
1Nau – Lecture slides for Automated Planning and Acting

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

http://www.laas.fr/planning

Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Last update: 3:25 PM, March 10, 2022

Chapter 2

Deliberation with Deterministic Models

2.3: Heuristic Functions
2.7.7: HTN Planning

Dana S. Nau
University of Maryland

http://www.laas.fr/planning
http://creativecommons.org/licenses/by-nc-sa/4.0/

2Nau – Lecture slides for Automated Planning and Acting

Motivation Outline
● Given: planning problem P in domain Σ
● One way to create a heuristic function:

▸ Weaken some of the constraints, get additional solutions
▸ Relaxed planning domain Σ′ and relaxed problem

P′ = (Σ′,s0,g′) such that
• every solution for P is also a solution for P′
• additional solutions with lower cost

▸ Suppose we have an algorithm A for
solving planning problems in Σ′
• Heuristic function hA(s) for P:

▸ Find a solution π′ for (Σ′,s,g′); return cost(π′)
▸ Useful if A runs quickly

• If A always finds optimal solutions, then hA is
admissible

Chapter 2, part a (chap2a.pdf):
2.1 State-variable representation
–– Comparison with PDDL
2.2 Forward state-space search
2.6 Incorporating planning into an actor

–––

Chapter 2, part b (chap2b.pdf):
2.3 Heuristic functions
2.7.7 HTN planning

–––

Chapter 2, part c (chap2c.pdf):
2.4 Backward search
2.5 Plan-space search

–––

Additional slides:
2.7.8 LTL_planning.pdf

Next ⟶

3Nau – Lecture slides for Automated Planning and Acting

Example
● Relaxation: let vehicle travel in a straight line between any pair of cities

▸ straight-line-distance ≤ distance by road
⇒ additional solutions with lower cost

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

4Nau – Lecture slides for Automated Planning and Acting

Domain-independent Heuristics

● Use relaxation to get heuristic functions that can be used in any
classical planning problem
▸ Additive-cost heuristic
▸ Max-cost heuristic
▸ Delete-relaxation heuristics

• Optimal relaxed solution
• Fast-forward heuristic

▸ Landmark heuristics

In the book, but I’ll skip them

5Nau – Lecture slides for Automated Planning and Acting

2.3.2 Delete-Relaxation
● Allow a state variable to have more than one

value at the same time
● When assigning a new value, keep the old one too
● Relaxed state-transition function, γ+

▸ If action a is applicable to state s, then
γ+(s,a) = s ∪ γ(s,a)

● If s includes an atom x=v, and a has an effect x←w
▸ Then γ+(s,a) includes both x=v and x=w

● Relaxed state (or r-state)
▸ a set ŝ of ground atoms that includes ≥ 1 value

for each state variable
▸ represents {all states that are subsets of ŝ}

s0 = {loc(r1)=d3, cargo(r1)=nil, loc(c1)=d1}

d2d1

d3
r1

c1

ŝ1 = γ+(s0, move(r1,d3,d1))
= {loc(r1)=d3, loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1}

move(r1, d3, d1)
pre: loc(r1) = d3
eff: loc(r1) ← d1 d2d1

d3

c1

r1

6Nau – Lecture slides for Automated Planning and Acting

Relaxed Applicability

● Action a is r-applicable in a relaxed state ŝ
if an r-subset of ŝ satisfies a’s preconditions
▸ a subset with one value per state variable

● If a is r-applicable then γ+(ŝ,a) = ŝ ∪ γ(s,a)

Poll: would the following
definition be equivalent?
• Action a is r-applicable in ŝ if

ŝ satisfies a’s preconditions
A. Yes B. No C. don’t know

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l, loc(r)=l
eff: cargo(r)←c, loc(c)←r

move(r, d, e)
pre: loc(r)=d
eff: loc(r)←e

unload(r, c, l)
pre: loc(c)=r, loc(r)=l
eff: cargo(r)←nil, loc(c)←l d2d1

d3

c1

r1

d2d1

d3

c1

r1

d2d1

d3
r1

c1

ŝ2

ŝ1

s0

ŝ1 = γ+(s0, move(r1,d3,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

ŝ2 = γ+(ŝ1, load(r1,c1,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
cargo(r1) = c1,
loc(c1) = r1,
loc(c1) = d1}

s0 = {loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

7Nau – Lecture slides for Automated Planning and Acting

Relaxed Applicability (continued)
● Let π = ⟨a1, …, an⟩ be a plan
● Suppose we can r-apply the actions of π in

the order a1, …, an :
▸ r-apply a1 in ŝ0, get ŝ1 = γ+(ŝ0,a1)
▸ r-apply a2 in ŝ1, get ŝ2 = γ+(ŝ1,a2)
▸ …
▸ r-apply an in ŝn–1, get ŝn = γ+(ŝn–1,an)

● Then π is r-applicable in ŝ0
and γ+(ŝ0,π) = ŝn

● Example: if s0 and ŝ2 are as shown, then
γ+(s0, ⟨move(r1,d3,d1), load(r1,c1,d1)⟩) = ŝ2

d2d1

d3

c1

r1

d2d1

d3

c1

r1

d2d1

d3
r1

c1

ŝ2

ŝ1

s0

ŝ1 = γ+(s0, move(r1,d3,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

ŝ2 = γ+(ŝ1, load(r1,c1,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
cargo(r1) = c1,
loc(c1) = r1,
loc(c1) = d1}

s0 = {loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

8Nau – Lecture slides for Automated Planning and Acting

Relaxed Solution

d2d1

d3

c1

r1

d2d1

d3

c1

r1

d2d1

d3
r1

c1

ŝ2

ŝ1

s0

ŝ1 = γ+(s0, move(r1,d3,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

ŝ2 = γ+(ŝ1, load(r1,c1,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
cargo(r1) = c1,
loc(c1) = r1,
loc(c1) = d1}g = {loc(r1)=d3, loc(c1)=r1}

d3
r1 c1

s0 = {loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

● An r-state ŝ r-satisfies a formula g
if an r-subset of ŝ satisfies g

● Relaxed solution for a planning problem
P = (Σ, s0, g):
▸ a plan π such that γ+(s0, π) r-satisfies g

● Example: let P be as shown
▸ ŝ2 r-satisfies g
▸ So π = ⟨move(r1,d3,d1), load(r1,c1,d1)⟩

is a relaxed solution for P

9Nau – Lecture slides for Automated Planning and Acting

Relaxed Solution

d2d1

d3

c1

r1

d2d1

d3

c1

r1

d2d1

d3
r1

c1

ŝ2

ŝ1

s0

ŝ1 = γ+(s0, move(r1,d3,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

ŝ2 = γ+(ŝ1, load(r1,c1,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
cargo(r1) = c1,
loc(c1) = r1,
loc(c1) = d1}

s0 = {loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

● Planning problem P = (Σ, s0, g)
● Optimal relaxed solution heuristic:

▸ h+(s) = minimum cost of all relaxed
solutions for (Σ, s, g)

