
Compute, Lain ua,~cs \ o l 6. pp 139 to 153. 1981 00~D-0551 S l i)I(l~q- i<$ d 2(t (;
P r ln lea in Grea t Bri tain All rights reserved (~p~rzg]:l ~ 19~I Pcrgam~q/ P r e ~ I. d

I M P L E M E N T A T I O N OF L A N G U A G E
E N H A N C E M E N T S *

NIARVIN V. ZELKO\VITZ 1'2 and JAMES R. LYLI~: ~

~Department of Computer Science, Universit 3 of Maryland, College Park. MD 20742 and
"-Institute for Computer Sciences and Technolog 3 National Bureau of Standards. Washington. DC. U,S.A.

(Rt'{ewed 15 April 1981: rcIisi,n re~cired I7 June 1981~

Abstract--Data abstractions have been proposed as a mean,, to enhance program modularity.
The implementation of such ne~ features to an existing language is typically handled bx either
rewriting large portions of an existing compiler or by using a preprocessor 1o translate the
extensions into the standard language. The first technique is expensixe to implement while the
latter is usuall 3 slov, and clumsy to use. In this paper a data abstraction addition to PL 1 >
described and a hybrid implementation is gixen. A minimal set of primitive features are added to
the compiler and the other extensions are added via an internal macro processor that expand, the
ne~ syntax inlo the existing language.

Compiler design Data abstraction Language extensions Specifications

1. INTRODUCTION

PROGRAMMING language design is by no means a dead issue. As people use various
compilers, new and different features are cont inua l ly desired. This enhancemen t process.

usually' miscalled main tenance , often costs more than the original development of the
product itself. Thus most compilers con t inue to e v o b e as their user communi t i e s expand
and as they are used on new and different applicat ions.

In addi t ion, knowledge abou t p r o g r a m m i n g is changing. Such topics as s t ructured
p rogramming , encapsula ted data types, and p rogram verification are all recent develop-

merits. While these are often incorpora ted as features in new languages and compilers.
there is also a desire to add related features into existing compilers and languages so that
p rog rammers are able to use them on current projects.

This paper describes a data abs t rac t ion addi t ion to P L 1 that adds the protect ion of

abstract data types yet still retains the basic PL 1 p r og r a mmi ng style. The implementa-

t ion of these extensions as well as some results using them in a s tudent env i ronmen t ~s
given.

The problem, therefore, is how to extend current compilers to accept these new tech-

niques. The usual approach towards data abs t rac t ion has been to design and build a new
language having these ideas embedded in the semantics of the language [1]. There is no
way to truly use abstract data types in the more c o m m o n l y used languages. F O R T R A N
has no user types at all and P L 1 has a s t ructure declarat ion that is only an approxi-
mat ion of a type. While Pascal has a type declarat ion, it permits any user of the type to
also access the componen t s of variables of that type.

The major p rob lem with designing new languages is that the result ing languages are
no t F O R T R A N . C O B O L , or to a l imited extent. PL, 1 or Pascal. Thus most of these

languages have l imited visibility and usefulness outside of their deve lopment enviror>
ments. The s i tua t ion with the new Depa r tmen t of Defense language Ada may be differ-
ent" however, the complexi ty of the language means that the first qual i ty compilers are
several years away.

An al ternat ive approach can be achieved by the use of preprocessors to extend existing
languages. A language like Pascal or PL: I as the desired primitives, and good programs

* Research supported in part by' Air Force Office of Scientific Research grant F49620-80-C-001 to the
Unixersity of Maryland. Computer time provided in parl by the Computer Science Center of the Unixersity ,:~f
Maryland.

139

140 MARVIN V. ZELKOWITZ and JAMES R. LYLE

can be written in these languages if they are used correctly, much like good structured
programs can be written, although with some difficulty, in FORTRAN. Thus one can
design an extension to PL/I or Pascal which enforces good data abstractions and then
use a preprocessor to translate the program into proper PL/1 or Pascal for compilation
and execution. The PL/1 extensions, described in Refs [2, 3]. use this approach.

There are two problems with this last process. One is that the compiler is always
processing a program different from the program written by the programmer. In most
cases, error messages, diagnostics and output will be oriented towards the preprocessor
output that was compiled and not the programmer's source program input. This usually
means that the programmers must often carry two program listings--input and output
from the preprocessor. Given an error condition during execution, the programmer finds
the place of the error on the preprocessor output listing, and then reverse translates it
into the original source input language--a most cumbersome process. While it is possible
to alter the compiler somewhat to account for this, the procedure is not easy since the
compiler has no knowledge about the preprocessor input language.

A second drawback to this approach is the overhead and complexity involved. The
preprocessor must read, parse and process the entire program and output a new pro-
gram, which again gets read. parsed and processed by the compiler--a slow and redun-
dant step. The user must invoke several system commands to accomplish this. This
added cost and complexity often gets in the way of its use. While the extensions described
in [2] were efficiently implemented, the syntax depended very heavily on P L 1 pointer
variables and so the full protection against improper usage of abstract variables was not
present.

A variant of this process is used. however, with many data management systems. A
data base language processor often converts data base queries into another language
(often COBOL) and then compiles '~hat translated language without the user realizing
that a translation has taken place. For example, the INGRES relational data base
system [4"] translates SEQUEL queries into the language C as subroutine calls to the
INGRES system routines and then compiles the C program. Thus while a preprocessor is
being used, its application is as a translator to convert a different query language into an
existing compilable language.

