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Abstract--Data abstractions have been proposed as a mean,, to enhance program modularity. 
The implementation of such ne~ features to an existing language is typically handled bx either 
rewriting large portions of an existing compiler or by using a preprocessor 1o translate the 
extensions into the standard language. The first technique is expensixe to implement while the 
latter is usuall 3 slov, and clumsy to use. In this paper a data abstraction addition to PL 1 > 
described and a hybrid implementation is gixen. A minimal set of primitive features are added to 
the compiler and the other extensions are added via an internal macro processor that expand, the 
ne~ syntax inlo the existing language. 

Compiler design Data abstraction Language extensions Specifications 

1. INTRODUCTION 

PROGRAMMING language design is by no means  a dead issue. As people use various 
compilers,  new and different features are cont inua l ly  desired. This enhancemen t  process. 

usually' miscalled main tenance ,  often costs more than the original  development  of the 
product  itself. Thus  most  compilers  con t inue  to e v o b e  as their user communi t i e s  expand 
and as they are used on new and  different applicat ions.  

In addi t ion,  knowledge abou t  p r o g r a m m i n g  is changing.  Such topics as s t ructured 
p rogramming ,  encapsula ted data  types, and  p rogram verification are all recent develop- 

merits. While  these are often incorpora ted  as features in new languages and compilers.  
there is also a desire to add related features into existing compilers  and languages so that 
p rog rammers  are able to use them on current  projects. 

This  paper  describes a data abs t rac t ion  addi t ion  to P L  1 that adds the protect ion of 

abstract  data  types yet still retains the basic PL 1 p r og r a mmi ng  style. The implementa-  

t ion of these extensions as well as some results using them in a s tudent  env i ronmen t  ~s 
given. 

The problem,  therefore, is how to extend current  compilers  to accept these new tech- 

niques. The usual  approach  towards data  abs t rac t ion  has been to design and build a new 
language having these ideas embedded  in the semantics  of the language [1]. There  is no 
way to truly use abstract  data  types in the more  c o m m o n l y  used languages. F O R T R A N  
has no user types at all and P L 1  has a s t ructure  declarat ion that is only an approxi-  
mat ion  of a type. While Pascal has a type declarat ion,  it permits  any user of the type to 
also access the componen t s  of variables of that type. 

The major  p rob lem with designing new languages is that the result ing languages are 
no t  F O R T R A N .  C O B O L ,  or to a l imited extent. PL, 1 or Pascal. Thus  most of these 

languages  have l imited visibility and usefulness outside of their deve lopment  enviror> 
ments.  The s i tua t ion with the new Depa r tmen t  of Defense language Ada may be differ- 
ent" however,  the complexi ty of the language means  that the first qual i ty compilers  are 
several years away. 

An al ternat ive approach  can be achieved by the use of preprocessors to extend existing 
languages. A language  like Pascal or PL: I  as the desired primitives, and  good programs 
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can be written in these languages if they are used correctly, much like good structured 
programs can be written, although with some difficulty, in FORTRAN. Thus one can 
design an extension to PL/I  or Pascal which enforces good data abstractions and then 
use a preprocessor to translate the program into proper PL/1 or Pascal for compilation 
and execution. The PL/1 extensions, described in Refs [2, 3]. use this approach. 

There are two problems with this last process. One is that the compiler is always 
processing a program different from the program written by the programmer. In most 
cases, error messages, diagnostics and output will be oriented towards the preprocessor 
output that was compiled and not the programmer's source program input. This usually 
means that the programmers must often carry two program listings--input and output 
from the preprocessor. Given an error condition during execution, the programmer finds 
the place of the error on the preprocessor output listing, and then reverse translates it 
into the original source input language--a most cumbersome process. While it is possible 
to alter the compiler somewhat to account for this, the procedure is not easy since the 
compiler has no knowledge about the preprocessor input language. 

A second drawback to this approach is the overhead and complexity involved. The 
preprocessor must read, parse and process the entire program and output a new pro- 
gram, which again gets read. parsed and processed by the compiler--a  slow and redun- 
dant step. The user must invoke several system commands to accomplish this. This 
added cost and complexity often gets in the way of its use. While the extensions described 
in [2] were efficiently implemented, the syntax depended very heavily on P L 1  pointer 
variables and so the full protection against improper usage of abstract variables was not 
present. 

A variant of this process is used. however, with many data management systems. A 
data base language processor often converts data base queries into another language 
(often COBOL) and then compiles '~hat translated language without the user realizing 
that a translation has taken place. For example, the INGRES relational data base 
system [4"] translates SEQUEL queries into the language C as subroutine calls to the 
INGRES system routines and then compiles the C program. Thus while a preprocessor is 
being used, its application is as a translator to convert a different query language into an 
existing compilable language. 