● Example: s = s0

● π = ⟨move(r1,d3,d1), load(r1,c1,d1)⟩
▸ cost(π) = 2

● No less-costly relaxed solution, so h+(s0) = 2

g = {loc(r1)=d3, loc(c1)=r1}

d3
r1 c1

Poll: is h+ admissible?
A. Yes
B. No

10Nau – Lecture slides for Automated Planning and Acting

Example: GBFS

● GBFS with initial state s0, goal g, heuristic h+

● Applicable actions a1, a2 produce states s1, s2

● GBFS computes h+(s1) and h+(s2), chooses the state that has the lower h+ value

d2d1

d3

r1
c1 d2d1

d3

r1
c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

g = {loc(r1)=d3, loc(c1)=r1}

d3
r1 c1

a1 = move(r1,d3,d1)

s1 = γ(s0,a1)
= {loc(r1) = d1,

cargo(r1) = nil,
loc(c1) = d1}

a2 = move(r1,d3,d2)

s2 = γ(s0,a2)
= {loc(r1) = d2,

cargo(r1) = nil,
loc(c1) = d1}

Poll 1: What is h+(s1)?
A. 1 D. 4
B. 2 E. other
C. 3

d2d1

d3
r1

c1

Poll 2: What is h+(s2)?
A. 1 D. 4
B. 2 E. other
C. 3

11Nau – Lecture slides for Automated Planning and Acting

Fast-Forward Heuristic

● Every state is also a relaxed state
● Every solution is also a relaxed solution

● h+(s) = minimum cost of all relaxed solutions
▸ Thus h+ is admissible
▸ Problem: computing it is NP-hard

● Fast-Forward Heuristic, hFF

▸ An approximation of h+ that’s easier to compute
• Upper bound on h+

▸ Name comes from a planner called Fast Forward

12Nau – Lecture slides for Automated Planning and Acting

Relaxed Solution

d2d1

d3

c1

r1

d2d1

d3

c1

r1

d2d1

d3
r1

c1

ŝ2

ŝ1

s0

ŝ1 = γ+(s0, move(r1,d3,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

ŝ2 = γ+(ŝ1, load(r1,c1,d1))
= {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
cargo(r1) = c1,
loc(c1) = r1,
loc(c1) = d1}

s0 = {loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

● Planning problem P = (Σ, s0, g)
● Optimal relaxed solution heuristic:

▸ h+(s) = minimum cost of all relaxed
solutions for (Σ, s, g)

● Example: s = s0

● π = ⟨move(r1,d3,d1), load(r1,c1,d1)⟩
▸ cost(π) = 2

● No less-costly relaxed solution, so h+(s0) = 2

g = {loc(r1)=d3, loc(c1)=r1}

d3
r1 c1

Poll: is h+ admissible?
A. Yes
B. No

13Nau – Lecture slides for Automated Planning and Acting

Preliminaries
● Suppose a1 and a2 are r-applicable in ŝ0

● Let ŝ1 = γ+(ŝ0, a1) = ŝ0 ∪ eff(a1)
● Then a2 is still applicable in ŝ1

▸ ŝ2 = γ+(ŝ1, a2) = ŝ0 ∪ eff(a1) ∪ eff(a2)
● Apply a1 and a1 in the opposite order ⇒ same state ŝ2

● Let A1 be a set of actions that all are r-applicable in s0

▸ Can r-apply them in any order and get same result
▸ ŝ1 = γ+(ŝ0, A1) = ŝ0 ∪ eff(A1)

• where eff(A) = ⋃{eff(a) | a ∈ A}
● Suppose A2 is a set of actions that are r-applicable in ŝ1

▸ ŝ2 = γ+(ŝ0, ⟨A1, A2⟩) = ŝ0 ∪ eff(A1) ∪ eff(A2)
…

● Define γ+(ŝ0, ⟨A1, A2,…, An⟩) in the obvious way

s0 = {loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1}
a1 = load(r1,c1,d1)
a2 = move(r1,d1,d3)
A1 = {a1, a2}
γ+(s0, A1) = {loc(r1)=d1, loc(r1)=d3,

cargo(r1)=nil, cargo(r1)=c1,
loc(c1)=d1, loc(c1)=r1}

d2d1

d3

r1
c1

d2d1

d3

c1

r1

14Nau – Lecture slides for Automated Planning and Acting

Fast-Forward Heuristic

HFF(Σ, s, g): // find a minimal relaxed solution, return its cost

// construct a relaxed solution ⟨A1,A2,…,Ak⟩:
ŝ0 ← s
for k = 1 by 1 until ŝk r-satisfies g

Ak ← {all actions r-applicable in ŝk–1}; ŝk ← γ+(sk–1, Ak)
if k > 1 and ŝk = ŝk–1 then return ∞ // there’s no solution

// extract minimal relaxed solution ⟨â1, â2, …, âk⟩:
ĝk ← g
for i = k, k–1, …, 1:

âi ← any minimal subset of Ai such that γ+(ŝi-1,âi) r-satisfies ĝi

ĝi−1 ← (ĝi ∖ eff(âi)) ∪ pre(âi)
return ∑ costs of the actions in â1, …, âk // upper bound on h+

● Define hFF(s) = the value returned by HFF(Σ,s,g)ambiguous

pre(âi) = ⋃{pre(a) | a ∈ âi}
eff(âi) = ⋃{eff(a) | a ∈ âi}

1. At each iteration, include
all r-applicable actions

2. At each iteration, choose a
minimal set of actions that
r-achieve ĝi

i.e., no proper subset is a relaxed solution

15Nau – Lecture slides for Automated Planning and Acting

d2d1

d3
r1

c1

s2 = γ(s0,a2) = {loc(c1) = d1, loc(r1) = d2,
cargo(r1) = nil}

Example: GBFS Again
● GBFS with initial state s0, goal g,

heuristic hFF

● Two applicable actions: a1, a2

● Resulting states: s1, s2

● GBFS computes hFF(s1) and hFF(s2)
▸ Chooses the state that has the

lower hFF value
● Next several slides:

▸ hFF(s1)
▸ hFF(s2) d2d1

d3

r1
c1 d2d1

d3

r1
c1

g = {loc(r1)=d3,
loc(c1)=r1}

d3
r1 c1

s0 = {loc(c1) = d1, loc(r1) = d3,
cargo(r1) = nil}

s1 = γ(s0,a1) = {loc(c1) = d1, loc(r1) = d1,
cargo(r1) = nil}

a1 = move(r1,d3,d1) a2 = move(r1,d3,d2)

16Nau – Lecture slides for Automated Planning and Acting

from ŝ0:

loc(r1) = d1
loc(c1) = d1
cargo(r1) = nil

move(r1,d1,d3)
move(r1,d1,d2)

loc(r1) = d1
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d2

load(r1,c1,d1)
cargo(r1) = c1
loc(c1) = r1

Atoms in ŝ1:Actions in A1:Atoms in ŝ0 = s1:

Example
● Computing hFF(s1)

▸ 1. construct a relaxed solution
• at each step, include all

r-applicable actions

// construct a relaxed solution ⟨A1,A2,…,Ak⟩:
ŝ0 ← s
for k = 1 by 1 until ŝk r-satisfies g

Ak ← {all actions r-applicable in ŝk–1}; ŝk ← γ+(sk–1, Ak)
if k > 1 and ŝk = ŝk–1 then return ∞

ŝ1 r-satisfies
g, so ⟨A1⟩ is
a relaxed
solution

Relaxed Planning Graph (RPG) starting at ŝ0 = s1

d3
r1 c1

d2d1

d3

r1
c1

s1 = {loc(r1)=d1, cargo(r1)=nil,
loc(c1)=d1}

g = {loc(r1)=d3, loc(c1)=r1}

lines for
preconditions
and effects

17Nau – Lecture slides for Automated Planning and Acting

● â1 is a minimal set of actions
such that γ+(ŝ0,â1) r-satisfies ĝ1

▸ ⟨â1⟩ is a minimal relaxed solution
● Two actions, each with cost 1, so hFF(s1) = 2