This second macro-processing approach does have merit if the two drawbacks men-
tioned above can be eliminated, and this paper describes one such implementation. A
macro-processor, unknown to the user, was embedded within a PL 1 compiler to trans-
late new statements into standard PL/1 text. Since the compiler did the translation, the
programmer only had one source listing to contend with. The compiler knew about the
original source program so it could key messages to the appropriate source line. and
since the macros were stored in parsed form by the compiler, the source program was
processed only once--leading to a very efficient system when compared to the usual
macro-processing systems. A final attribute of the system was that the substitutions were
into PL. 1. thus only the first parsing phase of the compiler was altered. The semantics or
code generation phases only processed "'standard" P L l and were mostly untouched.
Thus the extensions that will be described in this paper were added in minimal time
when compared to the cost of writing a new compiler.

In Section 2 the extensions to PL/1 that we desired to investigate are described. The
problems in implementing these extensions led to the compiler modifications that are
described in Section 3. Section 4 describes the implementation of these extensions in one
particular PL/1 compiler.

2. E X T E N S I O N S T O PL 1

In order to improve on the process of writing good programs, there is great interest in
designing new languages that enforce desired restrictions on the programming process to
achieve a better product (e.g. Alphard ['5]: Euclid [6]: Gypsy [7]: Ada [8]: Clu [9]).

One of the major developments in this area is the encapsulated data type, commonly
called a data abstraction. Rather than viewing a program as a collection of statements, a

Implementation of language enhancements 1,al

p rogram is now viewed as a set of data types with operat ions defined using these objects
of these types as arguments. The only thing one can do with such an object of an abstract
type is to pass it as an argument to one of the opera t ions defined for the type. much as
using a primitive opera t ion on a primitive type tlike I N T E G E R t . Only these operat ions
kno,a the details of the type: it is not possible to look at the internal representat ion much
like it is not possible in s tandard F O R T R A N to look at the internal bits of an integer.
Therefore. control over accessing the internal structure of the type is much more local-
ized. much like structured p rog ramming limits the control floxv. This enhances such
desired characteristics as informat ion hiding and modular i ty [10-1.

Our goal was to design and implement a practical data abstract ion language as exten-
sions to the P L U M PL 1 compiler at the Unixersit~ of Mary land [11]. These extensions
are of t\vo types: {1/Abstract data types: and (2i Specifications.

2.1 .4b.~tract data types

A program consists of a set of abs t rac t ions - - s t ruc tu red ob j ec t s - - and a set of oper-
ations on these objects. An abstract ion has the syntax"

, name : : A B S T R A C T I O N :
REP S E L E C T O R (fieldl > (a t t r ibu tes

S E L E C T O R (f i e ld2) at tr ibutes ' i ,

S E L E C T O R ~f ie ldn) attr ibutes j
* Other Declarat ions *

* Initialization code for Items of that ty, pe *

O P E R A T I O N :
(f u n c t i o n l) : F U N C T I O N ((pa r a m e t e r l i s t) t :

B E G I N :
* Code for function 1 *

E N D "

,: function n) : F U N C T I O N ((parameterl is t),t:
B E G I N :
* Code for function n *

T E N D :
E N D (n a m e) :

where (. . .) , means a p rogram variable name or attribute.
The s tatement O P E R A T I O N separates the two parts of an abstraction. The first half

describes creating an excapsulated data objec t - - i t s internal representat ion (S E L E C T O R
fieldsl and its initialization, while the second half gives the implementat ion of the func-
tions on these objects.

For example, a stack could be described as:

STACK" A B S T R A C T I O N "
R E P S E L E C T O R T O P F I X E D BINARY.

* Next stack location */
S E L E C T O R S T O R A G E (100~ F I X E D B I N A R Y :

* Size of stack = 100 * '
,* Init ialization code */

* stack is empty *' T O P = 0 : , , ,

This states that each instance of type S T A C K has two c o m p o n e n t s - - a T O P field and a
S T O R A G E field tan array of 100 elementst. T O P is set to 0 whenever a stack is first
allocated•

142 MARVIN V. ZELKOWITZ and JAMES R. LYLE

The functions which operate on these abstract types follow the O P E R A T I O N state-
ment. For example, a PUSH function could be written as:

PUSH: F U N C T I O N (A, B);
DEC LAR E A TYPE (STACK),

B F IXED BINARY;
B E G I N :
A . . T O P = A . . T O P + 1;
A . . S T O R A G E (A . . T O P) = B;
END;

If a function returns a value, then a R E T U R N S clause can be used. For example, a
PUSH function that retruns the new stack which is the result of pushing a value onto the
old stack can be specified as:

PUSH: F U N C T I O N (A, B) RETURNS (TYPE {STACK)):

Abstract objects look somewhat like PL/1 structures so syntactically they are refer-
enced in a similar manner via the . . operator. Outside of the abstraction, the object is a
"black box" with no allowable references to selectors T O P or STORAGE.

The TYPE attribute is used to declare objects of an abstract type, To use a stack in a
program you would first declare it:

DEC LAR E MYSTACK TYPE {STACK);

In order to have the initialization code executed, the I N I T I A L attribute is used:

DECLARE MYSTACK TYPE (STACK) INITIAL (STACK):

and MYSTA C K would be initialized by the STACK initialization routine {the setting of
M Y S T A C K . . T O P to 0}. MYSTACK may only be passed as an argument to one of the
functions in the stack abstraction, and its selectors may not be referenced outside of the
stack abstraction. Since this parameter passing mechanism is overly restrictive, Section 3
will describe extensions to relax these restrictions somewhat.