This second macro-processing approach does have merit if the two drawbacks men- 
tioned above can be eliminated, and this paper describes one such implementation. A 
macro-processor, unknown to the user, was embedded within a PL  1 compiler to trans- 
late new statements into standard PL/1 text. Since the compiler did the translation, the 
programmer only had one source listing to contend with. The compiler knew about the 
original source program so it could key messages to the appropriate source line. and 
since the macros were stored in parsed form by the compiler, the source program was 
processed only once--leading to a very efficient system when compared to the usual 
macro-processing systems. A final attribute of the system was that the substitutions were 
into PL. 1. thus only the first parsing phase of the compiler was altered. The semantics or 
code generation phases only processed "'standard" P L  l and were mostly untouched. 
Thus the extensions that will be described in this paper were added in minimal time 
when compared to the cost of writing a new compiler. 

In Section 2 the extensions to PL/1 that we desired to investigate are described. The 
problems in implementing these extensions led to the compiler modifications that are 
described in Section 3. Section 4 describes the implementation of these extensions in one 
particular PL/1 compiler. 

2. E X T E N S I O N S  T O  PL 1 

In order to improve on the process of writing good programs, there is great interest in 
designing new languages that enforce desired restrictions on the programming process to 
achieve a better product (e.g. Alphard ['5]: Euclid [6]: Gypsy [7]: Ada [8]: Clu [9]). 

One of the major developments in this area is the encapsulated data type, commonly 
called a data abstraction. Rather than viewing a program as a collection of statements, a 
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p rogram is now viewed as a set of data types with operat ions  defined using these objects 
of these types as arguments.  The only thing one can do with such an object of an abstract  
type is to pass it as an argument  to one of the opera t ions  defined for the type. much as 
using a primitive opera t ion  on a primitive type tlike I N T E G E R t .  Only these operat ions  
kno,a the details of the type:  it is not  possible to look at the internal representat ion much 
like it is not  possible in s tandard F O R T R A N  to look at the internal bits of an integer. 
Therefore. control  over accessing the internal structure of the type is much more  local- 
ized. much like structured p rog ramming  limits the control  floxv. This enhances such 
desired characteristics as informat ion hiding and modular i ty  [10-1. 

Our  goal was to design and implement  a practical data abstract ion language as exten- 
sions to the P L U M  PL 1 compiler  at the Unixersit~ of Mary land  [11]. These extensions 
are of t\vo types:  {1/Abstract  data types:  and (2i Specifications. 

2.1 .4b.~tract data types 

A program consists of a set of abs t rac t ions - - s t ruc tu red  ob j ec t s - - and  a set of oper- 
ations on these objects. An abstract ion has the syntax" 

, name : : A B S T R A C T I O N :  
REP  S E L E C T O R  (fieldl  > (a t t r ibu tes  

S E L E C T O R  ( f i e ld2 )  at tr ibutes ' i ,  

S E L E C T O R  ~f ie ldn)  attr ibutes j 
* Other  Declarat ions  * 

* Initialization code for Items of that ty, pe * 

O P E R A T I O N :  
( f u n c t i o n l ) :  F U N C T I O N  ( (pa r a m e t e r l i s t ) t :  

B E G I N  : 
* Code  for function 1 * 

E N D "  

,: function n ) : F U N C T I O N  (( parameterl is t  ),t: 
B E G I N :  
* Code  for function n * 

T E N D :  
E N D  ( n a m e ) :  

where ( . . . ) ,  means a p rogram variable name or attribute. 
The s tatement  O P E R A T I O N  separates the two parts of an abstraction.  The first half 

describes creating an excapsulated data  objec t - - i t s  internal representat ion ( S E L E C T O R  
fieldsl and its initialization, while the second half gives the implementat ion of the func- 
tions on these objects. 

For  example, a stack could be described as: 

STACK" A B S T R A C T I O N "  
R E P  S E L E C T O R  T O P  F I X E D  BINARY.  

* Next  stack location */ 
S E L E C T O R  S T O R A G E  (100~ F I X E D  B I N A R Y :  

* Size of stack = 100 * '  
,* Init ialization code */ 

* stack is empty  *' T O P  = 0 : ,  , , 

This states that each instance of  type S T A C K  has two c o m p o n e n t s - - a  T O P  field and a 
S T O R A G E  field tan array of  100 elementst. T O P  is set to 0 whenever a stack is first 
allocated• 
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The functions which operate on these abstract types follow the O P E R A T I O N  state- 
ment. For example, a PUSH function could be written as: 

PUSH:  F U N C T I O N  (A, B); 
DEC LAR E A TYPE (STACK), 

B F IXED BINARY; 
B E G I N :  
A . . T O P =  A . . T O P +  1; 
A . .  S T O R A G E  ( A . . T O P )  = B; 
END;  

If a function returns a value, then a R E T U R N S  clause can be used. For example, a 
PUSH function that retruns the new stack which is the result of pushing a value onto the 
old stack can be specified as: 

PUSH:  F U N C T I O N  (A, B) RETURNS (TYPE {STACK)): 

Abstract objects look somewhat  like PL/1 structures so syntactically they are refer- 
enced in a similar manner via the . .  operator.  Outside of the abstraction, the object is a 
"black box" with no allowable references to selectors T O P  or STORAGE.  