● Computing hFF(s1)
2. extract a minimal relaxed solution
▸ if you remove any actions from it,

it’s no longer a relaxed solution

from ŝ0:

Atoms in ŝ1:Actions in A1:Atoms in ŝ0 = s1:

loc(r1) = d1
loc(c1) = d1
cargo(r1) = nil

move(r1,d1,d3)
move(r1,d1,d2)

loc(r1) = d1
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d2

load(r1,c1,d1)
cargo(r1) = c1
loc(c1) = r1

Solution extraction starting at ĝ1 = g

// extract minimal relaxed solution ⟨â1, â2, …, âk⟩:
ĝk ← g
for i = k, k–1, …, 1:

âi ← any minimal subset of Ai such that γ+(ŝi-1,âi) r-satisfies ĝi

ĝi−1 ← (ĝi ∖ eff(âi)) ∪ pre(âi)

â1

d2d1

d3

r1
c1

s1 = {loc(r1)=d1, cargo(r1)=nil,
loc(c1)=d1}

g = {loc(r1)=d3, loc(c1)=r1}

ĝ1 = g

ĝ0

Example

d3
r1 c1

18Nau – Lecture slides for Automated Planning and Acting

from ŝ0:

 Atoms in ŝ2:
Actions in A2:

Atoms in ŝ1:Actions in A1:Atoms in ŝ0=s2:

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

move(r1,d2,d3)
move(r1,d2,d1)

 from ŝ1:

loc(r1) = d2
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

move(r1,d1,d2)
move(r1,d3,d2)

move(r1,d1,d3)

move(r1,d2,d3)
move(r1,d2,d1)

move(r1,d3,d1)

load(r1,c1,d1)

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

cargo(r1) = c1
loc(c1) = r1

Example

● Computing hFF(s2)
▸ 1. construct a relaxed solution

• at each step, include all
r-applicable actions

RPG starting at ŝ0 = s2

s2 = {loc(r1)=d2, cargo(r1)=nil,
loc(c1)=d2}

d2d1

d3

r1
c1

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

// construct a relaxed solution ⟨A1,A2,…,Ak⟩:
ŝ0 ← s
for k = 1 by 1 until ŝk r-satisfies g

Ak ← {all actions r-applicable in ŝk–1}; ŝk ← γ+(sk–1, Ak)
if k > 1 and ŝk = ŝk–1 then return ∞

ŝ2 r-satisfies g, so ⟨A1, A2 ⟩
is a relaxed solution

19Nau – Lecture slides for Automated Planning and Acting

● ⟨â1, â2⟩ is a minimal relaxed solution
● each action’s cost is 1, so hFF(s2) = 3

from ŝ0:

 Atoms in ŝ2:
Actions in A2:

Atoms in ŝ1:Actions in A1:Atoms in ŝ0=s2:

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

move(r1,d2,d3)
move(r1,d2,d1)

 from ŝ1:

loc(r1) = d2
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

move(r1,d1,d2)
move(r1,d3,d2)

move(r1,d1,d3)

move(r1,d2,d3)
move(r1,d2,d1)

move(r1,d3,d1)

load(r1,c1,d1)

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

cargo(r1) = c1
loc(c1) = r1â1

â2

// extract minimal relaxed solution ⟨â1, â2, …, âk⟩:
ĝk ← g
for i = k, k–1, …, 1:

âi ← any minimal subset of Ai such that γ+(ŝi-1,âi) r-satisfies ĝi

ĝi−1 ← (ĝi ∖ eff(âi)) ∪ pre(âi)

Example

ĝ1 ĝ2 = g

s2 = {loc(r1)=d2, cargo(r1)=nil,
loc(c1)=d2}

d2d1

d3

r1
c1

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

● Computing hFF(s1)
2. extract a minimal relaxed solution
▸ if you remove any actions from it,

it’s no longer a relaxed solution

Solution extraction starting at ĝ2 = g

20Nau – Lecture slides for Automated Planning and Acting

Properties

● Running time is polynomial in |A| + ∑x∈X |Range(x)|

● hFF(s) = value returned by HFF(Σ,s,g)
= ∑ i cost(âi)
= ∑ i ∑ {cost(a) | a ∈ âi }

▸ each âi is a minimal set of actions such that γ+(ŝi-1,âi) r-satisfies ĝi

• minimal doesn’t mean smallest

● hFF(s) is ambiguous
▸ depends on which minimal sets we choose

● hFF not admissible

● hFF(s) ≥ h+(s) = smallest cost of any relaxed plan from s to goal

21Nau – Lecture slides for Automated Planning and Acting

Example

Poll. Suppose the goal atoms are
c7, c8, c9. How many minimal
relaxed solutions are there?

1. 1
2. 2
3. 3
4. 4
5. 5
6. 6
7. 7
8. ≥ 8

from ŝ0

 Atoms
in ŝ2:

Actions
in A2:

Atoms
in ŝ1:

Actions
in A1:

Atoms
in ŝ0=s1:

c1
c2

a1
a2

 from ŝ1

c5
c6

c3
c4 a6

a5

a4
a7

c7
c8
c9a3

c1
c2

a1
a2

c5
c6

c3
c4

a4
a3

22Nau – Lecture slides for Automated Planning and Acting

● P = (Σ,s0,g) be a planning problem
● Let φ = φ1 ∨ … ∨ φm be a disjunction of ground atoms
● φ is a disjunctive landmark for P if φ is true at some point in every solution for P

● Example disjunctive landmarks
▸ loc(r1)=d1
▸ loc(r1)=d3
▸ loc(r1)=d3 ∨ loc(r1)=d2

d2d1

d3
r1

c1

2.3.3 Landmark Heuristics

s0 = {loc(r1)=d3, cargo(r1)=nil, loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

From now on, I’ll abbreviate
“disjunctive landmark” as
“landmark”

23Nau – Lecture slides for Automated Planning and Acting

g

Why are Landmarks Useful?

● Suppose m is a landmark
▸ Every solution to P must achieve m

● Possible strategy:
▸ find a plan to go from s0 to any state s1 that

satisfies m
▸ find a plan to go from s1 to any state s2 that

satisfies g

● Suppose m1, m2, m3 are landmarks
▸ Every solution to P must achieve m1, then

m2, then m3

● Possible strategy:
▸ find a plan to go from s0 to any state s1 that

satisfies m1

▸ find a plan to go from s1 to any state s2 that
satisfies m2

▸ …

m1 gs0 m2 m3
P1 P2 P3 P4ms0

P1 P2

● Can break a problem down into smaller subproblems

24Nau – Lecture slides for Automated Planning and Acting

Computing Landmarks

● Given a formula φ
▸ PSPACE-hard (worst case) to decide

whether φ is a landmark
▸ As hard as solving the planning problem itself

● Some landmarks are easier to find – polynomial time
▸ Several procedures for finding them
▸ I’ll show you one based on relaxed planning graphs

● Why use RPGs?
▸ Easier to solve relaxed planning problems
▸ Easier to find landmarks for them
▸ A landmark for a relaxed planning problem is also

a landmark for the original planning problem

● Key idea: if φ is a landmark, get new
landmarks from the preconditions of the
actions that achieve φ
▸ goal g
▸ {actions that achieve g}

