

Dana S. Nau University of Maryland

Automated Planning and Acting

Malik Ghallab, Dana Nau and Paolo Traverso

http://www.laas.fr/planning

Motivation

- For some planning problems, we may already have ideas for how to look for solutions
- Example: travel to a destination that's far away:
 - Brute-force search:
 - many combinations of vehicles and routes
 - Experienced human: small number of "recipes"
 - e.g., flying:
 - 1. buy ticket from local airport to remote airport
 - 2. travel to local airport
 - 3. fly to remote airport
 - 4. travel to final destination
- How can we put such information into an actor?

Using Domain-Specific Information in an Actor

- Several ways to do it
 - Domain-specific algorithm
 - Refinement methods (RAE and SeRPE: Chapter 3)
 - HTN planning (SHOP, PyHop 2: Section 2.7.7)
 - Control rules (TLPlan: Section 2.7.8)

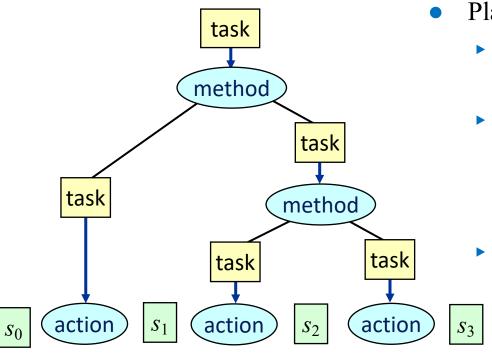
Total-Order HTN Planning

- Ingredients:
 - states and actions
 - *tasks*: activities to perform
 - *HTN methods*: ways to perform tasks
- Method format:

method-name(args) Task: *task-name(args)* Pre: *preconditions* Sub: *list of subtasks*

- Two kinds of tasks
 - Primitive task: name of an action
 - *Compound* task: need to *decompose* (or *refine*) using methods
- HTN planning domain: a pair (Σ, M)
 - Σ: state-variable planning domain (states, actions)
 - ► *M*: set of methods

- Planning problem: $P = (\Sigma, M, s_0, T)$
 - *T*: list of tasks $\langle t_1, t_2, ..., t_k \rangle$
- Solution: any executable plan that can be generated by applying
 - methods to nonprimitive tasks
 - actions to primitive tasks



- Planning algorithm
 - depth-first, left-toright search
 - for each compound task, apply a method to decompose it into subtasks
 - for each primitive task, apply the action

Simple Travel-Planning Problem

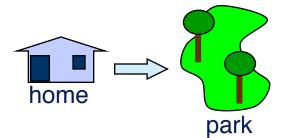
• Action templates:

walk (a,x,y)Pre: loc(a) = xEff: loc $(a) \leftarrow y$

call-taxi (a,x)Pre: — Eff: loc(taxi) $\leftarrow x$, loc $(a) \leftarrow$ taxi ride-taxi (a,x,y)Pre: loc(a) = taxi, loc(taxi) = xEff: loc $(taxi) \leftarrow y$, owe $(a) \leftarrow 1.50 + \frac{1}{2} \operatorname{dist}(x,y)$

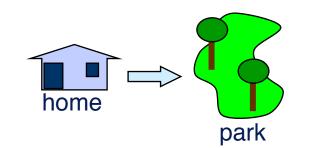
pay-driver(a,y) Pre: owe(a) \leq cash(a) Eff: cash(a) \leftarrow cash(a) – owe(a), owe(a) \leftarrow 0, loc(a) = y

- Action parameters
 - ▶ $a \in Agents$
 - $x, y \in Locations$



Simple Travel-Planning Problem

Methods:



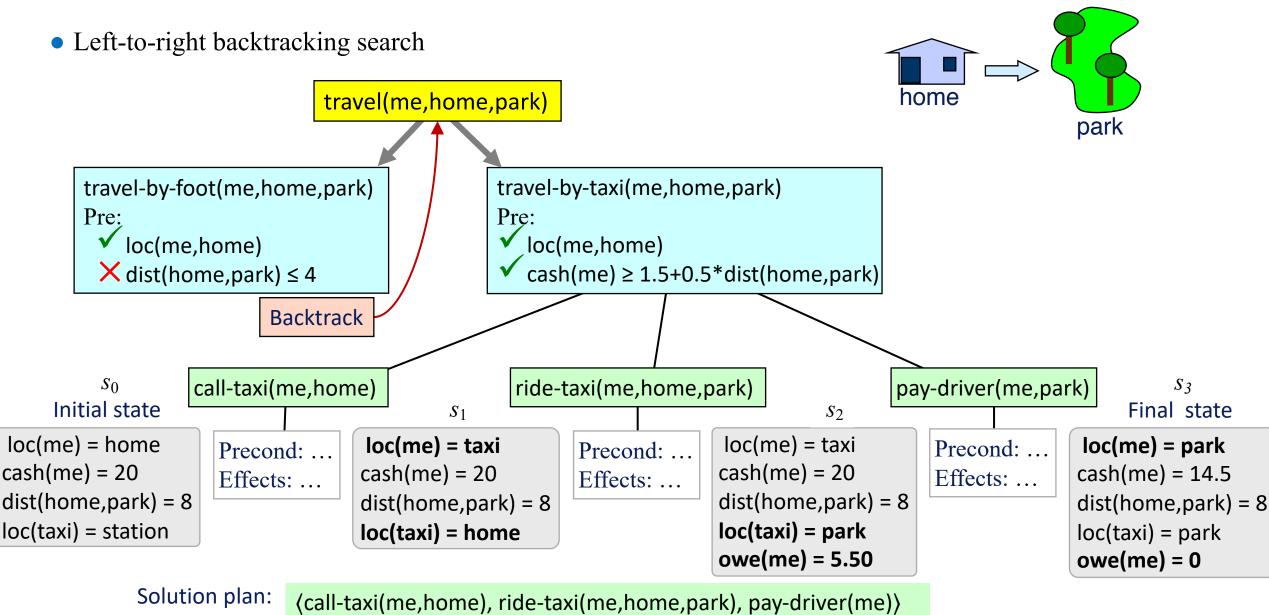
- *Initial state*:
 - I'm at home,
 - ► I have \$20,
 - there's a park 8 miles away
- s₀ = {loc(me)=home, cash(me)=20, dist(home,park)=8, loc(taxi)=elsewhere}
- *Task*: travel to the park
 - travel(me,home,park)

travel-by-foot(a,x,y) Task: travel(a,x,y) Pre: loc(a,x), distance(x, y) ≤ 4 Sub: walk(a,x,y)

travel-by-taxi(a,x,y)Task: travel(a,x,y)Pre: loc(a,x), cash $(a) \ge 1.50 + \frac{1}{2} \operatorname{dist}(x,y)$ Sub: call-taxi (a,x), ride-taxi (a,x,y), pay-driver(a,y)

- Method parameters
 a ∈ *Agents*
 - ▶ $x, y \in Locations$

Simple Travel-Planning Problem



Nondeterministic Planning Algorithm

- find-plan(s_0, T)
 - return seek-plan($s_0, T, \langle \rangle$)
- seek-plan(s, T, π)
 - if $T = \langle \rangle$ then return π
 - ► let $t_1, t_2, ..., t_k$ be the tasks in T i.e., $T = \langle t_1, t_2, ..., t_k \rangle$
 - if t_1 is primitive then
 - if there is an action *a* such that

head(*a*) matches t_1 and *a* is applicable in *s*:

- return seek-plan($\gamma(s,a), \langle t_2,...,t_k \rangle, \pi.a$)
- else: return failure
- else // t_1 is nonprimitive
 - *Candidates* \leftarrow { $m \in M | task(m)$ matches t_1 and m is applicable in s}

stat

- if *Candidates* = Ø then return failure
- nondeterministically choose any $m \in Candidates$
- return seek-plan(*s*, subtasks(*m*) · $\langle t_2, ..., t_k \rangle$, π)

state *s*, task list
$$T = \langle t_1, t_2, ..., t_k \rangle$$

action *a*
state $\gamma(s, a)$, task list $T = \langle t_2, ..., t_k \rangle$

state *s*, task list
$$T = \langle t_1, t_2, ..., t_k \rangle$$

method instance *m*
e *s*, task list $T = \langle u_1, ..., u_j, t_2, ..., t_k \rangle$

Depth-first Search Implementation

stat

- find-plan(s_0, T)
 - ▶ return seek-plan($s_0, T, \langle \rangle$)
- seek-plan(s, T, π)
 - if $T = \langle \rangle$ then return π
 - ► let $t_1, t_2, ..., t_k$ be the tasks in T i.e., $T = \langle t_1, t_2, ..., t_k \rangle$
 - if t_1 is primitive then
 - if there is an action *a* such that

head(*a*) matches t_1 and *a* is applicable in *s*:

- ▶ return seek-plan($\gamma(s,a), \langle t_2,...,t_k \rangle, \pi.a$)
- else: return failure
- else // t_1 is nonprimitive
 - for each $m \in M$:
 - if task(*m*) matches t_1 and *m* is applicable in *s* then
 - $\pi \leftarrow \text{seek-plan}(s, \text{subtasks}(m) \cdot \langle t_2, \dots, t_k \rangle, \pi)$
 - if $\pi \neq$ failure then return π
 - return failure

state *s*, task list $T = \langle t_1, t_2, ..., t_k \rangle$ action *a* state $\gamma(s,a)$, task list $T = \langle t_2, ..., t_k \rangle$

te s, task list
$$T = \langle t_1, t_2, ..., t_k \rangle$$

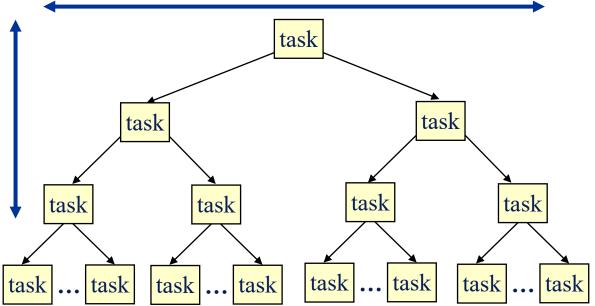
method instance m
te s, task list $T = \langle u_1, ..., u_j, t_2, ..., t_k \rangle$

Comparison to Forward and Backward Search

- More possibilities than just forward or backward
 - A little like the choices to make in parsing algorithms
- SHOP, Pyhop, (total-order HTN planning), SHOP2 (partial-order HTN planning), GDP, GoDeL (HGN planning), RAE (refinement acting, Chap. 3):
 - down, then forward
- SIPE, O-Plan, UMCP
 - plan-space HTN planning (down and backward)
- AHA*

▶ ...

- search in layers:
- ► forward A*, at the top level
- forward A*, one level down

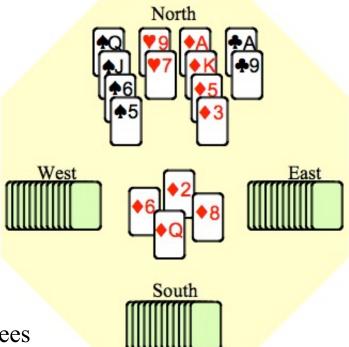


Bridge

- Ideal: game-tree search (all lines of play) to compute expected utilities
- Don't know what cards other players have
 - Many moves they *might* be able to make
 - worst case about 6×10^{44} leaf nodes
 - average case about 10²⁴ leaf nodes
- About 1¹/₂ minutes available

