
1Nau – Lecture slides for Automated Planning and Acting

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

http://www.laas.fr/planning

Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Last update: 2:45 PM, April 7, 2021

Section 2.7.7
HTN Planning

Dana S. Nau
University of Maryland

http://www.laas.fr/planning
http://creativecommons.org/licenses/by-nc-sa/4.0/

2Nau – Lecture slides for Automated Planning and Acting

Motivation
● For some planning problems, we may already have ideas for how to look

for solutions

● Example: travel to a destination that’s far away:
▸ Brute-force search:

• many combinations of vehicles and routes
▸ Experienced human: small number of “recipes”

e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

● How can we put such information into an actor?

3Nau – Lecture slides for Automated Planning and Acting

Using Domain-Specific Information in an Actor
● Several ways to do it

▸Domain-specific algorithm
▸Refinement methods (RAE and SeRPE: Chapter 3)
▸HTN planning (SHOP, PyHop 2: Section 2.7.7)
▸Control rules (TLPlan: Section 2.7.8)

4Nau – Lecture slides for Automated Planning and Acting

Total-Order HTN Planning● Ingredients:
▸ states and actions
▸ tasks: activities to perform
▸ HTN methods: ways to perform tasks

● Method format:
method-name(args)

Task: task-name(args)
Pre: preconditions
Sub: list of subtasks

● Two kinds of tasks
▸ Primitive task: name of an action
▸ Compound task: need to

decompose (or refine) using methods

● HTN planning domain: a pair (Σ,M)
▸ Σ: state-variable planning domain

(states, actions)
▸ M: set of methods

● Planning problem: P = (Σ, M, s0, T)
▸ T: list of tasks ⟨t1, t2, …, tk⟩

● Solution: any executable plan that can be
generated by applying
▸methods to nonprimitive tasks
▸ actions to primitive tasks

s0

task

action

method

tasktask

task

method

task

s1 s2action s3action

● Planning algorithm
▸ depth-first, left-to-

right search
▸ for each compound

task, apply a method
to decompose it into
subtasks

▸ for each primitive
task, apply the action

5Nau – Lecture slides for Automated Planning and Acting

Simple Travel-Planning Problem

● Action templates:

walk (a,x,y)
Pre: loc(a) = x
Eff: loc(a) ← y

call-taxi (a,x)
Pre: —
Eff: loc(taxi) ← x,

loc(a) ← taxi

● Action parameters
▸ a ∈ Agents
▸ x,y ∈ Locations

home
park

ride-taxi (a,x,y)
Pre: loc(a) = taxi,

loc(taxi) = x
Eff: loc(taxi) ← y,

owe(a) ← 1.50 + ½ dist(x,y)

pay-driver(a,y)
Pre: owe(a) ≤ cash(a)
Eff: cash(a) ← cash(a) – owe(a),

owe(a) ← 0,
loc(a) = y

6Nau – Lecture slides for Automated Planning and Acting

Simple Travel-Planning Problem

● Initial state:
▸ I’m at home,
▸ I have $20,
▸ there’s a park 8 miles away

● s0 = {loc(me)=home,
cash(me)=20,
dist(home,park)=8,
loc(taxi)=elsewhere}

● Task: travel to the park
▸ travel(me,home,park)

● Methods:

travel-by-foot(a,x,y)
Task: travel(a,x,y)
Pre: loc(a,x), distance(x, y) ≤ 4
Sub: walk(a,x,y)

travel-by-taxi(a,x,y)
Task: travel(a,x,y)
Pre: loc(a,x),

cash(a) ≥ 1.50 + ½ dist(x,y)
Sub: call-taxi (a,x),

ride-taxi (a,x,y),
pay-driver(a,y)

home
park ● Method parameters

▸ a ∈ Agents
▸ x,y ∈ Locations

7Nau – Lecture slides for Automated Planning and Acting

s1
s0

Initial state
call-taxi(me,home)

Precond: …
Effects: …

ride-taxi(me,home,park)

Precond: …
Effects: …

loc(me) = taxi
cash(me) = 20
dist(home,park) = 8
loc(taxi) = home

loc(me) = home
cash(me) = 20
dist(home,park) = 8
loc(taxi) = station

loc(me) = taxi
cash(me) = 20
dist(home,park) = 8
loc(taxi) = park
owe(me) = 5.50

loc(me) = park
cash(me) = 14.5
dist(home,park) = 8
loc(taxi) = park
owe(me) = 0

s3
Final state

travel-by-foot(me,home,park)
Pre:
ü loc(me,home)
×dist(home,park) ≤ 4

Precond: …
Effects: …

pay-driver(me,park)

travel-by-taxi(me,home,park)
Pre:
ü loc(me,home)
ücash(me) ≥ 1.5+0.5*dist(home,park)

Backtrack

Simple Travel-Planning Problem
● Left-to-right backtracking search

travel(me,home,park) home
park

s2

⟨call-taxi(me,home), ride-taxi(me,home,park), pay-driver(me)⟩Solution plan:

8Nau – Lecture slides for Automated Planning and Acting

Nondeterministic Planning Algorithm
● find-plan(s0, T)

▸return seek-plan(s0, T, ⟨⟩)

● seek-plan(s, T, π)
▸if T = ⟨⟩ then return π
▸let t1, t2, …, tk be the tasks in T
▸if t1 is primitive then