The TYPE attribute is used to declare objects of an abstract type, To use a stack in a 
program you would first declare it: 

DEC LAR E MYSTACK TYPE {STACK); 

In order to have the initialization code executed, the I N I T I A L  attribute is used: 

DECLARE MYSTACK TYPE (STACK) INITIAL (STACK): 

and MYSTA C K would be initialized by the STACK initialization routine {the setting of 
M Y S T A C K . .  T O P  to 0}. MYSTACK may only be passed as an argument to one of the 
functions in the stack abstraction, and its selectors may not be referenced outside of the 
stack abstraction. Since this parameter  passing mechanism is overly restrictive, Section 3 
will describe extensions to relax these restrictions somewhat. 

While this syntax looks different from PL/I .  for the average program, most of the 
statements will be in the standard language. Standard PLI1 procedures can be placed 
within abstractions. A procedure will be accessible within the abstraction while a func- 
tion will be accessible outside the abstraction. 

2.2 Specij'ications 
Just having abstract types helps in program design: however, more can be done. An 

assertion was added to implement specifications. A user could add an input condition 
(much like Hoare- type axioms 1-12]) on the definition of a function. 

For example, the PUSH function of the last section will be a legal operation if the 
stack is not full, i.e. T O P  < 100, as in: 

PUSH:  F U N C T I O N  (A, BJ: 
DECLARE A TYPE ISTACK}, 

B FIXED BINARY: 
PUSH:  ASSERT (A. .  T O P  < 100); [*] 
B E G I N ;  

END;  

When PUSH is called, the ASSERT is executed and the expression is evaluated. If 
false, the ASSERTFAIL condition is raised. The user can detect such a failure by includ- 

* The string "'PUSH :'" is redundant here, and a later version of the system will not require it in this context• 
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ing an ASSERTFAIL ON block in the program, as in: 

ON ASSERTFAIL BEGIN:  
* Do something * 

END:  

The ONASSERT pseudovariable was added to return tile label (or statement number 
if no labelt of the assertion that failed. {The reason for the " ' P U S H "  m the aboxc 
example ) 

Asserts that remain true are specified as invariants. For example: 

ASSERT (I < 100} IN \ .ARIANT:  

will check that I is less than 100 at the start of everx statement in the block containing 
the assert• This is similar to the UNDER construct in PLITS [13]. 

Since the language now handled assertions and their failures, specifications were 
added. Since the basic P L 1  ON block is too error prone and is easily' used incorrectly', a 
separate E X C E P T I O N  block in the declarative part of the abstraction was created. 
ASSERTs are used to determine whether the parameters to a function are within the 
domain for the function, and the EXCEPTION block is used to either handle the error 
condition if the arguments were outside of the domain, or to extend the domain to 
include the ne~ arguments• To create exceptions, following the initialization description 
of an object, the user writes: 

EXCEPTION : 
DO CASE (ONASSERT): 
" , , ' P U S H ' \  DO:  

'* Process PUSH failure * 

END:  
\ ' p o p \  Do: 

* Process POP  failure * 

END" 

E N D :  
END:  

(The DO CASE is a local addition to the PL  1 compiler to be described in Section 3. It is 
similar to the SELECT statement in other PL~I implementations, and can be replaced by 
a series of I F . . .  ELSE I F . .  ELSE I F . . .  E L S E . . .  constructs. Further details about the 
language are described in [1411. 

If an ASSERT fails in an abstraction, the program automatically invokes the corre- 
sponding E X C E P T I O N  block. The E X C E P T I O N  block is a static property of the pro- 
gram and not dynamically set, like ON blocks• This is more amenable to verification and 
testing. 

This implementation of abstractions and assertions shows the great similarity between 
the two major specification techniques: Hoare type axioms and Algebraic specifica- 
tions [15]. Within an abstraction, the assertions behave as predicates obeying the rule: 
P(X){F(XI}Q(X) for the program" 

F: F U N C T I O N  (X): 
ASSERT (P{X/t" 
BEGIN:  
Code for F(XI; 
ASSERT (Q(X)I: 
END:  

where P is the precondition to function F and Q is the postcondition. 
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Outside of the abstraction, the only assertions that can be written are relationships 
between the various functions since no accessing of the internal selectors is possible. Thus 
if PUSH and P O P  are written as functions that return a new stack after each call, as in: 

PUSH:  F U N C T I O N  (A, B) R ETUR NS (TYPE (STACK)); 
DECLARE A TYPE (STACK), B F IXED BINARY; 
. . . / *  details for PUSH */ 

POP:  F U N C T I O N  iA) R E T U R N S  (TYPE (STACK)): 
DECLARE A TYPE (STACK); 

/* details for P O P  */ 

then the assertion'  

DECLARE X TYPE (STACK), 
Y FIXED BINARY: 

ASSERT (POP (PUSH (X. Y)) = X): 

corresponds to a runtime validation of the algebraic axiom that P O P  is an inverse 
operation to PUSH. 

3. IMPLEMENTATION DESIGN 

After designing the extensions of Section 2, we wanted to implement the additions 
within the PLACES Project at the University of Maryland [16]. PLACES contains the 
P L U M  PL/1 compiler which compiles a large subset of the PL,1 language at a speed of 
several hundred statements per second on a Univac 1100/42 computer.  

P L U M  has a fairly standard structure: The first pass is driven by a parser which calls 
a scanner to return tokens, and builds an intermediate text. The second pass resolves 
symbol table addresses and discovers semantic errors. The third pass generates execu- 
table machine language for the program. 

