
Evolution towards specifications
environment: experiences with syntax editors

M V Zelkowitz

Language-based editors have been thoroughly studied over the
last 10 years and have been found to be less effective than orig-
inally thought. The paper reviews some relevant aspects of such
editors, describes experiences with one such editor (Support),
and then describes two current projects that extend the syntax-
editing paradigm to the specifications and design phases of the
sol?ware life-cycle.

software design, environments, specification, syntax editors

S Y N T A X E D I T O R S

Syntax-editing (or alternatively language-based editing)
is a technique that had its beginning about 20 years ago
(e.g., Emily I) and blossomed into a major research
activity 10 years later (e.g., Mentor% CPS3).. During the
mid-1980s, major conferences were often dominated by
syntax-editing techniques 4,s. Many of these projects,
however, have since been terminated or have taken a
much lower profile. There are few widely used commer-
cial products that use this technology. Why?

This paper briefly introduces the concept of syntax
editing, describes one particular editor, and explains
some experiences in using it. It is then shown how the
syntax-editing paradigm is powerful but perhaps misap-
plied in the domain of source-program generation.

Just using a syntax editor for source-code production
does not result in significantly higher productivity. By
integrating specification generation with this source-code
production, however, the author believes that increased
productivity can be provided by making more of the life-
cycle visible to the programmer. Two extensions to the
current environment are described that apply syntax
editing within a specifications environment to provide
additional functionality over that of standard syntax
editors.

With a conventional editor, the user may insert an
arbitrary string of characters at any point in a file, and a
later compilation phase will determine if there are any
errors. With a syntax editor, however, only those choices

Department of Computer Science and Institute for Advanced
Computer Studies, University of Maryland, College Park, MD 20742,
USA.
Paper submitted: 27 August 1989.
Revised version received: 20 November 1989.

permitted by the language grammar can be inserted, and
the generation of source program and the processing of
the program's syntax are intertwined operations. For
example, for the statement nonterminal < stmt > , there
are only a limited set of statement types that are permit-
ted and only those legal strings can be entered by the user
in response to that nonterminal on the screen.

The user interface is a major component of syntax
editors. Depending on editor design, syntactic constructs
can be specified via a mouse and pull-down menus, func-
tion keys on the keyboard, or special editing prompt
commands. If the cursor is pointing to the < s t m t >
syntactic unit and the user specifies the if statement, then
the text

if < expr > then
< stmt >

else < stmt >

will replace <s t ru t> on the screen. Each nonterminal
< . . . > is considered as a single editing character and
syntactic constructs must be added or deleted in their
entirety. In essence, the programmer is building the
source-program parse tree in a top-down manner.

Pure syntax-editing is a simple macro-like substitu-
tion, and such macro substitutions exist in several con-
ventional editors. For example, Emacs and Digital's
LBE (Language Based Editor) both permit such substi-
tutions anywhere in a program. Here, however, editors
that go beyond simple substitution are being considered.
Screen layout is often specified (e.g, unparsing the pro-
gram tree to a 'pretty-printed' display), semantic infor-
mation is usually checked (e.g., variable declarations,
mixed types), and often the editor is part of an integrated
package or environment of editor, interpreter, and
debugging and testing tools.

Early on, many advantages of a syntax editor were
stated:

• Source-program generation would be efficient as a
single mouse or function key click would generate an
entire construct.

• Productivity would increase as numerous errors such
as missing begin cnd pairs could not occur and mixed
mode expressions would immediately be found by the
editor at the point of insertion. Users could more
easily use an unfamiliar language.

• Screen layout would be predefined, providing a
uniform structure to all programs.

vol 32 no 3 april 1990 0950-5849/90/030191-08 © 1990 Butterworth & Co (Publishers) Ltd 191

,, The integrated package of tools enables testing and
debugging to proceed more rapidly.

As shall be seen, the last of these reasons does indeed
seem to be true; each of the others, however, seems to
have a serious drawback as well as the supposed benefit.

As an example, the Support environment, designed by
the author, is briefly described as an instance of the
integrated syntax-editing genre 6. It has many of the
features implemented in such tools and is the basis for
the extensions to specifications described later.