While this syntax looks different from PL/I . for the average program, most of the
statements will be in the standard language. Standard PLI1 procedures can be placed
within abstractions. A procedure will be accessible within the abstraction while a func-
tion will be accessible outside the abstraction.

2.2 Specij'ications
Just having abstract types helps in program design: however, more can be done. An

assertion was added to implement specifications. A user could add an input condition
(much like Hoare- type axioms 1-12]) on the definition of a function.

For example, the PUSH function of the last section will be a legal operation if the
stack is not full, i.e. T O P < 100, as in:

PUSH: F U N C T I O N (A, BJ:
DECLARE A TYPE ISTACK},

B FIXED BINARY:
PUSH: ASSERT (A. . T O P < 100); [*]
B E G I N ;

END;

When PUSH is called, the ASSERT is executed and the expression is evaluated. If
false, the ASSERTFAIL condition is raised. The user can detect such a failure by includ-

* The string "'PUSH :'" is redundant here, and a later version of the system will not require it in this context•

Implementation of language enhancements 14 3

ing an ASSERTFAIL ON block in the program, as in:

ON ASSERTFAIL BEGIN:
* Do something *

END:

The ONASSERT pseudovariable was added to return tile label (or statement number
if no labelt of the assertion that failed. {The reason for the " ' P U S H " m the aboxc
example)

Asserts that remain true are specified as invariants. For example:

ASSERT (I < 100} IN \ .ARIANT:

will check that I is less than 100 at the start of everx statement in the block containing
the assert• This is similar to the UNDER construct in PLITS [13].

Since the language now handled assertions and their failures, specifications were
added. Since the basic P L 1 ON block is too error prone and is easily' used incorrectly', a
separate E X C E P T I O N block in the declarative part of the abstraction was created.
ASSERTs are used to determine whether the parameters to a function are within the
domain for the function, and the EXCEPTION block is used to either handle the error
condition if the arguments were outside of the domain, or to extend the domain to
include the ne~ arguments• To create exceptions, following the initialization description
of an object, the user writes:

EXCEPTION :
DO CASE (ONASSERT):
" , , ' P U S H ' \ DO:

'* Process PUSH failure *

END:
\ ' p o p \ Do:

* Process POP failure *

END"

E N D :
END:

(The DO CASE is a local addition to the PL 1 compiler to be described in Section 3. It is
similar to the SELECT statement in other PL~I implementations, and can be replaced by
a series of I F . . . ELSE I F . . ELSE I F . . . E L S E . . . constructs. Further details about the
language are described in [1411.

If an ASSERT fails in an abstraction, the program automatically invokes the corre-
sponding E X C E P T I O N block. The E X C E P T I O N block is a static property of the pro-
gram and not dynamically set, like ON blocks• This is more amenable to verification and
testing.

This implementation of abstractions and assertions shows the great similarity between
the two major specification techniques: Hoare type axioms and Algebraic specifica-
tions [15]. Within an abstraction, the assertions behave as predicates obeying the rule:
P(X){F(XI}Q(X) for the program"

F: F U N C T I O N (X):
ASSERT (P{X/t"
BEGIN:
Code for F(XI;
ASSERT (Q(X)I:
END:

where P is the precondition to function F and Q is the postcondition.

144 MARVIN W. ZELKOWITZ and JAMES R. LYLE

Outside of the abstraction, the only assertions that can be written are relationships
between the various functions since no accessing of the internal selectors is possible. Thus
if PUSH and P O P are written as functions that return a new stack after each call, as in:

PUSH: F U N C T I O N (A, B) R ETUR NS (TYPE (STACK));
DECLARE A TYPE (STACK), B F IXED BINARY;
. . . / * details for PUSH */

POP: F U N C T I O N iA) R E T U R N S (TYPE (STACK)):
DECLARE A TYPE (STACK);

/* details for P O P */

then the assertion'

DECLARE X TYPE (STACK),
Y FIXED BINARY:

ASSERT (POP (PUSH (X. Y)) = X):

corresponds to a runtime validation of the algebraic axiom that P O P is an inverse
operation to PUSH.

3. IMPLEMENTATION DESIGN

After designing the extensions of Section 2, we wanted to implement the additions
within the PLACES Project at the University of Maryland [16]. PLACES contains the
P L U M PL/1 compiler which compiles a large subset of the PL,1 language at a speed of
several hundred statements per second on a Univac 1100/42 computer.

P L U M has a fairly standard structure: The first pass is driven by a parser which calls
a scanner to return tokens, and builds an intermediate text. The second pass resolves
symbol table addresses and discovers semantic errors. The third pass generates execu-
table machine language for the program.

In order to implement the extensions, the initial idea was to extend the compiler to
accept the new statements. However, this approach was not deemed cost effective. Since
the extensions were of a research nature, they were very experimental and subject to
frequent changes. The language extensions described in Section 2 is the result of several
years of evolution as we clarified our ideas about abstraction. The compiler was too
complex to be altered that often.

The alternative approach to btlild a preprocessor was also rejected. The cost of build-
ing a preprocessor to parse PL/I seemed high, and the clumsy usage of it, as explained in
Section 1, would mean that it would not get used very often. We could have forced
students to use a preprocessor: however, we believed that such usage would be artificial
and not representative of typical usage of a compiler.