= {a1, a2}
• pre(a1) = {p1, q}
• pre(a2) = {p2, q}

▸ To achieve g, must achieve
(p1 ∧ q) ∨ (p2 ∧ q)
• same as q ∧ (p1∨p2)

▸ Landmarks:
• q
• p1 ∨ p2

g

a2

a1

p1

q

p2

25Nau – Lecture slides for Automated Planning and Acting

d2d1

d3
r1

c1

RPG-based Landmark Computation
● Suppose goal is g = {g1, g2,…, gk}

▸ Trivially, every gi is a landmark
● Suppose g1 = loc(r1)=d1

▸ Two actions can achieve g1:
move(r1,d3,d1) and move(r1,d2,d1)

● Preconditions loc(r1)=d3 and loc(r1)=d2
● New landmark:

▸ φ′ = loc(r1)=d3 ∨ loc(r1)=d2

● In this example, s0 satisfies φ′

s0 = {loc(r1)=d3, cargo(r1)=nil, loc(c1)=d1}

move(r, d, e)
pre: loc(r)=d
eff: loc(r) ← e

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l, loc(r)=l
eff: cargo(r) ← c, loc(c) ← r

unload(r, c, l)
pre: loc(c)=r, loc(r)=l
eff: cargo(r) ← nil, loc(c) ← l

26Nau – Lecture slides for Automated Planning and Acting

relevant
actions

RPG-based Landmark Computation

RPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

gia2

a1

p1

q1

p2

q2

a3

p3

q3

27Nau – Lecture slides for Automated Planning and Acting

r-achievable
atoms

RPG-based Landmark Computation

RPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

gia2

a1

p1

q1

p2

q2

a3

p3

q3

28Nau – Lecture slides for Automated Planning and Acting

necessary actions: the
r-applicable actions
that achieve gi

RPG-based Landmark Computation

RPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

gia2

a1

p1

q1

p2

q2

a3

p3

q3

Preconds = {p1, q1, p3, q3}

29Nau – Lecture slides for Automated Planning and Acting

Φ = {p1∨p3, p1∨q3, q1∨p3, q1∨q3, p1∨q1∨p3,
p1∨q1∨q3, p1∨p3∨q3, q1∨p3∨q3, p1∨q1∨p3∨q3}

RPG-based Landmark Computation

RPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

gia2

a1

p1

q1

p2

q2

a3

p3

q3

Not in book

queue = ⟨p1∨p3, p1∨q3, q1∨p3, q1∨q3⟩

30Nau – Lecture slides for Automated Planning and Acting

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

true in s0

add to
queue

d2d1

d3
r1

c1

ExampleRPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

queue = ⟨loc(c1)=r1⟩
Landmarks = ∅

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l,

loc(r)=l
eff: cargo(r)←c, loc(c)←r

move(r, d, e)
pre: loc(r)=d
eff: loc(r)←e

unload(r, c, l)
pre: loc(c)=r, loc(r)=l
eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

31Nau – Lecture slides for Automated Planning and Acting

d2d1

d3
r1

c1

ExampleRPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

queue = ⟨⟩
gi = loc(c1)=r1
Landmarks = {loc(c1)=r1}
R = {load(r1,c1,d1),

load(r1,c1,d2),
load(r1,c1,d3)}

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l,

loc(r)=l
eff: cargo(r)←c, loc(c)←r

move(r, d, e)
pre: loc(r)=d
eff: loc(r)←e

unload(r, c, l)
pre: loc(c)=r, loc(r)=l
eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

32Nau – Lecture slides for Automated Planning and Acting

d3
r1 c1

ExampleRPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

queue = ⟨⟩
gi = loc(c1)=r1
Landmarks = {loc(c1)=r1}
R = {load(r1,c1,d1),

load(r1,c1,d2),
load(r1,c1,d3)}

A ∖ R = {the move and
unload actions}

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l,

loc(r)=l
eff: cargo(r)←c, loc(c)←r

move(r, d, e)
pre: loc(r)=d
eff: loc(r)←e

unload(r, c, l)
pre: loc(c)=r, loc(r)=l
eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

d2d1

d3
r1

c1 g = {loc(r1)=d3, loc(c1)=r1}Relaxed planning graph using A∖R

ŝ0:
loc(c1)=d1
loc(r1)=d3
cargo(r1)=nil

A1:
move(r1,d3,d1)
move(r1,d3,d2)

both ŝ1 and ŝ2:
loc(r1)=d1
loc(r1)=d2
loc(c1)=d1
loc(r1)=d3
cargo(r1)=nil

From ŝ0

33Nau – Lecture slides for Automated Planning and Acting

d3
r1 c1

ExampleRPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

queue = ⟨⟩
gi = loc(c1)=r1
Landmarks = {loc(c1)=r1}
R = {load(r1,c1,d1),

load(r1,c1,d2),
load(r1,c1,d3)}

N = {load(r1,c1,d1)}

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l,

loc(r)=l
eff: cargo(r)←c, loc(c)←r

move(r, d, e)
pre: loc(r)=d
eff: loc(r)←e

unload(r, c, l)
pre: loc(c)=r, loc(r)=l
eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

d2d1

d3
r1

c1 g = {loc(r1)=d3, loc(c1)=r1}Relaxed planning graph using A∖R

ŝ0:
loc(c1)=d1
loc(r1)=d3
cargo(r1)=nil

A1:
move(r1,d3,d1)
move(r1,d3,d2)

both ŝ1 and ŝ2:
loc(r1)=d1
loc(r1)=d2
loc(c1)=d1
loc(r1)=d3
cargo(r1)=nil

From ŝ0

34Nau – Lecture slides for Automated Planning and Acting

d2d1

d3
r1

c1

queue = ⟨⟩
gi = loc(c1)=r1
Landmarks = {loc(c1)=r1}
R = {load(r1,c1,d1),

load(r1,c1,d2),
load(r1,c1,d3)}

N = {load(r1,c1,d1)}

ExampleRPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

in s0

load (r1,c1,d1)
pre: cargo(r1)=nil,

loc(c1)=d1,
loc(r1)=d1

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l,

loc(r)=l
eff: cargo(r)←c, loc(c)←r

move(r, d, e)
pre: loc(r)=d
eff: loc(r)←e

unload(r, c, l)
pre: loc(c)=r, loc(r)=l
eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

d3
r1 c1s0 = {loc(r1)=d3,

cargo(r1)=nil,
loc(c1)=d1} g = {loc(r1)=d3, loc(c1)=r1}

Preconds = {loc(r1)=d1}
Φ = {loc(r1)=d1}

queue = ⟨loc(r1)=d1⟩

35Nau – Lecture slides for Automated Planning and Acting

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

true in s0

add to
queue

d2d1

d3
r1

c1

ExampleRPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

queue = ⟨loc(r1)=d1⟩
Landmarks = {loc(c1)=r1}

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l,

loc(r)=l
eff: cargo(r)←c, loc(c)←r

move(r, d, e)
pre: loc(r)=d
eff: loc(r)←e

unload(r, c, l)
pre: loc(c)=r, loc(r)=l
eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