In order to implement the extensions, the initial idea was to extend the compiler to 
accept the new statements. However, this approach was not deemed cost effective. Since 
the extensions were of a research nature, they were very experimental and subject to 
frequent changes. The language extensions described in Section 2 is the result of several 
years of evolution as we clarified our ideas about abstraction. The compiler was too 
complex to be altered that often. 

The alternative approach to btlild a preprocessor was also rejected. The cost of build- 
ing a preprocessor to parse PL/I  seemed high, and the clumsy usage of it, as explained in 
Section 1, would mean that it would not get used very often. We could have forced 
students to use a preprocessor:  however, we believed that such usage would be artificial 
and not representative of typical usage of a compiler. 

The approach that was used was to divide the extensions into two par t s - - those  primi- 
tive features which had to be added to the P L U M  compiler and those features which 
could easily be simulated by the existing P L 1  language. It turns out that very few of the 
features of Section 2 are actually primitive, and the extensions to the compiler to imple- 

ment these went very quickly. 

3.1 Compiler extensions 

As will be shown in Section 4. the implementation of abstract data types depends on 
P O I N T E R  variables, which were already implemented in PLUM. The major extensions 
needed to the compiler were in the handling of the TYPE attribute. For a variable X 
declared TYPE(THING) ,  the symbol table manager created an entry for X of type 
POINTER,  and the code generator was altered so that X could be only passed as an 
argument to an entry point within the procedure T H I N G .  The actual syntax was 
TYPE(A:B, C, D . . . .  t and X could only be passed to one of the procedures named in the 
TYPE capability list {A, B, C, D . . . .  )[16]. This allowed types to be passed to several 
different abstractions. 
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In addition, accessing components  within X (e.g.. X . .  F1ELDll  could onl} occur 
within the procedure T H I N G ,  or in the general case of TYPEIA:B,  C. D) only within A. 
Thus even though variables of TYPE(AI could be passed to procedures B, C, and D. onlx 
A knew the internal representation of the object and could manipulate the internal fields. 
This added the necessary protection. 

In order to do assignment to abstract types, the assignment operator  had to be moda- 
fled since A = B would simply set pointer A to be the same as pointer B, whereas the 
value pointed to bx B is to be copied into the object pointed to by A. This was handled 
b} the addition of the : = assignment. If the operands to this assignment are native PL 1 
variables, then :=  means the same as =.  If the operands are TYPE variables, then the 
correct cop}' operation is applied. 

In the PLUM implementation, when exiting a procedure containing a TYPE li.e. 
P O I N T E R I  variable, the storage pointed to by the variable is returned to the system if 
nothing else points to this storage. For a TYPE variable this will be t rue- - they  are 
effectively PL 1 automatic  storage. Thus garbage collection of dynamic storage is 
handled automatically. In a production PL 1 system this could be handled bv including a 
FREE statement for each TYPE variable at procedure exit. 

For assertions, the statement 

ASSERT (expression) 

was compiled as if the following were coded: 

IF (expressionl T H E N  SIGNAL ASSERTFAIL:  

ASSERTFAIL had to be added to the list of PL"I ON conditions, and ONASSERT had 
to be added as a pseudovariable. All of these were relatixelv straightforward additions to 
the compiler. 

The statement 

ASSERT (expression) I N V A R I A N T :  

did require some additional code generation considerations since the expression had to 
be tested between ever} statement in the current block. This was done by implementing 
the ASSERT as an internal subroutine that was called between every statement of the 
block. 

That is, I N V A R I A N T  generates the code: 

G O T O  L: 
ASSERT: " P R O C E D U  RE": 

ASSERT (expression): 
E N D  ASSERT: 

E l . . .  

where " P R O C E D U R E "  stands for an internal procedure (e.g., no activation record or 
dynamic storage is needed and control passes back to the caller with a minimum of 
overhead l and the code 

"CALL" ASSERT: 

was added to the code generated at the start of each statement in the current block. 
Similar to " 'PROCEDURE" ,  "CALL" is an efficient linkage to an internal subroutine. 
Although not the most efficient implementation,  the code is correct and adequate in a 
developmental  environment.  

3.2 Macro extensions 

With the above additions, a macro processor within P L U M  was designed. Parsing in 
P L U M  is relatively straightforward, with the parser calling the scanner for successive 
tokens (Fig. 1). Each of the special terms (e.g. ABSTRACTION,  REP, etc.l was made a 
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PASS 1 
SY~g2AX 
ROUTII~T.S 

BEGIN 
res  

DO 
PASS I PASS 2 PASS 

ANALYSES postf A~T~LYS ~ postfix GEt.RAT I01~ 

IF is~ugumge 

T ' ;-" 
tokens n~me8 

PROC 

sou rce  ~). A~&YS IS create names ~ TABLE 

Fig. 1. Structure of PLUM PL 1 compiler. 

reserved word by simply adding it to the symbol table of the compiler. The parser calls a 
unique function for each reserved word. The functions for each of these new reserved 
words simply redirect the scanner to return a table of successive tokens instead of 
reading the regular source input file. 