The approach that was used was to divide the extensions into two par t s - - those primi-
tive features which had to be added to the P L U M compiler and those features which
could easily be simulated by the existing P L 1 language. It turns out that very few of the
features of Section 2 are actually primitive, and the extensions to the compiler to imple-

ment these went very quickly.

3.1 Compiler extensions

As will be shown in Section 4. the implementation of abstract data types depends on
P O I N T E R variables, which were already implemented in PLUM. The major extensions
needed to the compiler were in the handling of the TYPE attribute. For a variable X
declared TYPE(THING) , the symbol table manager created an entry for X of type
POINTER, and the code generator was altered so that X could be only passed as an
argument to an entry point within the procedure T H I N G . The actual syntax was
TYPE(A:B, C, D t and X could only be passed to one of the procedures named in the
TYPE capability list {A, B, C, D)[16]. This allowed types to be passed to several
different abstractions.

Implementation of language enhancements 145

In addition, accessing components within X (e.g.. X . . F1ELDll could onl} occur
within the procedure T H I N G , or in the general case of TYPEIA:B, C. D) only within A.
Thus even though variables of TYPE(AI could be passed to procedures B, C, and D. onlx
A knew the internal representation of the object and could manipulate the internal fields.
This added the necessary protection.

In order to do assignment to abstract types, the assignment operator had to be moda-
fled since A = B would simply set pointer A to be the same as pointer B, whereas the
value pointed to bx B is to be copied into the object pointed to by A. This was handled
b} the addition of the : = assignment. If the operands to this assignment are native PL 1
variables, then := means the same as =. If the operands are TYPE variables, then the
correct cop}' operation is applied.

In the PLUM implementation, when exiting a procedure containing a TYPE li.e.
P O I N T E R I variable, the storage pointed to by the variable is returned to the system if
nothing else points to this storage. For a TYPE variable this will be t rue- - they are
effectively PL 1 automatic storage. Thus garbage collection of dynamic storage is
handled automatically. In a production PL 1 system this could be handled bv including a
FREE statement for each TYPE variable at procedure exit.

For assertions, the statement

ASSERT (expression)

was compiled as if the following were coded:

IF (expressionl T H E N SIGNAL ASSERTFAIL:

ASSERTFAIL had to be added to the list of PL"I ON conditions, and ONASSERT had
to be added as a pseudovariable. All of these were relatixelv straightforward additions to
the compiler.

The statement

ASSERT (expression) I N V A R I A N T :

did require some additional code generation considerations since the expression had to
be tested between ever} statement in the current block. This was done by implementing
the ASSERT as an internal subroutine that was called between every statement of the
block.

That is, I N V A R I A N T generates the code:

G O T O L:
ASSERT: " P R O C E D U RE":

ASSERT (expression):
E N D ASSERT:

E l . . .

where " P R O C E D U R E " stands for an internal procedure (e.g., no activation record or
dynamic storage is needed and control passes back to the caller with a minimum of
overhead l and the code

"CALL" ASSERT:

was added to the code generated at the start of each statement in the current block.
Similar to " 'PROCEDURE" , "CALL" is an efficient linkage to an internal subroutine.
Although not the most efficient implementation, the code is correct and adequate in a
developmental environment.

3.2 Macro extensions

With the above additions, a macro processor within P L U M was designed. Parsing in
P L U M is relatively straightforward, with the parser calling the scanner for successive
tokens (Fig. 1). Each of the special terms (e.g. ABSTRACTION, REP, etc.l was made a

146 MARVIN V. ZELKOWITZ and JAMES R. LYLE

PASS 1
SY~g2AX
ROUTII~T.S

BEGIN
res

DO
PASS I PASS 2 PASS

ANALYSES postf A~T~LYS ~ postfix GEt.RAT I01~

IF is~ugumge

T ' ;-"
tokens n~me8

PROC

sou rce ~). A~&YS IS create names ~ TABLE

Fig. 1. Structure of PLUM PL 1 compiler.

reserved word by simply adding it to the symbol table of the compiler. The parser calls a
unique function for each reserved word. The functions for each of these new reserved
words simply redirect the scanner to return a table of successive tokens instead of
reading the regular source input file.

For example, ABSTRACTION was implemented by creating a procedure which
returns a pointer value. Thus ABSTRACTION resets the scanner to point to the table:

P R O C E D U R E
RECURSIVE
RETURNS
(
P O I N T E R
)

(end of table >

ABSTRACTION substitutes this list for itself on the following seven calls to the scanner.
Thus the parser is unaware that anything but a legal procedure is being declared. (The
code substituted for ABSTRACTION is slightly modified from the above. The actual
code is given in Section 4.1

In order to fully implement this macro processor, the following set of commands are
implemented:

MCSTRT. Start scanner to point to next command as next operation (token to return).
MCEND. Turn off macro table. Scanner should start to read source input again as the

next token to return.
M C T O K N IX, YI. Return a token of class Y and value X. Thus M C T O K N

tACRCUR. LXKYWD) returns the token for RECURSIVE ia keyword (LXKYWD)
with the internal value ACRCURI.

MCGET. This creates a new symbol table name and returns it. It is used to create
declarations of internal variables not known to the programmer.

MCSETT X. This sets condition X to be true. X is a boolean variable. For example,
MCSETT EXCEPTION is used in the code for EXCEPTION to insure that only one
EXCEPTION block appears in a program. If the named condition has already appeared,
then an error results.