36Nau – Lecture slides for Automated Planning and Acting

d2d1

d3
r1

c1

ExampleRPG-Landmarks(s0, g = {g1, g2,…, gk})
queue ← {gi ∈ g | s0 doesn’t satisfy gi}; Landmarks ← ∅
while queue ≠ ∅

remove a gi from queue; add it to Landmarks
R ← {actions whose effects include gi}
if s0 satisfies pre(a) for some a ∈ R then return Landmarks
generate RPG from s0 using A ∖R, stopping when ŝk= ŝk–1
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure
Preconds ← ⋃{pre(a) | a ∈ N}∖ s0

Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4, every action in N has at
least one pi as a precondition, and every pi ∈ Preconds}

for each φ ∈ Φ that isn’t subsumed by another φ′∈Φ
add φ to queue

return Landmarks

queue = ⟨⟩
gi = loc(c1)=r1
Landmarks = {loc(c1)=r1,

loc(r1)=d1}
R = {move(r1,d2,d1),

move(r1,d3,d1)}
s0 satisfies

pre(move(r1,d3,d1))

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l,

loc(r)=l
eff: cargo(r)←c, loc(c)←r

move(r, d, e)
pre: loc(r)=d
eff: loc(r)←e

unload(r, c, l)
pre: loc(c)=r, loc(r)=l
eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

37Nau – Lecture slides for Automated Planning and Acting

Landmark Heuristic

● Every solution to the problem needs to achieve all the computed landmarks
● One possible heuristic:

▸ hsl(s) = number of landmarks returned by RPG-Landmarks

● Poll: Is this heuristic admissible?
▸ 1. Yes 2. No

38Nau – Lecture slides for Automated Planning and Acting

Landmark Heuristic

● Every solution to the problem needs to achieve all the computed landmarks
● One possible heuristic:

▸ hsl(s) = number of landmarks returned by RPG-Landmarks

● Not admissible

● There are other more-advanced landmark heuristics
▸ Some of them are admissible
▸ Check textbook for references

g = {g1, g2}
Three landmarks: g1 , g2 , p
Optimal plan: ⟨a1, a2⟩, length = 2g2

a2s1

g1

a1s0

p

39Nau – Lecture slides for Automated Planning and Acting

Summary
● 2.3 Heuristic Functions

▸ Straight-line distance example
▸ Delete-relaxation heuristics

• relaxed states, γ+, h+, HFF, hFF

▸ Disjunctive landmarks, RPG-Landmark, hsl

• Get necessary actions by making RPG for all non-relevant actions

40Nau – Lecture slides for Automated Planning and Acting

Outline
Chapter 2, part a (chap2a.pdf):

2.1 State-variable representation
–– Comparison with PDDL
2.2 Forward state-space search
2.6 Incorporating planning into an actor

–––

Chapter 2, part b (chap2b.pdf):
2.3 Heuristic functions
2.7.7 HTN planning

–––

Chapter 2, part c (chap2c.pdf):
2.4 Backward search
2.5 Plan-space search

–––

Additional slides:
2.7.8 LTL_planning.pdf

Next ⟶

41Nau – Lecture slides for Automated Planning and Acting

Hierarchical Task Network (HTN) Planning

● For some planning problems, we may already
have ideas for how to look for solutions

● Example: travel to a destination that’s far away:
▸ Brute-force search:

• many combinations of vehicles and
routes

▸ Experienced human: small number of
“recipes”

e.g., flying:
1. buy ticket from local airport to

remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

● Ways to put such information into a planner
▸ Domain-specific algorithm
▸ Domain-independent planning engine +

domain-specific planning information
• HTN planning (this section)
• Control rules (Section 2.7.8)

● Similar idea for acting
▸ Refinement methods (Chapter 3)

● Ingredients:
▸ state-variable planning domain (Chap. 2)
▸ tasks: activities to perform
▸ HTN methods: ways to perform tasks

42Nau – Lecture slides for Automated Planning and Acting

Total-Order HTN Planning

● Method format:
method-name(args)

Task: task-name(args)
Pre: preconditions
Sub: list of subtasks and actions

● Primitive task:
▸ name of an action

● Compound task:
▸ need to decompose

(or refine)
using methods

● HTN planning domain: a pair (Σ,M)
▸ Σ: state-variable planning domain
▸ M: set of methods

● Planning problem: P = (Σ, M, s0, T)
▸ T: list of tasks ⟨t1, t2, …, tk⟩

● Solution:
▸ any executable plan that can be

generated from T by applying
• methods to nonprimitive tasks
• actions to primitive tasks

s0

task

action

method

tasktask

task

method

task

s1 s2action s3action

43Nau – Lecture slides for Automated Planning and Acting

Simple Travel-Planning Problem

walk (a,x,y)
Pre: loc(a) = x
Eff: loc(a) ← y

call-taxi (a,x)
Pre: —
Eff: loc(taxi) ← x,

loc(a) ← taxi

ride-taxi (a,x,y)
Pre: loc(a) = taxi,

loc(taxi) = x
Eff: loc(taxi) ← y,

owe(a) ← 1.50 + ½ dist(x,y)

pay-driver(a,y)
Pre: owe(a) ≤ cash(a)
Eff: cash(a) ← cash(a) – owe(a),

owe(a) ← 0,
loc(a) = y

● I’m at home, I have $20, I
want to go to a park 8 miles
away

● s0 = {loc(me)=home,
cash(me)=20,
dist(home,park)=8,
loc(taxi)=elsewhere}

home
park

● Action parameters
▸ a ∈ Agents
▸ x,y ∈ Locations

● Action templates:

44Nau – Lecture slides for Automated Planning and Acting

Simple Travel-Planning Problem

travel-by-foot(a,x,y)
Task: travel(a,x,y)
Pre: loc(a,x),

distance(x, y) ≤ 4
Sub: walk(a,x,y)

travel-by-taxi(a,x,y)
Task: travel(a,x,y)
Pre: loc(a,x),

cash(a) ≥ 1.50 + ½ dist(x,y)
Sub: call-taxi (a,x),

ride-taxi (a,x,y),
pay-driver(a,y)

● I’m at home, I have $20, I
want to go to a park 8 miles
away

● Task: travel to the park
▸ travel(me,home,park)

home
park

● Method parameters
▸ a ∈ Agents
▸ x,y ∈ Locations

● Methods:

45Nau – Lecture slides for Automated Planning and Acting

s1

call-taxi(me,home)

Pre: …
Eff: …

ride-taxi(me,home,park)

Pre: …
Eff: …

travel-by-foot(me,home,park)
Pre:
ü loc(me,home)
×dist(home,park) ≤ 4

Pre: …
Eff: …

pay-driver(me,park)

travel-by-taxi(me,home,park)
Pre:
ü loc(me,home)
ücash(me) ≥ 1.5+0.5*dist(home,park)Backtrack

Backtracking Search

travel(me,home,park)
home

park

loc(me) = taxi
cash(me) = 20
dist(home,park) = 8
loc(taxi) = home

s0
Initial state

loc(me) = home
cash(me) = 20
dist(home,park) = 8
loc(taxi) = station

loc(me) = park
cash(me) = 14.5
dist(home,park) = 8
loc(taxi) = park
owe(me) = 0

s3
Final state

loc(me) = taxi
cash(me) = 20
dist(home,park) = 8
loc(taxi) = park
owe(me) = 5.50

s2

⟨call-taxi(me,home),
ride-taxi(me,home,park),
pay-driver(me)⟩

Solution plan:

46Nau – Lecture slides for Automated Planning and Acting

● TFD(s, T, π)
▸ if T = ⟨⟩ then return π
▸ let t1, t2, …, tk be the tasks in T
▸ if t1 is primitive then