Not enough time – need smaller tree

- Bridge Baron
 - 1997 world champion of computer bridge
- Special-purpose HTN planner that generates game trees
 - ▶ Branches ⇔ standard bridge card plays (finesse, ruff, cash out, …)
 - Much smaller game tree: can search the entire tree, compute expected utilities
- Why it worked:
 - Special-purpose planner to generate trees rather than linear plans
 - Lots of work to make the HTN methods as complete as possible



KILLZONE 2

- "First-person shooter" game, ≈ 2009
- Special-purpose HTN planner for planning at the squad level

- Method and operator syntax similar to SHOP's and SHOP2's
- Quickly generates a linear plan that would work if nothing interferes
- Replan several times per second as the world changes

• Why it worked:

- Very different objective from a bridge tournament
- Don't want to look for the best possible play
- Need actions that appear believable and consistent to human users
- Need them very quickly

SHOP, SHOP2, SHOP3

- SHOP (released 1999)
 - Uses the algorithm I showed you
 - Instead of state variables, "classical, plus functions"
 - Method and operator syntax based on Lisp
- SHOP2 (released 2001)
 - Allows partially-ordered tasks
 - Won an award in the AIPS-2002 Planning Competition
- Freeware, open source
 - As of Feb 2013, downloaded more than 20,000 times
 - Has been used in many projects worldwide
- SHOP3 (developed at SIFT, LLC, released 2019)

Pyhop and Pyhop 2

- Pyhop: a simple HTN planner written in Python
 - Released in 2013
- Planning algorithm is like the one in SHOP, except:
 - HTN operators and methods are ordinary Python functions
 - The current state is a Python object that contains variable bindings

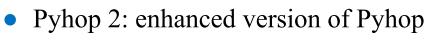
S

С

а

b

- Operators and methods refer to states explicitly
- To say c is on a, write s.loc['c'] = 'a' where s is the current state
- Easy to implement and understand
 - 240 lines
 - \approx 95 excluding comments and docstrings
- Open-source: http://bitbucket.org/dananau/pyhop



- Main differences:
 - Can plan for both tasks and goals
 - Can hold multiple planning domains in memory at the same time
 - Give a different name to each one
 - \approx 5 times as large as Pyhop
- Open-source: pending
 - (will post link when U of Md approves open-source license)

Pyhop 2 (tasks)

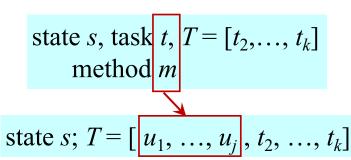
- find_plan(s_0, T)
 - return seek_plan(s₀, T, [])
- seek_plan(s, T, π)
 - if T = [] then return π
 - let $t_1, t_2, ..., t_k$ be the tasks/goals/multigoals in T
 - if t_1 is an action:
 - return apply_action($s, t_1, [t_2, ..., t_k], \pi$)
 - else if t_1 is a task:
 - return find_task_method($s, t_1, [t_2, ..., t_k], \pi$)
 - else if t_1 is a goal:
 - return find_goal_method($s, t_1, [t_2, ..., t_k], \pi$)
 - else if t_1 is a multigoal:
 - return find_multigoal_method(s, t_1 , [t_2 ,..., t_k], π)
 - else error

state *s*, action *a*, $T = [t_2, ..., t_k]$ state $\gamma(s,a)$; $T = [t_2, ..., t_k]$

- apply_action($s, a, [t_2, \ldots, t_k], \pi$)
 - if *a* is applicable in *s*:
 - return seek_plan($\gamma(s,a)$, [$t_2,...,t_k$], $\pi \cdot a$)
 - else return failure

```
t = (name, arg_1, arg_2, \dots, arg_j)
```

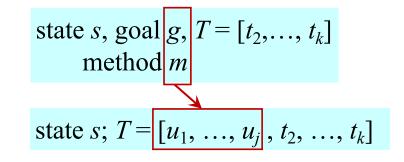
- find_task_method($s, t, [t_2, \ldots, t_k], \pi$)
 - for every task method m such that name(t) matches taskname(m) and m is applicable to t in s:
 - $\pi \leftarrow \text{seek_plan}(s, \text{subtasks}(m) \cdot [t_2, \dots, t_k], \pi)$
 - if $\pi \neq$ failure then return π
 - return failure