MCSETF X. The named condition X is initialized to false. This is used in conjunction
with the MCSETT command.

MCREF. Return as next token a previously generated name. Thus the implicitly
declared variable (via MCGET) can be referenced in later statements.

I m p l e m e n t a t i o n of l anguage e n h a n c e m e n t s 147

MCSUB X. Call subroutine X to perform some additional processing. This is an
"escape" from the macro processor back into the environment of the parser. As it turned
out, this was only used to generate error messages, which could have easily been imple-
mented as a separate M C E R R O R macro. (See next section.)

M C I F X. Go to next table entry if boolean X is true. If not, skip to the M C E N D I F lot
MCELSE) entry. This enabled conditional code to be generated depending upon the
source program.

M C E N D I F , Terminates the preceding M C I F block.
MCELSE. Allows for separate true and false code to be generated based upon the

condition in the M C I F command. For this particular implementation, this was never
needed.

With these commands, it was now possible to implement the extensions as expansions
of existing P L 1 statements. In Section 4, the resulting tables will be given. As an
interesting sidelight to the implementation, one of the hardest problems we faced was
keeping source statement numbers correct. An important engineering aspect of the imple-
mentat ion was that users should have no knowledge or idea of the underlying implemer~-
tation. These language extensions should appear to be an integral part of the language, as
much as the DEC LAR E statement or assignment statement. Thus we wanted to make
sure that statement numbers corresponded to the source statement numbers in the input
file for the program. Not having P L U M increment the current statement counter when a
macro generated statement was parsed turned out to be relatively difficult.

3.3 Error detection

An important issue in compiler design, especially for P L U M where good diagnostics
are a requirement in a university environment, is error detection. In adding abstractions.
errors were handled in one of three ways:

ta) Do nothing
(b) Modify compiler to check for error
(c) Let macros check for errors

Macros simply substituted parsed text for a given symbol. Thus if an error occurred,
the "correct" syntax fed to P L U M would be in error and a message would be generated
by the parser. Thus as much as possible, option (a) was the desired choice. For example.
if a program contains the statements:

PUSH: F U N C T I O N :

and

CALL PUSH (X. Y):

then the compiler would generate the message that the arguments to PUSH do not agree
with its definition, e.g. the message is independent of abstraction implementation.

Unfortunately. not every error can be handled intelligently in this manner. (The crucial
word is "'intelligently", since the method will find all errors.) For example, multiple
E X C E P T I O N blocks would generate the message that procedure E X C E P T I O N is mul-
tiply defined, yet the user has no knowledge about any procedure named "exception".

The macros themselves can handle most of these errors. The MCSETT (set to true)
and M C S E T F (set to false) commands of the last section set global flags. These can be
tested by the M C I F command. Thus O P E R A T I O N sets a flag that is tested by FUNC-
TION to make sure O P E R A T I O N appeared. E X C E P T I O N sets a flag that is tested by
F U N C T I O N to determine whether to generate code to raise an exception (ON unit) if an
assert failure occurs.

In order to handle the remaining errors, a few tests had to be added to the parser itselt~
For example, A B S T R A C T I O N can only appear as a level one (outermost) procedure.
Thus the parser first checks the nesting level before processing the abstraction macro.

(.L 6 3-4 C

148 MARVIN V. ZELKOWITZ and JAMES R. LYLE

4. I M P L E M E N T A T I O N

As mentioned previously, P O I N T E R variables form the basis for the abstract data
type. The user. wants something of TYPE(THING), so the system implements this as a
POINTER, with the constraint that the object is only passed as an argument to the
procedure THING.

Within the abstraction, the abstract object is a pointer variable. The representation
(REP) is a BASED structure referenced by the P O IN TER variable. Code is automati-
cally generated to allocate storage for such a based structure and to initialize the abstract
variable to point to this structure. The abstraction selector operator (..) was chosen
because of its similarity to the syntactic structure accessing operator (3; however, it is
actually a pointer reference (- >). While its semantics are similar to structure accessing,
its implementation is very different.

In order to allow users to also allocate abstract types, e.g. to make linked lists,
the function NEW was added. X = NEW; allocates a new copy of the object TYPE(-
T H I N G) and sets X to point to it. This is similar to NEW in Pascal. NEW can be used
with any abstract data type, and is implemented as a local procedure within the abstrac-
tion procedure defining the abstract type.

4.1 Macro tables

ABSTRACTION. The basic abstraction is a procedure that returns a pointer to the
allocation of the abstract object. This is handled by the code:

51: P R O C E D U R E RECURSIVE RETURNS (POINTER);
DECLARE 52 POINTER:
S2 = NEW:

where 51 is the name of the abstraction and 52 is a generated dummy name.
If a user declares a variable to be of TYPE (51), then abstraction procedure 51 is called

in the INITIAL clause of the declaration and the value of pointer S2 will be returned via
the later O P E R A T I O N clause. Note that following ABSTRACTION, the executing
program has already allocated 52. Any initialization code will set the appropriate values
pointed to by 52 before returning the initial allocation. As an example of a complete
macro, the details for ABSTRACTION are given in Fig. 2.

