated by means of a set of defined operations, which 
only head is given with its signature on line (5). It is defined by the rewrite 
rules (axioms) on lines (6)-(7) which say to return the last element included 
into the sequence by the cons function. Each axiom consists of a rewrite rule 
where the expression on the left hand side of the equality operator = = 
consists of a functional value of free variables and the right hand side expres- 
sion gives its meaning via an arbitrary expression involving the left hand side 
variables. 

The ‘?’ on line (6) is equivalent to an abnormally terminating computation. 
Our implementation stops execution and issues an error message when this 
occurs. Within a program, specifications appear as function calls in the host 
programming language to the various operations and constructors defined in 
a sort. 

Much like Larch and LarchlCLU, AS* specifications are independent of 
the underlying programming language and must be defined relative to any 
concrete language. Libraries of generic specitications can be used to form the 
basis of a re-use methodology where the generic specification is refined to an 
explicit specification in a specific programming language by binding the ge- 
neric sorts to specific programming language types. In our case we use Pascal 
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as our implementation vehicle, so to create ASPascal, the extension to Pascal 
that contains AS* specifications, we indicate a linkage between a Pascal object 
and an AS* sort. 

An explicit specification is created by a refinement of a generic specifi- 
cation via the use clause. Syntactically, a refinement of a specification is: 

sort identi’er is use sortname [parameter-list] end 

where identifier is the refined sort name, sortname is the sort schema to be 
refined, and parameterlist is the list of actual functions and sorts that are 
substituted for the parameters in the sort definition. All of the defined op- 
erations in the original generic sort are now redefined in the context of this 
new refined sort. 

The AS* specification: 

sort intsequence is use sequence [integer] end; 

refines the generic sort sequence and indicates that a new sort intsequence 

is created by modifying sequence with a binding of Pascal integers to the free 
sort something of Figure 1. 

Sorts are linked into Pascal by interpreting a specification like 

sort newsort is . . . 

as equivalent to the Pascal type declaration 

type newsort = . . . 

The primitive Pascal scalar types (char, boolean, integer, real) may all be used 
in abstract sort definitions, and any explicit sort may also be used in a re- 
finement. Thus, 

var A: intsequence; 

simply creates a Pascal variable A which is of (sort) type intsequence. 

By using alternative bindings, we greatly expand reuse of specifications. 
For example, real sequences could be created as: 

sort realsequence is use sequence [real] end; 

Similarly, a sort such as a book (which is unspecified in this paper, but could 
either be a type definition in the host language consisting of a record of author, 



352 MARVIN V. ZELKOWITZ AND SERGIO CARDENAS 

‘YiYrm 
Fig. 2. AS* toolset 

title, publisher, . . . , or could be another sort specification with similar at- 
tributes) could be used to create a type library as: 

sort Libyan is use sequence ~b#ok~ end; 

2.2. AS* ENVIRONMENT 

Considering an algebraic specification as a term rewriting system is fairly 
st~i~tfo~ard; however, correctly specifying such algebraic axioms is not 
easy. Therefore, without computer-based tools to aid in the process, the task 
is extremely difficult. We have therefore constructed a series of integrated 
tools that both do the conversion from axiomatic definition into executable 
source program, and also provide aid in validating the specifications. A pro- 
totype implementation of the AS* system has been constructed and executes 
on the SUN 3 workstation under Berkeley UNIX 4.3, Figure 2 represents the 
initial AS environment that has been constructed. 

The four components are: 

(1) AS/SUPPORT is a modification to the SUPPORT environment [I 11 
which provides text-editing capabilities for creating specifications. SUPPORT 
is an integrated environment based upon a syntax-directed editor built to cre- 
ate, execute, and test programs written in a subset of Pascal. Since the lan- 
guage it processes is determined by an externally defined grammar file which 
also includes semantic information and screen unparsing commands, it was 
easy to modify the grammar to process Pascal as extended by the AS* syntax. 

(2) AS/VERIFIER, a Prolog program, is called by AS/SUPPORT and ver- 
ifies the set of axioms. AS/SUP~RT converts the sort axioms into a series 
of Horn clauses suitable for analysis by Prolog and then calls AS/VERIFIER, 
which then checks the convergence of these clauses relative to the Knuth 
Bendix algorithm. Details of the verification algorithm are given elsewhere 
[I]. If any error is found, an appropriate message is relayed back to AS/ 
SUPPORT and displayed to the user. 
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Other verifiers usually interact with a user who manually indicates ap- 
proval to continue the process or terminate+ In our case, AS/VERIFIER does 
a single pass over the axioms and then terminates. AS/SUPPORT will rein- 
voke AS/VERIFIER if the user modifies the sort definition. Thus the system 
appears interactive to the user, but the underlying model is not. 

(3) AS/PC is the translator written using YACC that converts specifica- 
tions into standard Pascal source programs. Each axiom is implemented as 
an if statement that checks on the validity of the left-hand-side arguments, 
and, if true, replaces the value by the right-hand-side expression. Since AS/ 
VERIFIER has already proven that the axiom is “Knuth Bendix,” the right- 
hand-side expression is simpler than the left and the process will eventually 
terminate at some constant terms. 