For example, ABSTRACTION was implemented by creating a procedure which 
returns a pointer value. Thus ABSTRACTION resets the scanner to point to the table: 

P R O C E D U R E  
RECURSIVE 
RETURNS 
( 
P O I N T E R  
) 

( end of table > 

ABSTRACTION substitutes this list for itself on the following seven calls to the scanner. 
Thus the parser is unaware that anything but a legal procedure is being declared. (The 
code substituted for ABSTRACTION is slightly modified from the above. The actual 
code is given in Section 4.1 

In order to fully implement this macro processor, the following set of commands are 
implemented: 

MCSTRT. Start scanner to point to next command as next operation (token to return). 
MCEND. Turn off macro table. Scanner should start to read source input again as the 

next token to return. 
M C T O K N  IX, YI. Return a token of class Y and value X. Thus M C T O K N  

tACRCUR. LXKYWD) returns the token for RECURSIVE ia keyword (LXKYWD) 
with the internal value ACRCURI. 

MCGET. This creates a new symbol table name and returns it. It is used to create 
declarations of internal variables not known to the programmer. 

MCSETT X. This sets condition X to be true. X is a boolean variable. For example, 
MCSETT EXCEPTION is used in the code for EXCEPTION to insure that only one 
EXCEPTION block appears in a program. If the named condition has already appeared, 
then an error results. 

MCSETF X. The named condition X is initialized to false. This is used in conjunction 
with the MCSETT command. 

MCREF. Return as next token a previously generated name. Thus the implicitly 
declared variable (via MCGET) can be referenced in later statements. 



I m p l e m e n t a t i o n  of l anguage  e n h a n c e m e n t s  147 

MCSUB X. Call subroutine X to perform some additional processing. This is an 
"escape" from the macro processor back into the environment of the parser. As it turned 
out, this was only used to generate error messages, which could have easily been imple- 
mented as a separate M C E R R O R  macro. (See next section.) 

M C I F  X. Go to next table entry if boolean X is true. If not, skip to the M C E N D I F  lot 
MCELSE) entry. This enabled conditional code to be generated depending upon the 
source program. 

M C E N D I F ,  Terminates the preceding M C I F  block. 
MCELSE. Allows for separate true and false code to be generated based upon the 

condition in the M C I F  command.  For this particular implementation, this was never 
needed. 

With these commands,  it was now possible to implement the extensions as expansions 
of existing P L  1 statements. In Section 4, the resulting tables will be given. As an 
interesting sidelight to the implementation, one of the hardest problems we faced was 
keeping source statement numbers correct. An important  engineering aspect of the imple- 
mentat ion was that users should have no knowledge or idea of the underlying implemer~- 
tation. These language extensions should appear  to be an integral part  of the language, as 
much as the DEC LAR E statement or assignment statement. Thus we wanted to make 
sure that statement numbers corresponded to the source statement numbers in the input 
file for the program. Not  having P L U M  increment the current statement counter when a 
macro generated statement was parsed turned out to be relatively difficult. 

3.3 Error detection 

An important  issue in compiler design, especially for P L U M  where good diagnostics 
are a requirement in a university environment,  is error detection. In adding abstractions. 
errors were handled in one of three ways: 

ta) Do nothing 
(b) Modify compiler to check for error 
(c) Let macros check for errors 

Macros simply substituted parsed text for a given symbol. Thus if an error occurred, 
the "correct" syntax fed to P L U M  would be in error and a message would be generated 
by the parser. Thus as much as possible, option (a) was the desired choice. For example. 
if a program contains the statements: 

PUSH:  F U N C T I O N :  

and 

CALL PUSH (X. Y): 

then the compiler would generate the message that the arguments to PUSH do not agree 
with its definition, e.g. the message is independent of abstraction implementation. 

Unfortunately. not every error can be handled intelligently in this manner. (The crucial 
word is "'intelligently", since the method will find all errors.) For example, multiple 
E X C E P T I O N  blocks would generate the message that procedure E X C E P T I O N  is mul- 
tiply defined, yet the user has no knowledge about  any procedure named "exception". 

The macros themselves can handle most of these errors. The MCSETT (set to true) 
and M C S E T F  (set to false) commands  of the last section set global flags. These can be 
tested by the M C I F  command.  Thus O P E R A T I O N  sets a flag that is tested by FUNC-  
TION to make sure O P E R A T I O N  appeared. E X C E P T I O N  sets a flag that is tested by 
F U N C T I O N  to determine whether to generate code to raise an exception (ON unit) if an 
assert failure occurs. 

In order to handle the remaining errors, a few tests had to be added to the parser itselt~ 
For  example, A B S T R A C T I O N  can only appear  as a level one (outermost) procedure. 
Thus the parser first checks the nesting level before processing the abstraction macro. 

(.L 6 3-4 C 
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4. I M P L E M E N T A T I O N  

As mentioned previously, P O I N T E R  variables form the basis for the abstract data 
type. The user. wants something of TYPE(THING),  so the system implements this as a 
POINTER,  with the constraint that the object is only passed as an argument to the 
procedure THING.  