Pyhop 2 (goals)

- find_plan(s_0, T)
 - return seek_plan($s_0, T, []$)
- seek_plan(s, T, π)
 - if T = [] then return π
 - let $t_1, t_2, ..., t_k$ be the tasks/goals/multigoals in T
 - if t_1 is an action:
 - return apply_action($s, t_1, [t_2, ..., t_k], \pi$)
 - else if t_1 is a task:
 - return find_task_method($s, t_1, [t_2, ..., t_k], \pi$)
 - else if t_1 is a goal:
 - return find_goal_method($s, t_1, [t_2, ..., t_k], \pi$)
 - else if t_1 is a multigoal:
 - return find_multigoal_method($s, t_1, [t_2, ..., t_k], \pi$)
 - else error

multigoal: a data structure that represents a conjunction of goals



- find_goal_method(s, g, T, π)
 if s ⊨ g then return π
 g = (name, arg, value)
 - for every goal method m such that name(g) matches goalname(m) and m is applicable to g in s:
 - $\pi \leftarrow \text{seek_plan}(s, \text{subtasks}(m) + \text{verify}(g) + T, \pi)$
 - if $\pi \neq$ failure then return π
 - return failure
- find_multigoal_method(s, g, T, π)
 - if $s \models g$ then return π
 - for every multigoal method m that is applicable to g in s:
 - $\pi \leftarrow \text{seek_plan}(s, \text{subtasks}(m) + \text{verify}(g) + T, \pi)$
 - if $\pi \neq$ failure then return π
 - return failure

optional

Pyhop 2 version of the Simple Travel Problem

• Launch Python 3; load simple_tasks1.py

Pyhop 2 Methods

travel-by-foot(a, x, y) Task: travel(a,x,y) Pre: loc(a,x), distance(x,y) ≤ 4 Sub: walk(a,x,y)

```
travel-by-taxi(a,x,y)

Task: travel(a,x,y)

Pre: cash(a) \ge 1.5 + 0.5*dist(x,y)

Sub: call-taxi (a,x),

ride-taxi (a,x,y),

pay-driver(a)
```

```
def travel_by_foot(state,a,x,y):
    if state.dist[x][y] <= 4:
        return [('walk',a,x,y)]</pre>
```

pyhop2.declare_task_methods('travel', travel_by_foot)

pyhop2.declare_task_methods('travel', travel_by_taxi)

```
walk (a, x, y)
    Pre: loc(a) = x
    Eff: loc(a) \leftarrow y
call-taxi (a,x)
    Pre: —
    Eff: loc(taxi) \leftarrow x, loc(a) \leftarrow taxi
ride-taxi (a,x,y)
    Pre: loc(a) = taxi, loc(taxi) = x
     Eff: loc(taxi) \leftarrow y,
```

 $owe(a) \leftarrow 1.50 + \frac{1}{2} \operatorname{dist}(x, y)$

```
pay-driver(a, y)

Pre: owe(a) \le cash(a)

Eff: cash(a) \leftarrow cash(a) - owe(a),

owe(a) \leftarrow 0,

loc(a) = y
```

Pyhop 2 Actions

```
def walk(state,a,x,y):
    if state.loc[a] == x:
        state.loc[a] = y
        return state
def call taxi(state,a,x):
    state.loc['taxi'] = x
    state.loc[a] = 'taxi'
    return state
def ride taxi(state,a,x,y):
   if state.loc['taxi']==x and state.loc[a]=='taxi':
      state.loc['taxi'] = y
      state.loc[a] = y
      state.owe[a] = 1.5 + 0.5*state.dist[x][y]
      return state
def pay driver(state,a,y):
   if state.cash[a] >= state.owe[a]:
      state.cash[a] = state.cash[a] - state.owe[a]
      state.owe[a] = 0
      state.loc[a] = y
      return state
```

pyhop2.declare_actions(walk,call_taxi,ride_taxi,pay_driver)