Support design

Support is an integrated environment built to process the
CF-PASCAL subset of PASCAL and was used for three
years (until the course contents changed) as the program-
ming tool in the introductory programming course at the
University of Maryland. It runs on both Berkeley Unix
and IBM PC systems.

Design
Major features of Support include the following.
Text input Support uses both the command and func-
tion key mechanisms for input. If the cursor (represented
by reverse video) covers the < strut > unit, a menu at the
bottom of the screen gives the available choices. For
example, to insert an if statement, either a response of .2
or depressing function key 2 (on the PC keyboard) will
insert the if construct.

Support also permits textual substitution for any syn-
tactic unit. A user can type in an arbitrary line of char-
acters, and an internal LALR parser builds the subtree
for that construct. If the root of that subtree is permitted
by the current cursor position, then it is attached to the
program tree at that cursor position.

Using either input mechanisms, invalid syntax can
never be entered. Using the menu for input permits only
correct responses, and, for textual input, if the parser
cannot resolve the typed-in text to a correct syntactic
unit, an error is displayed and the program is not modi-
fied.
Windows Horizontal windows dividing the CRT screen
are the major interface with the user. Each tool within
Support controls its own window, and from two to four
windows will typically be displayed at any one time.
Tools Various tools within Support aid in program
design and development. The relationship among pro-
cedures in a program is handled by the Design window;
an interpreter executes partially developed programs and
includes features such as variable and statement tracing
and breakdown monitoring. Statement trace and state-
ment coverage windows are part of this structure. Data
are displayed via the variable trace and the run-time
display windows.

As an extension to the textual input mode, a small (i.e.,
size of screen) text editor called the Character Oriented
EDitor (or COED) was implemented. Users insert or
modify arbitrary sequences of characters in this window,
have the text processed by the LALR parser mentioned

Table 1. Background of students

Semester 1 Semester 2

First university computer course (%) 73 82
Took this course previously (%) 12 9
Took high-school course (%) 59 55
Never previously used computer (%) 26 24
Own microcomputer (%) 49 51

above, and then have the text inserted into the program
tree at the appropriate place in the program. The user
can also pull an arbitrary section of program text into
this window for modification. This also gave an easy cut-
and-paste feature and the ability to move sections of
code around in the program as a means to address some
of the syntax-editing deficiencies that turned up.
Language and screen displays The grammar processed
by Support (e.g., CF-PASCAL) is defined via an external
data file that defines the syntax, some semantics, and
screen layout. This feature turned out to be a major
factor in allowing Support to be extended for other
applications.

Experiences
Support was used from 1986 until 1989 in Computer
Science I by approximately 200 to 300 students each
semester. During the first two semesters data were
collected from the 543 students that enrolled in the
course. The background of the students is summarized in
Table 1. As shown, about 75% had previous experience
with programming and about half own their own
computer.

Based on a 1 to 5 rating scale (1 = poor), students who
owned their own computer (and presumably had more
experience in programming) rated satisfaction with Sup-
port lower than those without their own computer (2.8 to
3.2). More revealing, students rated Support's text-edit-
ing capabilities much lower than those of an IBM main-
frame also used during the semester (2.7 versus 3.7 for
one semester, 3.3 versus 3.8 for the other). The author
believes that users with experience with general text
editors felt more restricted by the syntax-editing para-
digm. On the other hand, novices with no previous
experience felt aided by such restrictions.

Students using Support rates its debugging capabilities
higher than those available on the IBM mainframe (3.8
versus 3.1 for one semester, 3.0 versus 2.9 for the other).
The PC system was also rated as more available com-
pared with the mainframe (3.9 versus 2.8 for one semes-
ter, 3.0 versus 2.9 for the other). Other results are pre-
sented elsewhere 7.

In summary, syntax editing seems to be viewed as a
restriction on program development, but the integrated
development and testing environment appears to be
desired. A tool that simply develops source text does not
seem to produce a large productivity increase. The
results here are comparable to those found with other
editing environments.

192 information and software technology

Retrospective

After several years of use and several redesigns and
enhancements based on user needs and experiences, the
four advantages claimed for such editors can be
addressed more clearly. As shall be seen, for most of the
advantages, there are some serious problems to over-
come.