(4) PC is any standard Pascal compiler. At this point, the specifications 
have been converted to standard Pascal, and any comparable compiler can 
be used for compilation and execution. 

The basic SUPPORT environment has been in use since 1986, and the AS* 
extension, ASPascal, has been operational since the fall of 1989. More com- 
plete details of its implementation are described elsewhere [il. 

3. USING AS* 

The initial implementation of AS* has been designed as a mechanism to 
enhance existing Pascal source programs. Figures 3 through 6 represent a 
simple example of how such a system could be used. 

In Figure 3, a simple circuit of and and or gates is specified using the AS* 
formalism. The sort swifch is defined to represent one type of relevant gate 
with ~onst~ctors andg and org representing primitive gates and the operation 
&Type returning the gate type of its argument. 

The sort circuit consists of primitive wires (constructors high and low 
standing for high and low voltages which represent the conditions true and 
false), a constructor build that constructs complex circuits out of simpler 
circuits, and one operation print that determines the output characteristics of 
a circuit. Operations mux and min are specified to be local functions used 
within the sort circuit. 

The main body of this sample program simply builds a binary circuit of 
(218 - 1) primitive gates and then computes the output value of the resulting 
circuit. 

Figure 4 represents a first approximation of the new feature in standard 
Pascal. It was created by designing a source program based upon the initial 
sort prototype of Figure 3. It should be clear from Figures 3 and 4 that the 
algebraic model of specification is closely related to an applicative (i.e., func- 



354 MARVIN V. ZELKOWITZ AND SERGIO CARDENAS 

program main (input,olltpllt); 
sort svitcb Is 

constructor 
andg; org; 

operation SvTypo: svltcb -> integer Is 
uia 
SvType(andg) = 1; 
svIype(org) = 2; 

rnd; 

end; 

sort clrcult Is 
constructor 

lov; high; ~prlmltlre vlres) 
build: svltch, circuit, clrcult; ~complrx Circuits) 

operation aln: integer, Integer -> Integer is 
pr10m 
mln(A,B) = if AcB then A else 8; 
end; 

operation max: Integer, Integer -> Integer Is 
oXl0m 
max(A,S) = If A>B then A else 6; 
end; 

operation print: circuit -> Integer is 
ar1om 
prlnt(lov) = 0; 
prlnt(hlgb) == 6; 
prlnt(build(T. A, B)) == 

if (SvType(T)=S~~e(andg)) 
then mln(prlnt(A,),print(B)) 
else q ax(prlnt(A,),prlnt(B)); 

end; 
end; 

tar 
gataX : circuit; 
1:lnteger; 

begin {Create a basic gate vlth tvo Inputs) 
gateX := bulld(org, high, 10~1; 
vrlteln('HIGH or LDW',prlnt(gateX)); 
1:=0. , <create a binary tree of gates) 
vhile lcl? do 

begin 
gateX := bulld(aB4g. gateX, gateX); 

l:=l+l' , 
end; 

vrlteln('DOX6',prlntQateX)); 
,Tld. 

Fig. 3. Sample specification 
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?rogran B&111 <inpnt.output): 
tme gatetype=tandg, org. high, low): 
circuit = “gate; 
gate= rword 

circuit: 6stetypr; 
virel: circuit; 
vlrol: circuit 
end; 

function getclrcuit(circuitt~U:gst*tfpe): clrcult: 
Far r: circalt; 
be@ 
nev(x) ; 
x-.clrcuit :f clrcalttype; 
getcircuit := x 
end; 

function build(ci~CnittTpe:gotet~e; A, 8: clrCult):circult: 
rar s:circult; 
begin 
x:f grtclrcoit~clrcu~t~~e~: 
f.wlrel := A; 
P.wlre2 := B; 
build := x 
end; 

function mln~A,R:integer): Integer; 
begin 
if A-3 then min:=A else min:=6 
end; 

function max(A,B:lnteger): integer; 
begfn 
lf MB thtm mu:=& else ntax:=6 
and; 

function prlatlx:circult):intrgrr; 
begin 
case 2.clrcoit of 
high: print:= 6; 
lov: prlnt:=O; 
sndg: print:= minlprfntW.virel) ,priatfx*.wire?)> ; 
org: print:= nar~print~r~.wirrl~,prlnt~x~.vire2~~ 
end Ices.> 
end; Cprfnt) 

rsr 
g&tax : circuit; 
1: integer; 
highgate, lougate: circuit; 

regln %reate 8 basic gate vith two inpats 
Mghgato := getc5rcn~t(~ig~~; 
lovgate := getcIrcult(lov) ; 
g&*x := bulld(org. hlgbgate. lovgete.t>; 
uriteln(‘HIGH or LW’,print(gateX)); 
i:=G- * icrente a blnar;r tree al gates) 
while iclf do 

brgln 
(IrteX := bulldfnndg, geteX, grtex); 
1:=1+1; 
l ud; 

vrit~lnf'WINE+.prfnt~~~); 