Travel Planning Problem

Initial state:

```
loc(me) = home, cash(me) = 20, dist(home,park) = 8
state1 = pyhop2.State('state1')
state1.loc = {'me':'home'}
state1.cash = {'me':20}
state1.owe = {'me':0}
state1.dist = {'home':{'park':8}, 'park':{'home':8}}
Task:
travel(me,home,park)
pyhop2.find_plan(state1,[('travel', 'me', 'home', 'park')])
why not this instead?
state1.loc['me'] = 'home'
state1.
```

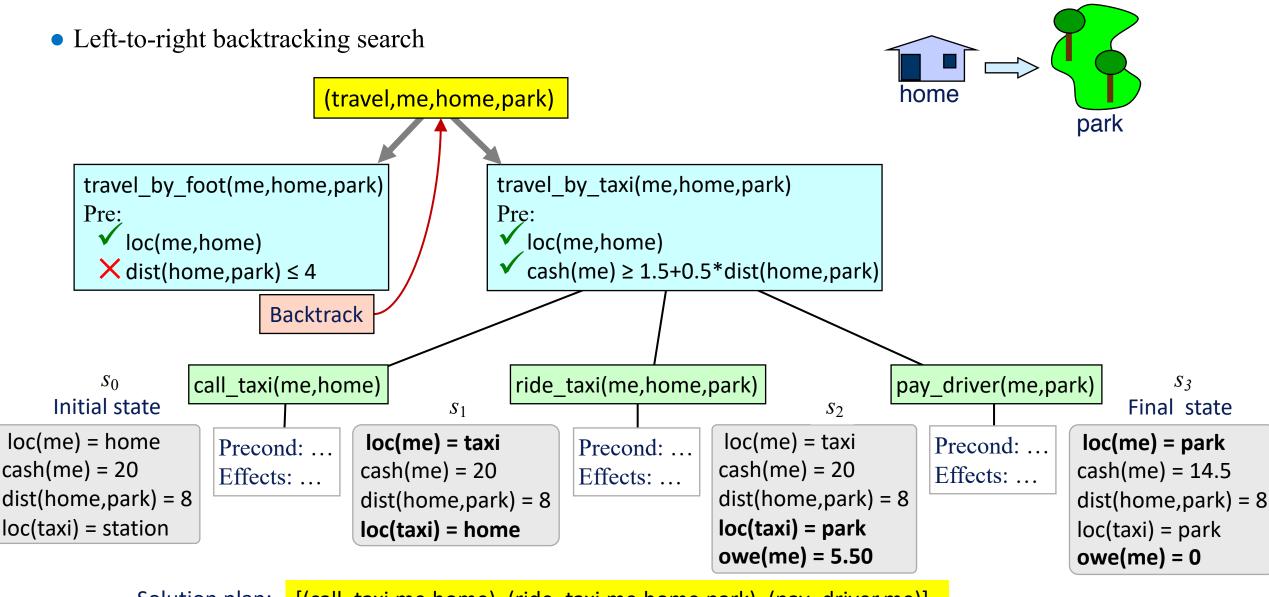
Solution plan:

```
call-taxi(me,home), ride-taxi(me,park), pay-driver(me)
```

```
[('call_taxi', 'me', 'home'),
 ('ride_taxi', 'me', 'home', 'park'),
 ('pay_driver', 'me')]
```

To run this example in Pyhop 2: import simple_tasks1.py

Travel-Planning Problem



Solution plan: [(call_taxi,me,home), (ride_taxi,me,home,park), (pay_driver,me)]

Acting and Planning

- run_lazy_lookahead(state, todo_list)
 - loop:
 - *plan* = find_plan(*state, todo_list*)
 - if *plan* = []:
 - return state // the new current state
 - for each *action* in *plan*:
 - execute the corresponding command
 - if the command fails:
 - continue the outer loop