Within the abstraction, the abstract object is a pointer variable. The representation 
(REP) is a BASED structure referenced by the P O IN TER variable. Code is automati- 
cally generated to allocate storage for such a based structure and to initialize the abstract 
variable to point to this structure. The abstraction selector operator  (..) was chosen 
because of its similarity to the syntactic structure accessing operator (3; however, it is 
actually a pointer reference ( -  > ). While its semantics are similar to structure accessing, 
its implementation is very different. 

In order to allow users to also allocate abstract types, e.g. to make linked lists, 
the function NEW was added. X = NEW; allocates a new copy of the object TYPE(- 
T H I N G )  and sets X to point to it. This is similar to NEW in Pascal. NEW can be used 
with any abstract data type, and is implemented as a local procedure within the abstrac- 
tion procedure defining the abstract type. 

4.1 Macro tables 

ABSTRACTION. The basic abstraction is a procedure that returns a pointer to the 
allocation of the abstract object. This is handled by the code: 

51: P R O C E D U R E  RECURSIVE RETURNS (POINTER);  
DECLARE 52 POINTER:  
S2 = NEW: 

where 51 is the name of the abstraction and 52 is a generated dummy name. 
If a user declares a variable to be of TYPE (51), then abstraction procedure 51 is called 

in the INITIAL clause of the declaration and the value of pointer S2 will be returned via 
the later O P E R A T I O N  clause. Note that following ABSTRACTION, the executing 
program has already allocated 52. Any initialization code will set the appropriate values 
pointed to by 52 before returning the initial allocation. As an example of a complete 
macro, the details for ABSTRACTION are given in Fig. 2. 

OPERATION.  O P E R A T I O N  has the primary function of returning the value allo- 
cated via $2 = NEW for the above ABSTRACTION. Syntactically it follows any initiali- 
zation code so that the allocated object can be initialized "automatically". O P E R A T I O N  
results in the followikng code being generated: 

RETURN (52);/* RETURN VARIABLE OF TYPE (51) */ 

MCSTRT Start ~acro processor 

MCTOKN ACRCUR,LXKYWD RECURSIVE 
MCTOKN ACRTNS,LXKYWD RETURNS 
MCTOKN ACLPAR,LXLP ( 
MCTOKN ACTYPE,LXATTR TYPE 
MCTOKN ACLPAR, LXLP ( 
MCREF ! a0straction name S1 
MCTOKN ACRPAR,LXRP ) 
MCTOKN ACRPAR,LXRP ) 
MCTOKN ACSEMI,LXRSWD 
MCTOKN ACDCL,LXRSWD DECLARE 
MCGEN dummy name $2 
MCTOKN ACTYPE,LXATTR TYPE 
MCTOKN ACLPAR,LXLP ( 
MCREF i abstraction name $I 
MCTOKN ACRPAR,LXRP ) 
MCTOKN ACSEM!,LXRSWD ; 
MCREF $2 dummy name $2 
MCTOKN ACEQ,LXBN 
MCREF 4 NEW (allocation function) 
MCSETF EXCEPTION NO exception block yet 
MCSETF OPERSEEN No OPERATION seen 
MCSETF REPSEEN No REP seen yet 
MCSETT NOOPER No OPERATION yet 
MCSETT NOREP NO REP yet 
MCEND That's all for ABSTRACTION 

Fig. 2. Macro table for ABSTRACTION. 
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NEW: P R O C E D U R E  RETURNS POINTER):  
* A L L O C A T I O N  P R O C E D U R E  * 
DECLARE $3 P O I N T E R :  
ALLOCATE S1 SET ($31: 
RETURN ($3): 
END:  * NEW * 

Note that the allocate statement allocates a BASED structure {$1t and sets a pointer ($31 
to it. 

REP and SELECTOR. REP defines the actual data structures used by the abstraction. 
The name of the based structure will be the same as the abstraction name. The cooe 
substituted for REP is: 

DECLARE I S1 BASED(S2i. 

The expression BASED(S2~ is included so that initialization will work as expected, i.e. $2 
will be the assumed pointer if any selector fields are referenced• The statement TOP = 0 
means the same as the statement $2 - >  TOP  = 0. 

SELECTOR simply returns the value 2. Thus a REP statement is compiled as: 

DECLARE 1 abstracttype BASED(S2k 
2 fieldl attributes, 
2 field2 attributes, 

EXCEPTION.  EXCEPTION creates a procedure that gets called by ON statements at 
each F U N C T I O N  entry. The code added is: 

EXCEPTION : P R O C E D U R E :  

Se_._! E X C E P T I O N  flag to true: 
The END following the EXCEPTION block terminates this procedure. 

F U N C T I O N .  Functions are simply entry points into the abstraction procedure. The 
code subsituted is" 

entryname" ENTRY(parameters!: 

i_f EXCEPTION fla~, is true then generate: 

ON ASSERTFAIL CALL EXCEPTION" 
m, 

F U N C T I O N  was the one statement that did require some changes to the compiler• 
F U N C T I O N  was implemented by substituting the token ENTRY and setting a flag, 
checked by the parser, to call the macro processor after the parameter list was processed. 

This change would be sufficient for correct program development, but does not include 
all the necessary enforcement mechanisms to detect errors. Thus several additional 
changes had to be made'  

(1) Only BEGIN or DECLARE statements can follow F U N C T I O N  statements. The 
body of each function is then a separate block of code with its own activation 
record. 