Efficient generation of source programs
For entering much of the text of a program, this is true,
but unfortunately there are enough complications to
slow down experienced programmers. For example, the
PASCAL if statement has an optional else clause. Should
the editor automatically insert the else and have the
programmer delete it if not desired, or should it not be
included with the corresponding need to add it if wanted?
Support chose the latter model, but in either case the
editor will be wrong about half of the time.

In Support 's case, the screen displays no information
about optional syntactic units, so the user needs to know
where such units are located. There are two modes of
moving forward through a program: the --* key moves to
the next syntactic unit displayed on the screen, while the
enter key is similar but will insert any optional phrases
between displayed syntactic units as it moves. In POE's
case s the opposite occurs. All optional units are dis-
played initially, and the user must delete them if not
specifically wanted.

A more serious consequence is that syntactic units are
added top-down, but programmers usually think of
algorithms as sequential actions. For adding new state-
ments, there is not much difference between sequential
insertion and top-down development of the BNF:

< s t m t l i s t > ::= < s t r u t > ; < s t m t l i s t > I
< strut >

as both generate statements in a left-to-right manner.
Insertion of expressions such as A + B * C , however,
essentially means to build the tree in postfix order (e.g.,
..... ", "A" , "*", "'B", "C") , which is not the natural
sequence.

In some environments, such as C M U ' s Ganda l f s, this
top-down linking to the program's parse tree is embed-
ded in the user interface; in Support 's case, however, the
LALR parser mentioned earlier was added. Straight text
will be parsed and entered in its true infix format. The
COED editor within Support was a valuable extension
that permitted programmers to add small sections of
program text (up to 22 lines of input) without violating
the basic top-down nature of program generation in a
syntax editor.

Early detection of syntax and semantic errors
While true, this is not much of a benefit if its conse-
quences are considered. Experienced programmers
generally do not make many syntax errors as they enter
text, although novices do. (This might explain Support 's
greater popularity among non-programmers than among
programmers.)

There are cases where this supposed benefit is actually
a hindrance. I f an experienced programmer thinks of a
sequence of code to enter and makes an error in input, a
standard editor will ignore the error and continue enter-
ing data. After finishing entering code, the programmer
can fix the earlier problem. With a syntax editor, how-
ever, only correct syntax can be entered. The system will
usually halt and beep until corrective action is taken.
Thus there is a disruption in a train of thought where
some deep semantic issue needs to be put aside (and
forgotten?) to fix some simple syntax.

Looking at both of these reasons, as languages get
more complex (e.g., ADA) syntax editing might make
more sense, but in relatively simple languages, like PAS-
CAL and C, there seems to be few benefits. There is little
experience with such editors for complex languages. Arc-
turus l° is a prototype of an ADA editor, but it was not
made commercially available.

Screen layout is predefined
This is also true, but again the predefined layout might
not be what the programmer wants in all cases. It cer-
tainly helps the novice generate nicely indented listings,
but as the programming task grows more complex, the
number of special cases increases.

The placement of comments seems to pose a problem
with all such editors. Comments are generally outside the
language's defining BNF. Where do they appear in the
listing? In Support they are tagged before the defining
nonterminal. This works in some cases, but not all.

Uniform debugging and testing tools
This again is true, but a syntax editor is not needed for
this feature. An integrated framework and data reposit-
ory are needed for a source program. The current interest
in CASE (computer-aided software engineering) tools
exemplifies this, and Support is simply a CASE tool with
a syntax editor for a base.

In summary, the experiences with Support are by no
means unique and closely mimic experiences others have
had with syntax editors. For example, Mentor, initially
developed about eight years earlier at INR1A, has had a
similar pattern of development and use t~. Similar to
experiences with Support:

• Novices used menus but experienced programmers
rarely did.

• Experienced programmers wanted the full-screen
Emacs editor for textual input and modification (pro-
viding functionality similar to the C O E D editor des-
cribed here) using automatic parsing and unparsing of
the Mentor input.

t Switching between Mentor and Emacs was difficult
due to the inherent problems in placement of
comments. On the other hand, Mentor was a powerful
source-code maintenance system due to the integ-
ration of many program analysis tools for obtaining
semantic information about a program. But just as in
Support 's case, such tools are mostly a function of

w~l 32 no 3 april 1990 193

Mentor being an integrated environment and not
simply an editor.