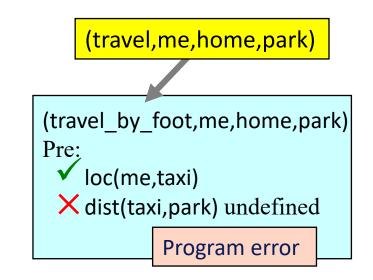
- Simple Travel Problem:
 - run_lazy_lookahead calls
 - find_plan(s₀, [(travel,me,home,park)])
 - find_plan returns
 - [(call_taxi,me,home), (ride_taxi,me,home,park), (pay_driver,me)]
 - run_lazy_lookahead executes
 - c_call_taxi(me,home)
 - c_ride_taxi(me,home,park)
 - c_pay_driver(me)
- If everything executes correctly, I get to the park
 - But suppose the taxi breaks down ...

Acting and Planning

- run_lazy_lookahead calls find_plan(s₀, [travel(me,home,park)])
- find_plan returns
 - [(call_taxi,me,home), (ride_taxi,me,home,park), (pay_driver,me)]
- run_lazy_lookahead executes
 - c_call_taxi(me,home)
 - c_ride_taxi(me,home,park)
- Suppose c_ride_taxi(me,home,park) fails:



- Next, run_lazy_lookahead calls
 - find_plan(s₁,[(travel,me,home,park)])



- To run this example in Pyhop 2:
 - import simple_tasks2.py
- For planning and acting, need to write HTN methods that can recover from unexpected problems

Motivation

- Sometimes we can write highly efficient planning algorithms for a specific domain
 - Use special properties of the domain
- Example: the "blocks world"

```
pickup(x)
pre: loc(x)=table, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x
```

```
putdown(x)
```

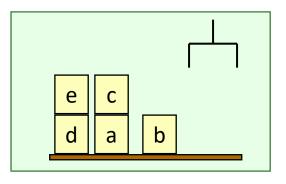
```
pre: holding=x
eff: holding=nil, loc(x)=table, clear(x)=T
```

```
stack(x,y)
```

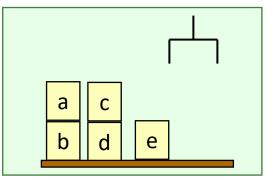
```
pre: holding=x, clear(y)=T
eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T
```

```
unstack(x,y)
pre: loc(x)=y, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x, clear(y)=T
```

clear(a)=F, clear(b)=T, clear(c)=T, clear(d)=F, clear(e)=T, loc(a)=table, loc(b)=table, loc(c)=a, loc(d)=table, loc(e)=d, holding=nil



clear(a)=T, clear(b)=F, clear(c)=T, clear(d)=F, clear(e)=T, loc(a)=b, loc(b)=table, loc(c)=d, loc(d)=table, loc(e)=table, holding=nil



The Blocks World

- For block-stacking problems with n blocks, easy to get a solution of length O(n)
 - Move all blocks to the table, then build up stacks from the bottom
- With more domain knowledge, can do even better pickup(*x*)

```
pre: loc(x)=table, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x
```

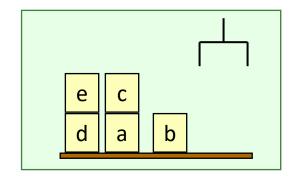
putdown(x)

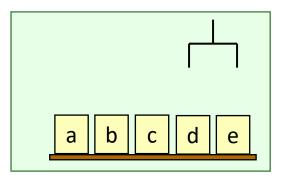
```
pre: holding=x
eff: holding=nil, loc(x)=table, clear(x)=T
```

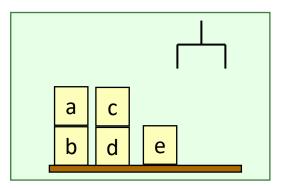
stack(x,y)

```
pre: holding=x, clear(y)=T
eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T
```

```
unstack(x,y)
pre: loc(x)=y, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x, clear(y)=T
```