OPERATION. O P E R A T I O N has the primary function of returning the value allo-
cated via $2 = NEW for the above ABSTRACTION. Syntactically it follows any initiali-
zation code so that the allocated object can be initialized "automatically". O P E R A T I O N
results in the followikng code being generated:

RETURN (52);/* RETURN VARIABLE OF TYPE (51) */

MCSTRT Start ~acro processor

MCTOKN ACRCUR,LXKYWD RECURSIVE
MCTOKN ACRTNS,LXKYWD RETURNS
MCTOKN ACLPAR,LXLP (
MCTOKN ACTYPE,LXATTR TYPE
MCTOKN ACLPAR, LXLP (
MCREF ! a0straction name S1
MCTOKN ACRPAR,LXRP)
MCTOKN ACRPAR,LXRP)
MCTOKN ACSEMI,LXRSWD
MCTOKN ACDCL,LXRSWD DECLARE
MCGEN dummy name $2
MCTOKN ACTYPE,LXATTR TYPE
MCTOKN ACLPAR,LXLP (
MCREF i abstraction name $I
MCTOKN ACRPAR,LXRP)
MCTOKN ACSEM!,LXRSWD ;
MCREF $2 dummy name $2
MCTOKN ACEQ,LXBN
MCREF 4 NEW (allocation function)
MCSETF EXCEPTION NO exception block yet
MCSETF OPERSEEN No OPERATION seen
MCSETF REPSEEN No REP seen yet
MCSETT NOOPER No OPERATION yet
MCSETT NOREP NO REP yet
MCEND That's all for ABSTRACTION

Fig. 2. Macro table for ABSTRACTION.

Implementation of language enhancements i49

NEW: P R O C E D U R E RETURNS POINTER):
* A L L O C A T I O N P R O C E D U R E *
DECLARE $3 P O I N T E R :
ALLOCATE S1 SET ($31:
RETURN ($3):
END: * NEW *

Note that the allocate statement allocates a BASED structure {$1t and sets a pointer ($31
to it.

REP and SELECTOR. REP defines the actual data structures used by the abstraction.
The name of the based structure will be the same as the abstraction name. The cooe
substituted for REP is:

DECLARE I S1 BASED(S2i.

The expression BASED(S2~ is included so that initialization will work as expected, i.e. $2
will be the assumed pointer if any selector fields are referenced• The statement TOP = 0
means the same as the statement $2 - > TOP = 0.

SELECTOR simply returns the value 2. Thus a REP statement is compiled as:

DECLARE 1 abstracttype BASED(S2k
2 fieldl attributes,
2 field2 attributes,

EXCEPTION. EXCEPTION creates a procedure that gets called by ON statements at
each F U N C T I O N entry. The code added is:

EXCEPTION : P R O C E D U R E :

Se_._! E X C E P T I O N flag to true:
The END following the EXCEPTION block terminates this procedure.

F U N C T I O N . Functions are simply entry points into the abstraction procedure. The
code subsituted is"

entryname" ENTRY(parameters!:

i_f EXCEPTION fla~, is true then generate:

ON ASSERTFAIL CALL EXCEPTION"
m,

F U N C T I O N was the one statement that did require some changes to the compiler•
F U N C T I O N was implemented by substituting the token ENTRY and setting a flag,
checked by the parser, to call the macro processor after the parameter list was processed.

This change would be sufficient for correct program development, but does not include
all the necessary enforcement mechanisms to detect errors. Thus several additional
changes had to be made'

(1) Only BEGIN or DECLARE statements can follow F U N C T I O N statements. The
body of each function is then a separate block of code with its own activation
record.

(2) GOTOs between functions are not permitted. At run time, any G O T O which
results in a function's BEGIN block being popped off the execution stack is pro-
cessed as an error.

(3) The END statements for functions are handled in the same manner as procedure
END statements, i.e. a RETURN is added. This (and the above G O T O restriction)
forces each function to be an independent subroutine with a unique entry point,
and a unique set of return points. Common operations among functions in an
abstraction can be handled by internal procedures inside the abstraction.

150 MARVIN V. ZELKOWITZ and JAMES R. LYLE

RETURN(A..TOP=0);

END;
END STACK;

STACK: ABSTRACTION;
REP SELECTOR STORAGE(STACKSIZE) FIXED BINARY,

SELECTOR TOP FIXED BINARY,
SELECTOR SIZE FIXED BINARY;

/* Set Initial stack size */
DECLARE STACKSIZE STATIC INI'f(i00);

/* Initialization code */
TOP = 0;
SIZE = ~TACKS~ZZ;
EXCEPTION;

DO CASE(ONASSERT);
\'PUSH*\ DO;

DECLARE NEWSTACK TYPE(STACK),
I FIXED BINARY;

/* Increase stack size due to overflow */
STACKSIZE = A..SIZE +i00;
NEWSTACK = NEW;
/* Cop}' old to new */
DO I = I TO A..SI/E:

NEWSTACK..STORAGE(Ii=A..STORAGE(I);

END;
NEWSTACK..TOP = A..TOP;

/* Set user stack to be new one */
A := NEWSTACK;
/* Set STACKSIZE for next default allocation */
BTACKSIZE = I00;

END;
"BOP'\ DO;

/* Print message and return 0 */
PUT SKIP LIST('*** STACK EMPTY. 0 RETURNED');
A..TOP = i;
A.. STORAGE (A.. TOP) = 0;

END ;
J* NO exception for EMPTY */
END; /* DO CASE */

END~ /* EXCEPTION */
OPERATION;

PUSH: FUNCTION(A,S);
DECLARE A TyPE(STACK),

B FIXED BINARY;
BUSH: ASSERT (A..TOP < A..SIZE)
BEGIN;

A..TOP = A..TOP *i
A..STORAGE(A..TOP = B;

END;
POP: FUNCTION(A,B);

POP: ASSERT (A..TOP > 0};

BEGIN;
B = A..STORAGE(A..TCP };
A..TOP = A..TOP -i;

END;
EMPTY: FUNCTION(A) RETURNS(BIT);

BEGIN;

Fig. 3. Abstraction module.