(2) GOTOs  between functions are not permitted. At run time, any G O T O  which 
results in a function's BEGIN block being popped off the execution stack is pro- 
cessed as an error. 

(3) The END statements for functions are handled in the same manner as procedure 
END statements, i.e. a RETURN is added. This (and the above G O T O  restriction) 
forces each function to be an independent subroutine with a unique entry point, 
and a unique set of return points. Common operations among functions in an 
abstraction can be handled by internal procedures inside the abstraction. 
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RETURN(A..TOP=0); 

END; 
END STACK; 

STACK: ABSTRACTION; 
REP SELECTOR STORAGE(STACKSIZE) FIXED BINARY, 

SELECTOR TOP FIXED BINARY, 
SELECTOR SIZE FIXED BINARY; 

/* Set Initial stack size */ 
DECLARE STACKSIZE STATIC INI'f(i00); 

/* Initialization code */ 
TOP = 0; 
SIZE = ~TACKS~ZZ; 
EXCEPTION; 

DO CASE(ONASSERT); 
\'PUSH*\ DO; 

DECLARE NEWSTACK TYPE(STACK), 
I FIXED BINARY; 

/* Increase stack size due to overflow */ 
STACKSIZE = A..SIZE +i00; 
NEWSTACK = NEW; 
/* Cop}' old to new */ 
DO I = I TO A..SI/E: 

NEWSTACK..STORAGE(Ii=A..STORAGE(I); 

END; 
NEWSTACK..TOP = A..TOP; 

/* Set user stack to be new one */ 
A := NEWSTACK; 
/* Set STACKSIZE for next default allocation */ 
BTACKSIZE = I00; 

END; 
"BOP'\ DO; 

/* Print message and return 0 */ 
PUT SKIP LIST('*** STACK EMPTY. 0 RETURNED'); 
A..TOP = i; 
A.. STORAGE (A.. TOP) = 0; 

END ; 
J* NO exception for EMPTY */ 
END; /* DO CASE */ 

END~ /* EXCEPTION */ 
OPERATION; 

PUSH: FUNCTION(A,S); 
DECLARE A TyPE(STACK), 

B FIXED BINARY; 
BUSH: ASSERT (A..TOP < A..SIZE) 
BEGIN; 

A..TOP = A..TOP *i 
A..STORAGE( A..TOP = B; 

END; 
POP: FUNCTION(A,B); 

POP: ASSERT (A..TOP > 0}; 

BEGIN; 
B = A..STORAGE( A..TCP }; 
A..TOP = A..TOP -i; 

END; 
EMPTY: FUNCTION(A) RETURNS(BIT); 

BEGIN; 

Fig. 3. Abstraction module. 

In Fig. 3, a complete stack implementation is given. In this implementation, stacks are 
allowed to grow arbitrarily large, yet the implementation preserves the efficiency of the 
array implementation (except in the rare cases of  the stack overflowing). The EXCEP- 
T I O N  block is used to enforce the specifications on the stack functions, and to extend 
the domain of the PUSH function by enlarging the stack when a specification failure 
occurs (stack overflow). Figure 4 gives the code as compiled by P L U M  to implement this 
stack. Macro reserved words are given as comments  and the PL, 1 syntax substituted for 
them is underlined. 

5. R E S U L T S  O F  I M P L E M E N T A T I O N  

The system has been used in several and fairly heavily in one class at the University of 
Maryland. Students were not fully aware of the underlying implementation of abstrac- 
t i o n s - p r o b a b l y  the best measure of its success as an implementation technique. Only 
29% assumed that the partial macro substitution technique was used. 

The language that we developed seemed successful, given our limited usage. In one 
experiment, two classes had to write scanners for a compiler. One class used abstractions 
while the other used standard P L  1. In each case, the final product was run against a 
standard test data set, and only those programs that worked correctly were evaluated. 
This resulted in 8 programs from each class. The programs were then run with all of  the 
PLACES diagnostic features turned on (e.g. static and dynamic statement counts, timing 
information, tracing, etc.} Some of the results are presented in Fig. 5. 
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STACK: /* ABSTRACTION */ procedure recursive returns(pointe~); 
declare dummy pointer; 
dummy = new; 

/* REP */ declare 1 stack based(dummy), 
/* SELECTOR *7 2---gT~RAGE(STACKSIZE) FIXED BINARY, 
/* SELECTOR */ ~ TOP FIXED BINARY, 
/* SELECTOR */ Z SIZE FIXED BINARY; 

/* Default stack size */ 
DECLARE STACKS!ZE STATIC INIT(i00); 

/* Initialization code */ 
dummy -> TOP = 0; 
dummy ~ SIZE = STACKSIZE; 
EXCEPTION: ~rocedure(onassert); 

DO CASE(ONASSERT); 
\'PUSH~\ DO; 

DECLARE NEWSTACK TYPE(STACK), 
I FIXED BINARY; 

/* Increase stack size due to overflow 4~ 
STACKSIZE = A /* .. * -> SIZE +i00; 