• if there is an action a such that
head(a) matches t1 and a is applicable in s:

▸ return TFD(γ(s,a), ⟨t2,…,tk⟩, π .a)
• else: return failure

▸ else // t1 is nonprimitive
• for each m ∈ M:

▸ if task(m) matches t1 and m is applicable in s:
• π ← seek-plan(s, subtasks(m) . ⟨t2,…,tk⟩, π)
• if π ≠ failure then return π

• return failure

i.e., T = ⟨t1, t2, …, tk⟩

Total-Order HTN Planning Algorithm

● The SHOP algorithm
▸ http://www.cs.umd.edu/projects/shop/

▸ Depth-first, left-to-right search

new state γ(s,a) ; new T = ⟨t2, …, tk⟩

state s; T = ⟨a, t2, …, tk⟩

● For each primitive task, apply action

new T = ⟨ u1, …, uj , t2, …, tk⟩

state s, T = ⟨t1, t2, …, tk⟩
method instance m

● For each compound task, decompose

http://www.cs.umd.edu/projects/shop/

47Nau – Lecture slides for Automated Planning and Acting

Pyhop

● A simple HTN planner written in Python
▸ Implements a version of TFD
▸ Works in both Python 2.7 and 3.2

● State: Python object that contains variable bindings
▸ To say taxi is at park in state s, write

• s.loc['taxi'] = 'park’
● Actions and methods: ordinary Python functions

● Some limitations compared to most other HTN
planners
▸ I’ll discuss later

● Open-source software, Apache license
▸ http://bitbucket.org/dananau/pyhop

● Simple travel example
▸ download Pyhop

import simple_travel_example

http://bitbucket.org/dananau/pyhop

48Nau – Lecture slides for Automated Planning and Acting

● State:
▸ Python object that holds state-variable

bindings
● State variables:

▸ loc[x], cash[x], owe[x], dist[x][y]

● Written as Python functions

● Similar definitions for ride_taxi, pay_driver

● Tell Pyhop what the actions are:

States Operators (i.e., Actions)

def walk(s,a,x,y): # s is the current state
if s.loc[a] == x: # Preconditions are if-tests

s.loc[a] = y # Modify the state
return s # Return the modified state

else: return False # Action is inapplicable

def call_taxi(state,a,x):
state.loc['taxi'] = x
return state

pyhop.declare_operators(walk, call_taxi, ride_taxi, pay_driver)

state1 = pyhop.State('initial state')
state1.loc = {'me':'home'}
state1.cash = {'me':20}
state1.owe = {'me':0}
state1.dist = {'home':{'park':8}, 'park':{'home':8}}

home
park

● Python dictionary notation for
state1.loc['me'] = 'home', etc.

49Nau – Lecture slides for Automated Planning and Acting

Tasks and Methods Planning Problems, Solutions

● Task: n-tuple (taskname, arg1, …, argn)
▸ e.g., ('travel', 'me', 'home', 'park')

● Method: Python function

● Planning problem:

● Solution plan:

def travel_by_foot(s,a,x,y): # s is the current state
if s.dist[x][y] <= 4: # precondition

return [('walk',a,x,y)] # return subtask list
return False # inapplicable => return False

def travel_by_taxi(s,a,x,y):
if s.cash[a] >= 1.5 + 0.5*s.dist[x][y]: # precondition

return [('call_taxi',a,x), # return subtask list
('ride_taxi',a,x,y),
('pay_driver',a,x,y)]

return False # inapplicable

pyhop.declare_methods('travel', travel_by_foot, travel_by_taxi)

home
park

pyhop(state1, [('travel','me','home','park')])

[('call_taxi','me','home’),
('ride_taxi','me','home','park’),
('pay_driver','me')]

50Nau – Lecture slides for Automated Planning and Acting

Comparison

● Most HTN planners (e.g., SHOP):
● Write in a planning language the planner can

read and analyze
● Can have parameters not mentioned in the task

(e..g, r and x above)
▸ Can backtrack over multiple method

instances
● Planner knows in advance what the subtasks

will be
▸ Helps with implementing heuristic functions

● Advantages
▸ Don’t need to learn a planning language
▸ Can do complex reasoning to evaluate

preconditions, generate subtasks
● Disadvantages:

▸ Don’t know in advance what the subtasks are
• How to implement a heuristic function?

▸ How to implement uninstantiated parameters?

● Task: transport a container c
▸ Pseudocode for an HTN method ● Pyhop method: ordinary Python function

Method m_transport(r,x,c,y,z)
Task: transport(c,y,z)
Pre: loc(r) = x, cargo(r) = nil, loc(c) = y
Sub: move(r,x,y), take(r,c,y), move(r,y,z), put(r,c,z)

def m_transport(c,y,z):
if loc(r) == x and cargo(r) == nil and loc(c) == y:

(r,x) = find_suitable_robot('transport',c,y,z)
return [move(r,x,y), take(r,c,y), move(r,y,z), put(r,c,z)]

else: return False

51Nau – Lecture slides for Automated Planning and Acting

m1(x1, x2, x3)
Pre: p1(x1), p2(x2)
Sub: g1(x1,x2), g2(x2,x3)

m2(y1, y2)
Pre: q1(y1, y2)
Sub: g3(y1), g2(y1,y2)

Total-Order Hierarchical Goal Network (HGN) Planning

● Like HTN planning, but with goals instead of tasks
● HGN planning domain: a pair (Σ,M)

▸ Σ: state-variable planning domain
• Same states, actions as in HTN planning

▸ M: set of HGN methods
● Format for HGN methods:

method-name(parameters)
Goal: goal formula ⟵ unneeded
Pre: preconditions
Sub: list of subgoals

● m’s preconditions: pre(m) = {p1, …, pj}
● m’s subgoals: sub(m) = ⟨g1, …, gk⟩

▸ each gi is a set of literals
s0 a1(…)

m2(b,c)

g2(b,c)g3(b)

g

m1(a,b,c)

g2(b,c)

s1 s2a2(b) s3a3(c)

g1(a,b)

…

52Nau – Lecture slides for Automated Planning and Acting

s0 a1(…)

m2(b,c)

g2(b,c)g3(b)

g

m1(a,b,c)

g2(b,c)

s1 s2a2(b) s3a3(c)

g1(a,b)

…

Total-Order Hierarchical Goal Network (HGN) Planning

● Let m be a method instance

● m’s postcondition, post(m), is m’s last subgoal
▸ A set of literals that m will make true

● m is relevant for a goal g if
▸ post (m) ⊨ at least one literal in g
▸ post(m) ⊭ negation of any literal in g

● an action a is relevant for g if
▸ post (m) ⊨ at least

one literal in g
▸ post(m) ⊭ negation of

any literal in g

● m is applicable in a state s if s ⊨ pre(m)
▸ Same as for an action

● HGN planning problem:
P = (Σ, M, s0, G)
▸ (Σ, M) is an HGN planning domain
▸ G = ⟨g1, g2, …, gn⟩ is a list of goals

● Each gi is a set of ground literals
▸ Like a goal in a classical

planning problem
● Solution for P:

▸ any plan that we can get by
applying methods and actions that
are both relevant and applicable