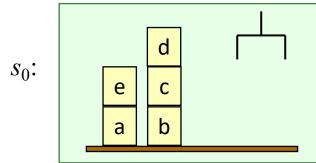


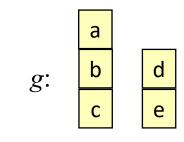


Block-Stacking Algorithm

loop if \exists a clear block *c* that needs moving & we can move *c* to a position *d* where it won't need to be moved again then move *c* to *d* else if \exists a clear block *c* that needs to be moved then move *c* to the table else if the goal is satisfied then return success else return failure repeat

- Cases in which *c* needs to be moved:
 - s contains loc(c)=d and g contains loc(c)=e, where d ≠ e
 - s contains loc(c)=d and g contains loc(b)=d, where b ≠ c and d ≠ table
 - s contains loc(c)=d and
 d needs to be moved





(unstack(e,a), putdown(e), unstack(d,c), stack(d,e), unstack(c,b), putdown(c), pickup(b), stack(b,c), pickup(a), stack(a,b))

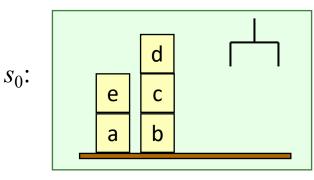
Properties of the Algorithm

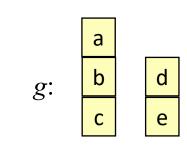
- Sound, complete, guaranteed to terminate on all block-stacking problems
- Runs in time $O(n^3)$
 - ► Can be modified (Slaney & Thiébaux) to run in time *O*(*n*)
- Often finds optimal (shortest) solutions, but sometimes only near-optimal
 - For block-stacking problems, the question "does there exist a solution of length ≤ k?" is NP-complete
- Some ways to implement it:
 - As a domain-specific algorithm
 - Using HTN planning (SHOP, PyHop Section 2.7.7)
 - Using refinement methods (RAE and SeRPE Chapter 3)
 - Using control rules (Section 2.7.8)
- To run it in Pyhop 2:
 - import blocks_tasks

Pyhop 2 Implementation

- task (move_blocks,g)
- method m_moveb(s,g)
 - if ∃ a clear block c that needs moving, and we can move c to a location d where it won't need to be moved again
 - then return [(move_one,c,d), (move_blocks,g)]
 - else if \exists a clear block c that needs to be moved
 - then return [(move_one,c,table), (move_blocks,g)]
 - else if s satisfies g then return []
 - else return False
- task (move_one,*c*,*d*)
 - methods that reduce it to
 - pickup(c) or unstack(c,d)
 followed by
 putdown(c) or stack(c,d)

- s contains loc(c)=d and g contains loc(c)=e, where d ≠ e
- s contains loc(c)=d and g contains loc(b)=d, where b ≠ c and d ≠ table
- s contains loc(c)=d and
 d needs to be moved





[(unstack,e,a), (putdown,e), (unstack,d,c), (stack,d,e), (unstack,c,b), (putdownc), (pickup,b), (stack,b,c), (pickup,a), (stack,a,b)]

Summary

- Total-order HTN planning
 - Planning problem: initial state, list of *tasks*
 - Apply HTN *methods* to tasks to get *subtasks* (smaller tasks)
 - Do this recursively to get smaller and smaller subtasks
 - At the bottom: *primitive tasks* that correspond to actions
 - Search goes down and forward
- Unlike most HTN planners, Pyhop and Pyhop 2 use state-variable representation
 - Makes it easier to integrate them into ordinary programming
 - Written in Python
 - Open source
 - Pyhop at http://bitbucket.org/dananau/pyhop
 - Pyhop 2 at https://github.com/patras91/pyhop2
- Examples: simple travel, blocks world
- To integrate planning and acting, need to make sure the HTN methods can handle unexpected events