In conclusion, the drawbacks seem to be as serious as the
advantage in syntax editing, which probably explains
their lack of growth and popularity since the early '80s.
As a final comment, source-code development is often
stated as 15% of total life-cycle costs. Even if the editor
reduced coding time to zero, that would still mean a
productivity improvement of only 15%. Industry is look-
ing for more than that.

S P E C I F I C A T I O N S

The previous discussion indicates that while syntax edit-
ing of source programs is a powerful technique, it proba-
bly has minimal effect on programmer productivity. As
requirements, specification and coding take up to 75% of
the costs to develop a system, however, improving those
phases of the life-cycle might have a more dramatic
impact on productivity. In addition, a mechanism to
improve the flow between specifications to design to code
would probably lead to fewer interface errors, hence
decreasing the effort needed in testing and further
increasing improved productivity.

For coding source programs, there are several pro-
gramming techniques: procedural languages (e.g., PAS-
CAL, C, ADA, COBOL), applicative languages (e.g., LISP,
PROLOG), object-oriented programming (e.g., SMALL-
TALK, C+ +), etc. Their relative strengths and weak-
nesses for specific applications are fairly well established.
For specification of a program, there are also several
models (e.g., axiomatic, denotational, algebraic, func-
tional); however, as yet there is no clear consensus as to
which is most effective and how each applies to different
application domains. This is still very much an open
research question, with many ongoing projects studying
various specification strategies.

Given the powerful syntax editing paradigm and its
relative inability at improving source-code generation,
the author decided to investigate it within a specification
domain. After all, most specification languages have a
syntax and semantics more complex than most program-
ming languages, and some anecdotal data do seem to
indicate that programmers would prefer syntax editors
for sufficiently complex languages.

As stated previously, Support processes a language
defined by an external grammar file, and it is constructed
as a set of independent tools, each writing to virtual
windows that are mapped to the actual computer screen.
By modifying this grammar and by adding new support
tools, Support becomes an interface 'shell' for a series of
integrated environments. It can be used as a language
processing meta-environment by providing the capabili-
ties to read input, parse text, build parse trees, and
manipulate multiple windows simultaneously. Using
Support, two such extensions were developed that are
described here: AS* (based on algebraic specifications)
and FSQ (based on functional specifications).

(I) sort sequence/sort something/is
(2) constructor
(8} epsilon;
(4) cons : something, sequence;
(5) operation head : sequence -~ something is axiom
(6) head(epsilonJ =---- f;
(7) headCeons(X, r)) = = X,.
(8) operation count : sequence -~ integer is axiom
(9) count(epsilon) - ~ - O;
(lo) count(ons(X, Y)) = = I +count(r);
(11) end;

Figure 1. Example of sequence specification

AS* for executable specifications

An algebraic specification is a series of axioms that link
together the operations that can be applied to an abstract
data type. As an extension to the Support environment, a
specifications extension based on these algebraic axioms
has been defined.

An AS* specification contains three features:

• a set of sort names that define new abstract objects and
their constructors

• a signature, which defines a set of defined operations
for manipulating the abstract objects

• a set of oriented equations (or axioms) that relate the
defined operations and constructors to each other

Figure 1 gives a simple example of a specification for a
sequence. Line (l) specifies that a class of objects of sort
(i.e., type) 'sequence' is being defined and indicates that
the new object will require as a parameter a sort 'some-
thing' that will be specified in a later binding. A generic
class of sequences that will be instantiated by this later
binding to 'something' is being defined. Lines (2)--(4)
define the two constructors needed to create an object of
this sort: 'epsilon' to return the empty object of sort
'sequence' and 'cons', which takes an element and a
sequence and returns a new sequence with the element in
it. The functionality of each constructor is given after its
name with the sort name 'sequence' implied as last (e.g.,
'epsilon' returns an empty 'sequence' and 'cons' requires
a 'something' and a 'sequence' and returns a 'sequence'.)
'Epsilon' initializes objects of this sort and 'cons' creates
new complex objects.

This object is manipulated by means of a set of defined
operations. In this simple example, operations 'head' and
'count' are given with their signatures on lines (5) and
(8). They are defined by the rewrite rules (axioms) on
lines (6)--(10). 'Head' says to return the element last
included into the sequence by the 'cons' function, while
'count' returns 0 for 'epsilon' (i.e., an empty list) or l plus
the size of any non-null list with the first element
removed. As can be seen, the formal definitions of each
function includes recursive algorithms for computing its
value by reducing any complex object to a finite set of
applications of the constructor functions. The '?' on line
(6) is equivalent to an error condition, and the implemen-
tation stops execution and issues an error message when

194 information and software technology

this occurs. (That is, it is illegal to take the 'head' of an
empty list.)