NEWSTACK = NEW; 
/* Copy old to new */ 
DO I = ! TO A /4 .. */ -> SIZE; 

NEWSTACK /* .. *~j -> STO.~AGE(1)=A /* .. 4 
-> STORAGE-~-fII~ ; 

END ; 
NEWSTACK /* */ -> TOP = A /4 4 _> TOP; °. / .. / 

/* Set user stack--to be new one */ 
A -> STACK = NEWSTACK -> STACK; 
/*--Set STACKSIZE for ne-xt-~e~ault allocation */ 
STACKSIZE = i06; 

END; 
\'POP'\ DO; 

/" Print message and return 0 4/ 
PUT SKIP LISTi'*** STACK EMPTY. 0 RETURNED'i; 
A /* .. */ -> TOP = I; 
A /* .. */ > STOP~GE(A /* .. */ -> TOP) = 0; 
END; 

/* No exception for empty *~ 
END; /* DO CASE 4/, 

END; /* EXCEPTION */ 
/* OPERATION; */ 

return(dummy); 
/* allocation function */ 
n--ew: procedure returns(p-ointer); 

declare initptr pointer; 
allocate stack s ~ t r ) ;  
return(inl-'~'h-f); 
end new; 

PUSH: /* FUNCTION */ entry(A,B); 
on assertfail call exception(onassert); 
DECLARE A /* TYPE(STACK) */ pointer, 

B FIXED BINARY; 

BEGIN; 
A /* .. */ -> TOP = A /* .. */ -> TOP *i; 
A /* .. */ ---g STORAGE( A /* .. ~ -__>> TOP ) = B; 

return; 
END; 

POP: /* FUNCTION */ entr~(A,B); 
on assertfail call exception(onassert); 
~-OP: ASSERT [A~.. */ -> TOP > U); 
BEGIN; 

B = A /* .. */ -> STORAGE( A /* .. */ ---> TOP ); 
A /* .. */ -._~> TO-P = A /* .. */ -> TOP -i; 

return; 
END; 

EMPTY: /* FUNCTION */ entry(A) RETURNS(BIT); 
on assertfail call exception(onassert); 
BEGIN; 

RETURN(A /* .. */ -_>> TOP=0); 
END; 
END STACK; 

Fig. 4. Code compiled for abstraction. 

Feature Abstractions Standard PLUM 
Mean Std-Dev Mean Std-Dev 

............................................. 

Statements 281 60 321 30 
Statements executed 17597 6928 23866 11645 
Object pgm size(words) 2554 784 2888 347 
Object pgm words/Stmt 9.1 2.3 9.0 1.8 

IF statements 19.25 6.56 34.75 15.06 
IF stmts executed 3059 2182 7070 6301 
% IF stmts executed 16.38 5.23 27.61 18.47 

PROC statements 15.76 1.85 12.00 3.70 
PROC stmts executed i976 i299 1629 796 
% PROC stmts executed 10.66 3.18 7.0i 2.29 

Fig. 5. Collected data. 
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Both groups had comparable products, but the abstraction group used only an average 
of 281 statements as compared to the 321 of the standard PL/1 group. This seemingly 
contradicts the objection against abstractions that they lead to larger programs: how- 
ever, our results were not statistically significant. 

According to Fig. 5. the abstraction group executed fewer statements, contained signifi- 
cantly fewer IF statements, but executed more procedure statements. This agrees with 
our preconceived notions that abstractions are less complex (as measured by number of 
IF statements), but incur greater overhead due to information hiding aspects of abstract 
data type design. 

While the overhead for procedure calls was significant, many of the procedures could 
be classified as: 

(a) Trivial--simply sets or returns a value of one of the selectors in the implemen- 
tation of the abstract type 

(b) Simple--a one line function (e.g. EMPTY in Figure 3) In our sample data, 
rewriting these as inline functions reduced the procedure calls to 1696 (com- 
pared to 1629 of the standard group), which is much less additional overhead. A 
"smart" compiler (or an I N L I N E  attribute) would allow such optimization 
without violating the "black box'" approach towards abstractions. 

SUMMARY 

In this paper we have outlined the procedure for extending a compiler with new 
features by using a form of macro-processor hidden from the user. The user is unaware of 
any changes to the source program and simply views the new concepts as extensions to 
the basic language. 

The implementation of data abstractions via macro substitutions within P L U M  has 
been straightforward and efficient. Only minor changes had to be made to either the 
parser or the code generator of PLUM, and once implemented, the macro-processor 
could be easily altered. A few primitive constructs were added to the compiler, and the 
remainder of the additions were handled by a macro processor built into the scanner. 
Therefore, users were only aware of the original source program and the system was 
efficient since only one parsing pass was needed to process the program. 

Data was collected from two classes--one using abstractions and one using standard 
PL/1. Programs written with abstractions turned out to be less complex and with more 
procedure invocations {as theorized) but contained fewer statements on the average la 
surprizing, but favorable result!. 

The implementation technique that we have described seems quite practical in a 
research or development environment. Although the process generates more object code 
than a production compiler especially tuned for the ne~ statements, in most applications 
such tight coding is not needed. The versatility of being able to extend the compiler fairly 
easily is probably worth the cost. 
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