In Fig. 3, a complete stack implementation is given. In this implementation, stacks are
allowed to grow arbitrarily large, yet the implementation preserves the efficiency of the
array implementation (except in the rare cases of the stack overflowing). The EXCEP-
T I O N block is used to enforce the specifications on the stack functions, and to extend
the domain of the PUSH function by enlarging the stack when a specification failure
occurs (stack overflow). Figure 4 gives the code as compiled by P L U M to implement this
stack. Macro reserved words are given as comments and the PL, 1 syntax substituted for
them is underlined.

5. R E S U L T S O F I M P L E M E N T A T I O N

The system has been used in several and fairly heavily in one class at the University of
Maryland. Students were not fully aware of the underlying implementation of abstrac-
t i o n s - p r o b a b l y the best measure of its success as an implementation technique. Only
29% assumed that the partial macro substitution technique was used.

The language that we developed seemed successful, given our limited usage. In one
experiment, two classes had to write scanners for a compiler. One class used abstractions
while the other used standard P L 1. In each case, the final product was run against a
standard test data set, and only those programs that worked correctly were evaluated.
This resulted in 8 programs from each class. The programs were then run with all of the
PLACES diagnostic features turned on (e.g. static and dynamic statement counts, timing
information, tracing, etc.} Some of the results are presented in Fig. 5.

Implementation of language enhancements 151

STACK: /* ABSTRACTION */ procedure recursive returns(pointe~);
declare dummy pointer;
dummy = new;

/* REP */ declare 1 stack based(dummy),
/* SELECTOR *7 2---gT~RAGE(STACKSIZE) FIXED BINARY,
/* SELECTOR */ ~ TOP FIXED BINARY,
/* SELECTOR */ Z SIZE FIXED BINARY;

/* Default stack size */
DECLARE STACKS!ZE STATIC INIT(i00);

/* Initialization code */
dummy -> TOP = 0;
dummy ~ SIZE = STACKSIZE;
EXCEPTION: ~rocedure(onassert);

DO CASE(ONASSERT);
\'PUSH~\ DO;

DECLARE NEWSTACK TYPE(STACK),
I FIXED BINARY;

/* Increase stack size due to overflow 4~
STACKSIZE = A /* .. * -> SIZE +i00;

NEWSTACK = NEW;
/* Copy old to new */
DO I = ! TO A /4 .. */ -> SIZE;

NEWSTACK /* .. *~j -> STO.~AGE(1)=A /* .. 4
-> STORAGE-~-fII~ ;

END ;
NEWSTACK /* */ -> TOP = A /4 4 _> TOP; °. / .. /

/* Set user stack--to be new one */
A -> STACK = NEWSTACK -> STACK;
/*--Set STACKSIZE for ne-xt-~e~ault allocation */
STACKSIZE = i06;

END;
\'POP'\ DO;

/" Print message and return 0 4/
PUT SKIP LISTi'*** STACK EMPTY. 0 RETURNED'i;
A /* .. */ -> TOP = I;
A /* .. */ > STOP~GE(A /* .. */ -> TOP) = 0;
END;

/* No exception for empty *~
END; /* DO CASE 4/,

END; /* EXCEPTION */
/* OPERATION; */

return(dummy);
/* allocation function */
n--ew: procedure returns(p-ointer);

declare initptr pointer;
allocate stack s ~ t r) ;
return(inl-'~'h-f);
end new;

PUSH: /* FUNCTION */ entry(A,B);
on assertfail call exception(onassert);
DECLARE A /* TYPE(STACK) */ pointer,

B FIXED BINARY;

BEGIN;
A /* .. */ -> TOP = A /* .. */ -> TOP *i;
A /* .. */ ---g STORAGE(A /* .. ~ -__>> TOP) = B;

return;
END;

POP: /* FUNCTION */ entr~(A,B);
on assertfail call exception(onassert);
~-OP: ASSERT [A~.. */ -> TOP > U);
BEGIN;

B = A /* .. */ -> STORAGE(A /* .. */ ---> TOP);
A /* .. */ -._~> TO-P = A /* .. */ -> TOP -i;

return;
END;

EMPTY: /* FUNCTION */ entry(A) RETURNS(BIT);
on assertfail call exception(onassert);
BEGIN;

RETURN(A /* .. */ -_>> TOP=0);
END;
END STACK;

Fig. 4. Code compiled for abstraction.

Feature Abstractions Standard PLUM
Mean Std-Dev Mean Std-Dev

...

Statements 281 60 321 30
Statements executed 17597 6928 23866 11645
Object pgm size(words) 2554 784 2888 347
Object pgm words/Stmt 9.1 2.3 9.0 1.8

IF statements 19.25 6.56 34.75 15.06
IF stmts executed 3059 2182 7070 6301
% IF stmts executed 16.38 5.23 27.61 18.47

PROC statements 15.76 1.85 12.00 3.70
PROC stmts executed i976 i299 1629 796
% PROC stmts executed 10.66 3.18 7.0i 2.29

Fig. 5. Collected data.