For example, the list < X , Y , Z > is created by the
construction:

cons(X,cons(Y,cons(Z,epsilon)))

and the operation 'count ' uses this construction, as in:

count (< X,Y,Z >) =
1 + count(< Y,Z >) ---
1 + 1 + c o u n t (< Z >) =
I + i + 1 + count(< epsilon >) =
! + 1 + 1 + 0 =
3

The use of the Knuth--Bendix algorithm ~2 defines a
proof of adequacy of the resulting algebraic equations by
showing the equivalence of supposedly equal terms to the
same ground (i.e., constant) terms. As the Knuth--Ben-
dix algorithm is based on an ordering transformation
from one term to a 'simpler' term, however, the algor-
ithm defines an operation that can be 'executed' and
proven to terminate. Therefore, any set of axioms that is
'Knuth--Bendix ' can be transformed mechanically into
a series of transformations that can be executed in some
programming language, in this case PASCAL.

Similar to Larch and Larch/CLU ~3, AS* specifications
are independent of the underlying programming lan-
guage and must be defined relative to any concrete lan-
guage. Libraries of generic specifications can be used to
form the basis of a reuse methodology where the generic
specification is refined to an explicit specification in a
specific programming language by binding the generic
sorts to specific programming language types. In this
case PASCAL is considered as the implementation vehicle,
so to create ASPascal, the extension to PASCAL that
contains AS* specifications, a link between a PASCAL
object and an AS* sort must be indicated.

An explicit specification is created by a refinement of a
generic specification via the use clause, as in:

sort intsequence is
use sequence [integer]

end;

which refines the generic sort 'sequence' given earlier and
indicates that a new sort 'intsequence' is created by
modifying 'sequence' with a binding of PASCAL integers
to the free sort 'something' of Figure I. The operations
'head' and 'count ' in 'sequence' become 'intsequence_
head' and intsequence_count' in the new sort, although
the actual mapping to their new names is handled auto-
matically and of no concern to the programmer.

The interface assumption is made that an explicit sort
specification

sort newsort is ...

is equivalent to the PASCAL type declaration

[AS/Support ~ d s ~ ~ p i l e s

I c,,,s \ / / \

Specification PASCAL source Executable
file file file

Figure 2. AS* toolset

type newsort = ...

The primitive PASCAL scalar types (char, Boolean,
integer, real) may all be used in abstract sort definitions,
and any explicit sort may also be used in a refinement.
Thus

var A: intsequence;

simply creates a PASCAL variable A, which is of type
'intsequence'.

The power of this system is in alternative bindings. For
example, real sequences could be created as

sort realsequence is use sequence [real] end;

Similarly, a sort such as a 'book' could be used to create
a type 'library' as

sort library is use sequence [book] end;

As stated earlier, syntax editors might have greater use
with more complex source languages, and the integrated
tool set forms an effective basis for a CASE tool. There-
fore, a prototype AS* system was built on top of the
existing Support environment. Figure 2 represents this
initial system that has been constructed. The four com-
ponents are as follows.

AS/Supgort
AS/Support is a modification to the Support environ-
ment described earlier, which provides text-editing capa-
bilities for creating specifications. It is also the control
module that invokes the verification tool. AS/Support
first checks axioms within operations for syntactic
consistency. Because of the language-based design of the
underlying environment, only syntactically correct
axioms with the syntax

operation_name(< expression_list >) = = < expres-
sion >

can be entered by the user. After the user builds a sort,
AS/Support formats the sort syntax into an appropriate
format suitable for PROLOG and invokes AS/Verifier as a
subprocess. AS/Verifier reads these axioms and checks
executability. After passing all executability checks
through AS/Verifier, the user may save the ASPascal
program in a library for later translation by AS/PC or
for later incorporation into another ASPascal program.

vol 32 no 3 april 1990 195

In case of failure, the causing axiom, if it can be deter-
mined, is highlighted to allow the user an interactive
mechanism to change the specifications.