53Nau – Lecture slides for Automated Planning and Acting

Simple Travel-Planning Problem

walk (a,x,y)
Pre: loc(a) = x,

distance(x, y) ≤ 4
Eff: loc(a) ← y

call-taxi (a,x)
Pre: —
Eff: loc(taxi) ← x,

loc(a) ← taxi

ride-taxi (a,x,y)
Pre: loc(a) = taxi,

loc(taxi) = x
Eff: loc(taxi) ← y,

owe(a) ← 1.50 + ½ dist(x,y)

pay-driver(a,y)
Pre: owe(a) ≤ cash(a)
Eff: cash(a) ← cash(a) – owe(a),

owe(a) ← 0,
loc(a) = y

● I’m at home, I have $20, I
want to go to a park 8 miles
away

● s0 = {loc(me)=home,
cash(me)=20,
dist(home,park)=8,
loc(taxi)=elsewhere}

home
park

● Action parameters
▸ a ∈ Agents
▸ x,y ∈ Locations

● Action templates:

54Nau – Lecture slides for Automated Planning and Acting

Simple Travel-Planning Problem

travel-by-foot(a,x,y)
Pre: loc(a,x),

distance(x, y) ≤ 4
Sub: walk(a,x,y)

travel-by-taxi(a,x,y)
Pre: loc(a,x),

cash(a) ≥ 1.50 + ½ dist(x,y)
Sub: loc(a) = taxi,

loc(taxi) = y,
loc(a) = y

● I’m at home, I have $20, I
want to go to a park 8 miles
away

● Goal: be in the park
▸ loc(me) = park

home
park

● Method parameters
▸ a ∈ Agents
▸ x,y ∈ Locations

● HGN Methods:

55Nau – Lecture slides for Automated Planning and Acting

● GDP(s, G, π)
▸ if G = ⟨⟩ then return π
▸ g ← the first goal formula in G
▸ if s ⊨ g then

• remove g from G; return GDP(s, G, π)
• U ← {actions and method instances that are

relevant for g and applicable in s}
• if U = ∅ then return failure
• nondeterministically choose u ∈ U
• if u is an action then

▸ append u to π; s ← γ(s,u)
• else insert sub(u) at the front of G
• return GDP(s, G, π)

Total-Order HGN Planning Algorithm

● The GDP algorithm
▸ Depth-first, left-to-right search

state s; G = ⟨g1, g2, …, gk⟩
u is an action

new state γ(s,u) ; G doesn’t change

new G = ⟨ gu1, …, guj , g1, g2, …, gk⟩

state s; G = ⟨g1, g2, …, gk⟩
u is a method instance

https://www.cs.umd.edu/~nau/papers/shivashankar2012hierarchical.pdf

56Nau – Lecture slides for Automated Planning and Acting

GTPyhop
● GTPyhop (2021):
● Like Pyhop, but plans for both tasks and goals

▸ declare task methods for accomplishing
tasks

▸ declare goal methods for achieving goals
● Open-source:

https://github.com/dananau/GTPyhop

● HTN planning mostly backward-compatible
with Pyhop

● Example in the GTPyhop software distribution:
▸ Examples/pyhop_simple_travel_example

● Near-verbatim version of the Pyhop simple
travel example
▸ Documentation tells what the differences are

● HGN planning is similar to GDP, but not identical

● In GDP, relevance for a goal depends on either
eff(a) or the last element of sub(m)
▸ Uses this to decide whether to execute a or m

● Problem: to get eff(a) or sub(m), GTPyhop must
execute a or m
▸ No way to know sub(m) until then

● Work-around:
▸ For each method m, declare what goals it’s

relevant for
▸ If m is relevant for g, require it to accomplish

every literal in g (instead of just some of them)
▸ Don’t allow actions to be relevant for goals,

but allow them to appear in sub(m)

https://github.com/dananau/GTPyhop

57Nau – Lecture slides for Automated Planning and Acting

Planning Algorithm

● Augment the Pyhop algorithm
to plan for both tasks and goals

● To-do list: actions, tasks, goals

● For each goal
▸ use a goal method to decompose it

into a todo list
▸ add a dummy action that will fail if

the goal isn’t achieved (guarantees
soundness)

● Whenever there’s a failure
▸ Backtrack to nearest task or goal,

look for a different method
▸ If there isn’t one, backtrack further

● Input: state s; to-do list T

● if T is empty, return π
● case(first element of T):

▸ action: apply it,
append it to π, call planner
recursively on the rest of T

▸ task: find a relevant
task method, apply it,
call planner recursively
on new T

▸ goal: find a relevant
goal method, apply it,
call planner recursively
on new T new T = [u1, …, uj, verify(g), t2, …, tk]

state s, T = [g, t2,… , tk]
goal method m

new T = [u1, …, uj , t2, …, tk]

state s, T = [τ, t2,… , tk]
task method m

• Check whether g is true
• If it isn’t, then fail (GTPyhop will backtrack)

new state γ(s,a) ; new T = [t2, …, tk]

state s; T = [a, t2, …, tk]

58Nau – Lecture slides for Automated Planning and Acting

Example: Blocks World
● Simple classical planning domain

▸ Blocks, robot hand for stacking them,
infinitely large table

● pickup(x)
▸ pre: loc(x)=table, clear(x)=T, holding=nil
▸ eff: loc(x)=crane, clear(x)=F, holding=x

● putdown(x)
▸ pre: holding=x
▸ eff: holding=nil, loc(x)=table, clear(x)=T

● unstack(x,y)
▸ pre: loc(x)=y, clear(x)=T, holding=nil
▸ eff: loc(x)=crane, clear(x)=F, holding=x, clear(y)=T

● stack(x,y)
▸ pre: holding=x, clear(y)=T
▸ eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=F

● The “Sussman anomaly”
▸ Planning problem that caused problems for early

classical planners

π = ⟨unstack(c,a), putdown(c),
pickup(b), stack(b,c),
pickup(a), stack(a,b)⟩

s0 = {clear(a)=F, clear(b)=T,
clear(c)=T,
loc(a)=table,
loc(b)=table, loc(c)=a,
holding(hand)=nil}

g = {loc(a)=b, loc(b)=c}

s0

c
a b

g

b
c

a

59Nau – Lecture slides for Automated Planning and Acting

Domain-Specific Algorithm
loop

if there’s clear block that needs to be moved
and it can immediately be moved to a place
where it won’t need to be moved again
then move it there

else if there’s a clear block that needs to be moved
then move it to the table

else if the current state satisfies the goal
then return success

else return failure

● Situations in which c needs to be moved:
▸ loc(c)=d, goal contains loc(c)=e, and d ≠ e
▸ loc(c)=d, d is a block, goal contains loc(b)=d, and b ≠ c
▸ loc(c)=d and d is a block that needs to be moved

● Can extend this to include situations involving clear and
holding

s0

c
a b

g

b
c

a

● Sound, complete, guaranteed to terminate
● Runs in time O(n3)

▸ Can be modified to run in time O(n)
● Often finds optimal (shortest) solutions,

but sometimes only near-optimal
▸ For block-stacking problems,
PLAN-LENGTH is NP-complete

● Can implement as GTPyhop methods

π = ⟨unstack(c,b),
putdown(c),
pickup(b),
stack(b,c),
pickup(a),
stack(a,b)⟩

60Nau – Lecture slides for Automated Planning and Acting

States and goals

● Initial state:

● A State object to hold all the
state-variable bindings:

s0 = gtpyhop.State('Sussman initial state')
s0.pos = {'a':'table', 'b':'table', 'c':'a'}
s0.clear = {'a':False, 'b':True, 'c':True}
s0.holding = {'hand':False}

▸ Python dictionary notation for
s0.pos['a'] = 'table', etc.