152 MAavly V. ZELKOWITZ and .lAMES R. LYLE

Both groups had comparable products, but the abstraction group used only an average
of 281 statements as compared to the 321 of the standard PL/1 group. This seemingly
contradicts the objection against abstractions that they lead to larger programs: how-
ever, our results were not statistically significant.

According to Fig. 5. the abstraction group executed fewer statements, contained signifi-
cantly fewer IF statements, but executed more procedure statements. This agrees with
our preconceived notions that abstractions are less complex (as measured by number of
IF statements), but incur greater overhead due to information hiding aspects of abstract
data type design.

While the overhead for procedure calls was significant, many of the procedures could
be classified as:

(a) Trivial--simply sets or returns a value of one of the selectors in the implemen-
tation of the abstract type

(b) Simple--a one line function (e.g. EMPTY in Figure 3) In our sample data,
rewriting these as inline functions reduced the procedure calls to 1696 (com-
pared to 1629 of the standard group), which is much less additional overhead. A
"smart" compiler (or an I N L I N E attribute) would allow such optimization
without violating the "black box'" approach towards abstractions.

SUMMARY

In this paper we have outlined the procedure for extending a compiler with new
features by using a form of macro-processor hidden from the user. The user is unaware of
any changes to the source program and simply views the new concepts as extensions to
the basic language.

The implementation of data abstractions via macro substitutions within P L U M has
been straightforward and efficient. Only minor changes had to be made to either the
parser or the code generator of PLUM, and once implemented, the macro-processor
could be easily altered. A few primitive constructs were added to the compiler, and the
remainder of the additions were handled by a macro processor built into the scanner.
Therefore, users were only aware of the original source program and the system was
efficient since only one parsing pass was needed to process the program.

Data was collected from two classes--one using abstractions and one using standard
PL/1. Programs written with abstractions turned out to be less complex and with more
procedure invocations {as theorized) but contained fewer statements on the average la
surprizing, but favorable result!.

The implementation technique that we have described seems quite practical in a
research or development environment. Although the process generates more object code
than a production compiler especially tuned for the ne~ statements, in most applications
such tight coding is not needed. The versatility of being able to extend the compiler fairly
easily is probably worth the cost.

REFERENCES

1. ACM Language design for Reliable Software Conference, Raleigh, NC, Si~jphm Notices 12, 119771.
2. D. Schwabe and C. J. Lucena. Design and implementation of a date abstraction definition facility, Sq/hvare

Practice and Experience 8, 709-719 (1978).
3. B. Leavenworth. Extended PL, 1 Reference Manual. Technical Memo 19, IBM T. d. Watson Research

Center (1979).
4. M. Stonebraker et al., The design and implementation of INGRES. ACM Trans. Database Svst. 1, 189-222

[19761.
5. W. Wulf, R. London and M. Shaw, An introduction to the construction and verification of Alphard

programs, IEEE Trans. Software Emln9 2, 253-264 (1976~.
6. G. J. Popek, Notes on the design of Euclid, ACM Language Design for Reliable Software. Si~tplan Notices

12, (19771.
7. A. L. Ambler et al.. Gypsy: A language for specification and implementation of verifiable programs, ACM

Language Design for Reliable Software, Sic]plan Notices 12, !1977).
8. Department of Defense. Reference Manual for the Ada Programming Language-Proposed Standard Docu-

ment 119801.
9. B. Liskov or al.. Abstraction mechanisms for Clu. Commun. A C M 20. 564--576 (19771.

Implementation of language enhancements 153

10 D. L. Parnas. On the criteria for decomposing systems into modules, Commun. A CM I 5, 1053-1058 (1972 I.
11. M. V. Zelkowitz, PLACES: Programming language and construct evaluation system. NBS and ACM

Seventeenth Annual Technical Symposium, Gaithersburg MD. pp. 79-85 (1978/.
12. C. A. R. Hoare, An axiomatic basis for computer programming. Con,nun. A C M 12. 576-580. 583 (19691.
13. J. A. Feldman. High level programming for distributed computing. Commun. ACM 22. 353-367 (19791.
14. M. V. Zelkowitz and J. Lyle. Implementation of program specification.~. IEEE Computer Society COMP-

SAC 80, Chicago. Illinios, pp. 194-200 (1980i.
15 J. Guttag, Abstract data types and the development of data structures. Commun. ACM 20. [10771.
16 M. V. Zelkowitz and H. J. Larsen, Implementation of a capabilit 3 based data abstraction. IEEE Tra:7:~

Software En,an9 4, 56-64 (1978).

About the Author--MarviN V. ZELKOWITZ. Associate Professor of Computer Science at the
University of Maryland, was born in Brooklyn. New York. He obtained a B.S. in Mathematic,,
(1967) from Rensselaer Polytechnic Institute and an M.S. 11969! and a Ph,D. 11971) in Computer
Science from Cornell University. He has been at the University of Maryland since 1971. His
current interests are in programming language design and impiementanon and in programming
environments. He is a senior member of the IEEE Computer Society and a member of the
Association for Computing Machinery. He is the past chairman of ACM's Special Interest Group
of Software Engineering (SIGSOFTI and a recent chairman of the Computer Societ3s Washing-
ton DC chapter.

About the Author--JAMES R. LYLE was born in Washington. DC. He obtained a B.S. in Math-
ematics from East Tennessee State, an M.S. in Mathematics. and is completing the requirements
for a Ph.D. degree in Computer Science from the University of Maryland. He is interested in
programming language design and compiler implementation. He is a member of the Association
for Computing Machinery and of the IEEE Computer Society.