AS/Verifier
AS/Verifier, a PROLOG program, is called by AS/Support
and verifies the set of axioms via the Knuth--Bendix
algorithm. In general the axioms need to be a noetherian
term rewriting system, and, if possible, AS/Verifier
makes this determination. Of course, as the general
problem is undecidable, in some cases the results are
inconclusive. In any case, after one pass through the
axioms, AS/Verifier will either succeed or indicate which
axiom is currently failing so that the user may modify the
definition and try again. As stated previously, if any
error is found, an appropriate message is relayed back to
AS/Support and displayed to the user.

For example, the 'sequence' definition of Figure l will
be converted to the following clauses and passed to AS/
Verifier:

a s~so r t (sequence, [epsilon, cons, head, count]).
function (1, epsilon, [], sequence).
function (2, cons, [something, sequence], sequence).
function (3, head, [sequence], something).
function (4, count, [sequence], integer).
axiom (5, head (epsilon), "?").
axiom (6, head (cons(x,y)),x).
axiom (7, count (epsilon),0).
axiom (8, count (cons(x,y)), 1 + count(y)).

(as*--sort is the internal name for a new 'sort'.) The
Knuth--Bendix algorithm either shows convergence of
the axioms or indicates additional axioms that are
needed; it may not indicate, however, when sufficient
axioms have been added in the case of not converging
rapidly enough (the usual problem with undecidability
results). In this case, AS/Verifier does a single pass over
the axioms and then terminates, indicating where the
problem is with the axioms.

AS/PC
AS/PC is the translator, written in YACC, that converts
specifications into standard PASCAL source programs.
The code generally consists of a sequence of if state-
ments, each checking the validity of the left-hand side of
the axiom before executing the Knuth--Bendix reduc-
tion.

PC
PC is the standard system PASCAL compiler. At this
point, the specifications have been converted to standard
PASCAL, and any comparable compiler can be used for
compilation and execution.

Specifications appear in programs as function calls in the
host programming language. To translate such calls, it is
necessary to determine, for each function reference,
which explicit specification is being used. Thus a refer-
ence to 'head(thing)' where 'thing' is an 'intsequence' is

translated to a call to 'intsequence_head(thing)', while
'head(realthing)' will result in 'realsequence_head(real-
thing)' for variable 'realthing' of sort 'realsequence'.
(The details of the AS* implementation appear else-
wherel4.)

It should be clear that this translation does not result
in a particularly efficient implementation; as a specifica-
tions or prototyping tool, however, efficiency is not its
overriding purpose. The goal is to provide easily a cor-
rect extension to an existing system and to provide a
verification tool, e.g., an oracle, that can be used as a test
against an eventual efficient solution to the problem.

F S Q for software reuse

In the previous section, AS* was described as an environ-
ment based on an algebraic specification model for pro-
gram specifications. Support is also being applied using
the functional correctness model 15. In this model, both a
program and a specification are viewed as functions, and
techniques have been developed to determine if both
represent the same transformation of the data. This
model of program development is briefly summarized
and how Support is modified to aid in this process is then
demonstrated.

Functional correctness
A specificationfis a function. A box notation [...] is used
to signify the function that a given string of text
implements. If character string ct represents a source
program that implements exactly f , then [ct] -- f , and it is
stated that ct is a solution tof .

Sequential program execution is modelled by function
composition. If a sequence of statements s = s~;s2; ... s,,
then Is/ = [sj]o ... o [sn] = [s,] (...)[sj])) ...). Using
techniques from denotational semantics, each statement
s is a function from a program state to another state.
Each program state is a function from variables to values
and represents the abstract notion of data storage. Sym-
bolic trace tables are used to derive the state functions
for if, while, and assignment statements.

Program design is accomplished by converting a speci-
fication function f, written in a LiSP-like notation, into a
source program at, and then showing that [~] -- f . The
specification f is called the abstract function and the
program at the concrete design. Given this functional
model, the basic theorem for functional correctness ~6 can
then be proved. Program p is correct with respect to
specification func t ion f i f and only i f f ~ [p].

This model can be applied to three separate activities:

• Program verification. I f f is a function and if p is a
program, determine if they are the same function, i.e.,
[p] = f , or more g e n e r a l l y f ~ [p].