● Goal:

g = gtpyhop.Multigoal('Sussman goal')

g.pos = {'a':'b', 'b':'c'}

● Two kinds of goals:
▸ Unigoal: a triple (name, arg, value)

• represents a desired state-variable binding
• e.g., unigoal ('pos', 'a', 'b’)

▸ find a state s in which s.pos['a'] == 'b'
▸ Multigoal: state-like object

• represents a conjunction of unigoals
• g: find a state s in which

▸ s.pos['a'] == 'b' and s.pos[‘b'] == 'c'

s0

c
a b

g

b
c

a

61Nau – Lecture slides for Automated Planning and Acting

Actions

● Blocks-world pickup action
▸ if x is on table, x is clear, and

robot hand is empty
▸ then modify s and return it
▸ else return nothing

• means the action isn’t applicable
• also OK to return false like Pyhop does

● putdown action – similar

● Easy to write similar
“stack” and “unstack” actions

def pickup(s,x):
if s.pos[x] == 'table' \

and s.clear[x] == True \
and s.holding['hand'] == False:

s.pos[x] = 'hand'
s.clear[x] = False
s.holding['hand'] = x

return s

def putdown(s,x):
if s.holding['hand'] = x:

s.pos[x] = 'table'
s.clear[x] = True
s.holding['hand'] = False

return s

gtpyhop.declare_actions(pickup,putdown)

Effects: modify
variable bindings in s

Preconditions:
if test

• Tell GTPyhop these are actions

• Args: current state s, block x

62Nau – Lecture slides for Automated Planning and Acting

Task methods

● m_take: method to pick up a clear block x,
regardless of what it’s on
▸ Args: current state s, block x.
▸ if x is clear:

• Return one to-do list if x is on the table,
another to-do list if x isn’t on the table

▸ Else return nothing
• means method is inapplicable
• (also OK to return false like Pyhop does)

● Last line says m_take is a task method
▸ relevant for all tasks of the form (take, …)

● m_put: similar, for all tasks of the form (put, …)

def m_take(s,x):
if s.clear[x] == True:

if s.pos[x] == 'table':

return [('pickup', x)]
else:

return [('unstack',x,s.pos[x])]

gtpyhop.declare_task_methods('take',m_take)

def m_put(s,x,y):

if s.holding['hand'] == x:
if y == 'table':

return [('putdown',x)]

else:
return [('stack',x,y)]

else:
return False

gtpyhop.declare_task_methods('put',m_put)

63Nau – Lecture slides for Automated Planning and Acting

Goal methods def m_moveblocks(s, mgoal):

for x in all_clear_blocks(s):
stat = status(x, s, mgoal)

if stat == 'move-to-block':
where = mgoal.pos[x]

return [('take',x), ('put',x,where), mgoal]

elif stat == 'move-to-table':
return [('take',x), (put,x,'table'), mgoal]

for x in all_clear_blocks(s):
if status(x,s,mgoal) == 'waiting' \

and s.pos[x] != 'table':

return [('take',x), ('put',x,'table'), mgoal]
return []

gtpyhop.declare_multigoal_methods(m_moveblocks)

s0

c
a b

g

b
c

a

loop
if there’s clear block that needs to be moved

and it can immediately be moved to a place
where it won’t need to be moved again
then move it there

else if there’s a clear block that needs to be moved
then move it to the table

else if the current state satisfies the goal
then return success

else return failure

• s = current state
• mgoal = a multigoal
• red = helper functions

find_plan(s0,g)

returns [('unstack','c','a'), ('putdown','c'), ('pickup','b'),
('stack','b','c'), ('pickup','a'), ('stack','a','b')]

64Nau – Lecture slides for Automated Planning and Acting

Discussion

● Earlier we discussed limitations/strengths of Pyhop compared to most other HTN planners
▸ Same discussion also applies to GTPyhop

● Similar comparison for GTPyhop vs. most HGN planners

65Nau – Lecture slides for Automated Planning and Acting

Acting and Planning

● run_lazy_lookahead(state, todo_list)
▸ loop:

• plan = find_plan(state, todo_list)
• if plan = []:

▸ return state // the new current state
• for each action in plan:

▸ execute the corresponding command
▸ if the command fails:

• continue the outer loop

● Simple Travel Problem:
▸ run_lazy_lookahead calls

• find_plan(s0, [(travel,me,home,park)])
▸ find_plan returns

• [(call_taxi,me,home),
(ride_taxi,me,home,park),
(pay_driver,me)]

▸ run_lazy_lookahead executes
• c_call_taxi(me,home)
• c_ride_taxi(me,home,park)
• c_pay_driver(me)

● If everything executes correctly, I get to the park
▸ But suppose the taxi breaks down …

66Nau – Lecture slides for Automated Planning and Acting

s1s0
c_call_taxi(me,home) c_ride_taxi(me,home,park)

loc(me) = taxi
cash(me) = 20
owe(me) = 0
dist(home,park) = 8
loc(taxi) = home

loc(me) = home
cash(me) = 20
owe(me) = 0
dist(home,park) = 8
loc(taxi) = station

Command
failure, current
state is still s1

Acting and Planning

● For planning and acting, need to HTN methods
that can recover from unexpected problems

● Example:
▸ run_lazy_lookahead executes

• c_call_taxi(me,home)
• c_ride_taxi(me,home,park)

▸ Suppose the 2nd command fails

▸ run_lazy_lookahead calls
• find_plan(s1, [(travel,me,home,park)])

▸ Error: tries to use an undefined value

● To run this example in GTPyhop:
▸ import Examples.simple_htn_acting_error

(travel_by_foot, me, home, park)
Pre:
ü loc(me,taxi)
×dist(taxi,park) undefined

(travel,me,home,park)

Program error

67Nau – Lecture slides for Automated Planning and Acting

Summary
● Total-order HTN planning

▸ Planning problem: initial state, list of tasks
▸ Apply HTN methods to tasks to get subtasks (smaller tasks)

• Do this recursively to get smaller and smaller subtasks
▸ At the bottom: primitive tasks that correspond to actions

▸ Search goes down and forward
● Pyhop: Python implementation of total-order HTN planning

▸ Open source: http://bitbucket.org/dananau/pyhop
● GTPyhop: Python implementation of HTN + HGN planning

▸ Open source: https://github.com/dananau/GTPyhop
● Examples: simple travel, blocks world
● To integrate planning and acting, need to make sure the HTN methods can handle

unexpected events
▸ One way: make GTPyhop re-entrant

http://bitbucket.org/dananau/pyhop
https://github.com/dananau/GTPyhop
https://www.cs.umd.edu/users/nau/papers/bansod2021integrating.pdf

68Nau – Lecture slides for Automated Planning and Acting

Search Direction, Search Strategies
● Down, then forward

▸ totally-ordered tasks: find-plan, SHOP, Pyhop
▸ partially-ordered tasks: SHOP2, SHOP3
▸ goals instead of tasks: GDP, GoDeL
▸ acting, task refinement: RAE (Chap. 3)
▸ Monte Carlo rollouts: UPOM

● Down and backward
▸ plan-space planning: SIPE, O-Plan, UMCP

● Forward, then down (level 1, level 2, level 3, …)
▸ AHA*: A* search
▸ Bridge Baron 1997: game-tree generation

task

task

…task task

task

…task task

task

…task task

task

…task task

task task