Fig. 4. Initial Pascal version of sample specification 
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functlon circuitgrlnt(argl: circuit): intrpr; 
bbgm 

If l rgl-.ty = clrcult_bulld_tq then 
if ~rritch_~r~argl~.circult_bolld_~rgl) = rwltch_S~r(swlt.ch_andg)) 

thrn circultgrint := clrcolt_~ln(circuit~rlnt 
(ugl~.circult_bulld_~rg2), clrcultgrint(ar@l~.clrcult_bulld_ugS)) 
rlro circultgrlnt := circult_mx(clrcuitgrint 
(sr@-.clrcuit_build_~rg2). clrcult_prlnt(srgl~.clrcult_bulld_~rgS)) 

elm If l rgl*.t.ag = ClrCUlt_hlgh_tEg then 
circultgrint := 5 

elrr If srgl-.tag = circult_low_tyl then 
clrcuitgrlnt := 0 

also circult_EColl('clrcultgrlnt undefined for argument’) 
end ; 

Fig. 5. Translation by AS/PC of function print 

tional) style of programming. Operations min, max and print are almost direct 
copies of their formal definitions. The AS* model, however, greatly simplifies 
storage management. While simply defining andg, org, high, and low as con- 
structors allows for AS* to automatically build and allocate correct data struc- 
tures, the Pascal equivalent required careful deliberate design steps in order 
to implement correctly. 

In developing this initial implementation, only one change had to be made 
to the body of the Pascal program. We had to add variables for primitive true 
and false gates (e.g., highgare and lowgate) to compensate for the automatic 
generation of such gates with the formal specification of constructors andg 
and org. No other changes were made to the Pascal program. 

For those curious, Figure 5 is an example of the output from AS/PC, and 
is the source program for function print. As Figure 5 demonstrates, AS/PC 
translates operation print defined in sort circuit into the procedure name cir- 
cuit-print. This code is highly structured and is not meant to be read by most 
programmers. The user is expected to develop axioms via AS/SUPPORT and 
AS/VERIFIER and then execute the resulting program. Translation of the 
specifications into Pascal should occur directly from the sort definitions. 
Knowledge of the resulting Pascal output from AS/PC should not be crucial 
for verification of the program. 

The formal specification for print was kept simple by using a recursive 
algorithm that required for computing the value of a circuit, first computing 
the values for the components of that circuit. Using the fact that in and gates, 
the result is low if the first input is low and in or gates the result is high if 
the first input is high, regardless of the second input, Figure 6 represents an 
easy optimization to the first Pascal implementation. 
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function print(x:circult):integer; 
var clrvalue:integrr; 

begin 
case x-.clrcult of 
high: print:= 6; 
low: print:=O; 
andg: begln 

clrvalue := prlnt(x-.rirel); 
If clrvolue=O then print:= 0 

else prlnt:=prlntW.rire2) 

end; 
org: begin 

clrvalue := prlnt(x'.rlrel); 
If clrvalue=S then print:= 5 

else prlnt:=prlnt(x~.rlrr2) 
end 

end ~case~ 
end; (print) 

Fig. 6. Optimized print function 

All three versions had extremely different execution times on a SUN 3/60 
workstation, as given by the following table: 

Prototype 
Initial Pascal 
Optimized Pascal 

27.9 set 
5.4 set 
3.3 set 

The initial Pascal1 program represents about a fivefold improvement over the 
initial prototype and the simple optimized version represents almost another 
factor-of-two improvement for this simple example. This process of local op- 
timization can be continued for further refinement of the program. 

4. CONCLUSIONS 

AS* is a specification language which has been designed to aid in system 
enhancement as a prototyping and code re-use tool within the context of ex- 
tending existing source code systems. Language-independent specifications 
are defined via a term-rewriting notation and a Knuth Bendix verifier checks 
for their termination and executability. A prototype implementation processes 
ASPascal, a Pascal refinement to the AS* specification language. 

The automatic execution of an AS* specification is obviously inefficient; 
however, as a prototyping tool, quick execution is not of primary importance. 
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The previous example shows that improvement of perhaps a factor of 10 can 
be achieved by locally improving the source program. In system maintenance, 
due to the complexity of the underlying system, it might be preferable to give 
up a few percentage points of execution time for ease in understanding and 
building the desired extensions. Of obvious interest and needing further study 
is this tradeoff between ease of use and performance penalty. 

From our experience to date, development of the axioms requires an initial 
period of adjustment (which would be relatively easier for a designer familiar 
in an applicative language like LISP), but is not considered difficult. Storage 
management is considerably simpler with these axioms. However, the im- 
portant point is that these axioms provide a much greater degree of control 
over functionality and verification of the underlying process of system en- 
hancement-the crucial aspect in system maintenance. 

This system addresses many of the important specifications and code re- 
use problems that are of interest today. Specifications are formal yet exe- 
cutable, and can easily be mapped into a variety of programming languages. 
Maintenance is enhanced via tests on the existing source program. Deter- 
mining properties of specific abstract data type implementations is explicit 
and should help in the process of understanding and re-using source program 
libraries. 
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