• Program design. If f is a function, then develop a
program p such that [p] = f.

• Reverse engineering. If p is a program, then find a
function f such that [p] = f

196 information and software technology

' x ' < ' y ' ->a:='x'~b:='y';c:='x';
n o t (' x ' < ' y ') - > a : = ' x ' ; b : = ' y ' ; c : = ' y ' ;

, i .

Statement I F u n c t i o n a l s p e c i f i c a t i o n

a :---- ~ X ~ • •

b := ' y ' . .
i f a < b t h e . .

IT->a:='x '
iT->b:= 'y '
[a < b ->c:=a;
i n o t (a < b) ->c:=b;

I I I l l

begin

d - ' = c

end.

Figure 3. FSQ derived meaning for program,fragment

F S Q extensions
The use of existing program fragments when developing
a new program is one technique being studied for
improving programmer productivity. Often, however, it
is first necessary to determine exactly what these pro-
gram fragments or procedures do. As formal specifica-
tions are rarely used, and documentation is generally
quite inadequate, programmers are reluctant to use an
existing procedure written by another f r o m some pre-
vious project since the mental effort to truly understand
that procedure is quite high.

To study this problem, the Support environment was
extended with a new tool, Function Specification Quali-
fier (FSQ), to aid this process of determining the specifi-
cations for an existing component of a system. FSQ- I, a
first prototype of this tool, is described.

FSQ is an additional tool to the basic CF-PASCAL
programming environment in Support and works as
follows:

• A programmer either builds a program using Support
(and hence uses FSQ as a verification tool) or else
reads one from the file system using the LALR parser
internal to Support to build the parse tree (making
FSQ a reverse engineering tool).

• The cursor is moved over the section of program that
needs to be verified and FSQ is invoked via the com-
mand fsq.

• FSQ symbolically executes each statement and deter-
mines its meaning. This is relayed back to the user,
who either accepts this meaning (e.g., its specification)
or manually simplifies it to another meaning.

• The derived meaning is stored in the Support syntax
tree. If any part of a program is symbolically executed
and already has a derived meaning, then that meaning
will be used without further analysis. This meaning
can then be carried along as part of the file system
repository information on that object. Future users of
that object will not have to derive the meaning again.

Over time, more and more procedures in the system.
repository will have such derived meanings, making it
more efficient to reuse such objects frequently.

Figure 3 shows a sample execution of FSQ. The top
meaning window shows the desired result from the
execution, the middle program trace window indicates
each partial result, and the bot tom window highlights the
section of the source program that is under study.

FSQ executes over the covered portion of Figure 3 as
follows:

• (1) For a: = 'x' the system derives the conditional T
a: = 'x ' . (This is similar to the LISP ' cond' and means
'True implies a: = 'x ' . ')

• (2) For b: = 'y ' the system derives the conditional T --.
b: = 'y'.

• (3) For c: = a the system derives the conditional T --,
C." = a .

• (4) For c: = b the system derives the conditional T
C." ~ b .

• (5) For the if statement, FSQ combines steps (3) and
(4) to produce:

not (a < b) --, c: = b;
(a < b) ~ c : = a

• (6) Finally, for the entire sequence, FSQ combines the
results from steps (1) through (5) to produce the func-
tion described in Figure 3.

Note that this process is simpler than general program
verification (and potentially less accurate) as the pro-
grammer can override the system and insert arbitrary
definitions. For example, in the program of Figure 3, the
user, in the process of deriving the meaning of the if
statement at step (5), could have either substituted the
correct simplification

c: = min (a,b)

vol 32 no 3 april 1990 197

or any other correct or incorrect expression for the if.
Thus the user must trade off between 'absolute' but
extremely difficult correctness using a verifier and a
system like FSQ, which performs efficient, but possibly
imperfect, verification. The tool is truly interactive, with
FSQ performing all the tedious bookkeeping procedures,
and by having the user required provide for the creative
program derivation activities. This avoids the general
undecidability issues of general verifiers and permits the
data-intensive functional verification mechanism to be
used practically.

C O N C L U S I O N S

In this paper the basic features of syntax-directed editors
have been described and possible reasons why such
editors have not become more popular outlined. The
author believes that their benefits do not increase pro-
ductivity sufficiently to compensate for their deficiencies.
Source-code generation, although labour intensive, is not
a major cost factor in system development.

However, syntax editors can provide a consistent
interface when system specification is integrated with
source-code generation. To experiment with this, two
specification projects have been described as extensions
to an existing PASCAL development environment. In
these extensions both algebraic specifications and func-
tional correctness models of development were applied
as extensions of automated tool support. Further work is
needed to test the eventual applicability of this form of
environment.

A C K N O W L E D G E M E N T S

This work was partially supported by Air Force Office of
Scientific Research grant 87-0130, Office of Naval
Research grant N00014-87-K-0307, and NASA grant
NSG-5123, all to the University of Maryland. Indivi-
duals who have contributed include: for Support: Bonnie
Kowalchack, David Itkin, Jennifer Drapkin, Michael
Maggio, and Laurence Herman; for AS*: Sergio Antoy
(of Virginia Tech), Sergio Cardenas, Paola Forcheri and
Maria Teresa Molfino (of I.M.A., Genoa, Italy), Stuart
Pearlman, and Lifu Wu; and for FSQ: Victor Basili and
Sara Qian.

R E F E R E N C E S

1 Hansen, W J 'User engineering principles for interac-
tive systems' in Proc. Full Joint Comp. Conf. Vol 39
(1971) pp 523-532

2 Donzeau-Gouge, V, Kahn, G, Huet, B, Lang, B and
Levy, J 'A structure assisted program editor: a first

step towards computer assisted programming' in
Proc. Int. Computer Symp. North-Holland, Amster-
dam, The Netherlands (1975)

3 Teiflebaum, T and Reps, T 'CPS: the Cornell Program
Synthesizer' Commun. ACM Vol 24 No 9 (1981) pp
563-573

4 Proc. ACM SIGPLAN Symp. Language Issues in
Programming Environments Seattle, WA, USA (June
1985)

5 Proc. ACM SIGSOFT Practical Software Develop-
ment Environment Conf. Pittsburgh, PA, USA (April
1984)

6 Zelkowitz, M V 'A small contribution to editing with
a syntax directed editor' in Proc. ACM SIGSOFT
Practical Software Development Environment Conf.
Pittsburgh, PA, USA (April 1984) pp 1-6

7 Zelkowitz, M V, Kowalehaek, B, ltkin, D and Her-
man, L 'A support tool for teaching computer pro-
gramming' in Fairley, R and Freeman, P (eds) Issues in
software engineering education Springer-Verlag, Ber-
lin, FRG (1989) pp 139-167

8 Fischer, C, Pal, A, Stock, D, Johnson, G and Mauney,
J 'The POE language-based editor project' in Proc.
ACM SIGSOFT Practical Software Development
Environment Conf. Pittsburgh, PA, USA (April 1984)
pp 21-29

9 Habermann, N and Notkin, D 'Gandalf. Software
development environments' IEEE Trans. Soft. Eng.
Vol 12 No 12 (December 1986) pp 111%1127

10 Standish, T and Taylor R, 'Arcturus: a prototype
advanced Ada programming environment' in Proc.
ACM SIGSOFT Practical Software Development
Environment Conf. Pittsburgh, PA, USA (April 1984)
pp 57-64

11 Lang, B 'On the usefulness of syntax directed editors'
in Proc. IFIP Workshop on Advanced Programming
Environments Trondheim, Norway (June 1986) pp
45-51

12 Knuth, D and Bendix, P 'Simple word problems in
universal algebras' in Computational problems in
abstract algebra Pergamon Press, New York, NY,
USA (1970) pp 263-297

13 Wing, J 'Writing Larch interface specifications' A CM
Trans. Prog. Lang. Syst. Vol 9 No 1 (1987) pp 1-24

14 Antoy, S, Forcheri, P, Molfino, T and Zelkowitz, M
'Rapid prototyping of system enhancements' in Proc.
1st Int. Conf. System Integration (April 1990)

15 Gannon, J D, Hamlet, R G and Mills, H D 'Theory of
modules' IEEE Trans. Soft. Eng. Vol 13 No 7 (July
1987) pp 820-829

16 Mills, H D, Basili, V R, Gannon, J D and Hamlet, R G
Principles of computer programming: a mathematical
approach Allyn Bacon (1987)

198 information and software technology