• if there is an action a such that
head(a) matches t1 and a is applicable in s:

▸return seek-plan(γ(s,a), ⟨t2,…,tk⟩, π .a)
• else: return failure

▸else // t1 is nonprimitive
• Candidates ←{m ∈ M | task(m) matches t1 and m is applicable in s}
• if Candidates = ∅ then return failure
• nondeterministically choose any m ∈ Candidates
• return seek-plan(s, subtasks(m) . ⟨t2,…,tk⟩, π)

i.e., T = ⟨t1, t2, …, tk⟩

state s, task list T=⟨ t1 , t2, …, tk⟩

action a

state g(s,a) , task list T=⟨t2, …, tk⟩

state s, task list T=⟨ u1, …, uj , t2, …, tk⟩

state s, task list T=⟨ t1 ,t2,…, tk⟩

method instance m

9Nau – Lecture slides for Automated Planning and Acting

Depth-first Search Implementation
● find-plan(s0, T)

▸return seek-plan(s0, T, ⟨⟩)

● seek-plan(s, T, π)
▸if T = ⟨⟩ then return π
▸let t1, t2, …, tk be the tasks in T
▸if t1 is primitive then

• if there is an action a such that
head(a) matches t1 and a is applicable in s:

▸return seek-plan(γ(s,a), ⟨t2,…,tk⟩, π .a)
• else: return failure

▸else // t1 is nonprimitive
• for each m ∈ M:

▸if task(m) matches t1 and m is applicable in s then
• π ← seek-plan(s, subtasks(m) . ⟨t2,…,tk⟩, π)
• if π ≠ failure then return π

• return failure state s, task list T=⟨ u1, …, uj , t2, …, tk⟩

state s, task list T=⟨ t1 ,t2,…, tk⟩

method instance m

state s, task list T=⟨ t1 , t2, …, tk⟩

action a

state g(s,a) , task list T=⟨t2, …, tk⟩

i.e., T = ⟨t1, t2, …, tk⟩

10Nau – Lecture slides for Automated Planning and Acting

Comparison to Forward and Backward Search

● More possibilities than just forward or backward
• A little like the choices to make in parsing algorithms

● SHOP, Pyhop, (total-order HTN planning),
SHOP2 (partial-order HTN planning),
GDP, GoDeL (HGN planning),
RAE (refinement acting, Chap. 3):
▸down, then forward

● SIPE, O-Plan, UMCP
▸plan-space HTN planning

(down and backward)

● AHA*
▸search in layers:
▸forward A*, at the top level
▸forward A*, one level down
▸…

task

task

…task task

task

…task task

task

…task task

task

…task task

task task

11Nau – Lecture slides for Automated Planning and Acting

Bridge
● Ideal: game-tree search (all lines of play) to compute expected utilities
● Don’t know what cards other players have

▸Many moves they might be able to make
• worst case about 6x1044 leaf nodes
• average case about 1024 leaf nodes

● About 1½ minutes available

● Bridge Baron
▸1997 world champion of computer bridge

● Special-purpose HTN planner that generates game trees
▸Branches ó standard bridge card plays (finesse, ruff, cash out, …)
▸Much smaller game tree: can search the entire tree, compute expected utilities

● Why it worked:
▸Special-purpose planner to generate trees rather than linear plans
▸Lots of work to make the HTN methods as complete as possible

Not enough time – need smaller tree

12Nau – Lecture slides for Automated Planning and Acting

KILLZONE 2

● “First-person shooter” game, ≈ 2009

● Special-purpose HTN planner for
planning at the squad level
▸Method and operator syntax similar to SHOP’s and SHOP2’s
▸Quickly generates a linear plan that would work if nothing interferes
▸Replan several times per second as the world changes

● Why it worked:
▸Very different objective from a bridge tournament
▸Don’t want to look for the best possible play
▸Need actions that appear believable and consistent to human users
▸Need them very quickly

13Nau – Lecture slides for Automated Planning and Acting

SHOP, SHOP2, SHOP3

● SHOP (released 1999)
▸Uses the algorithm I showed you
▸Instead of state variables, “classical, plus functions”
▸Method and operator syntax based on Lisp

● SHOP2 (released 2001)
▸Allows partially-ordered tasks
▸Won an award in the AIPS-2002 Planning Competition

● Freeware, open source
▸As of Feb 2013, downloaded more than 20,000 times
▸Has been used in many projects worldwide

● SHOP3 (developed at SIFT, LLC, released 2019)

14Nau – Lecture slides for Automated Planning and Acting

Pyhop and Pyhop 2
● Pyhop: a simple HTN planner written in Python

▸ Released in 2013

● Planning algorithm is like the one in SHOP, except:
▸ HTN operators and methods are ordinary Python

functions
▸ The current state is a Python object that contains

variable bindings
• Operators and methods

refer to states explicitly
• To say c is on a,

write s.loc['c'] = 'a'
where s is the current state

▸ Easy to implement and understand
• 240 lines
• ≈ 95 excluding comments and docstrings

● Open-source: http://bitbucket.org/dananau/pyhop

● Pyhop 2: enhanced version of Pyhop

● Main differences:
▸ Can plan for both tasks and goals
▸ Can hold multiple planning domains in

memory at the same time
• Give a different name to each one

▸ ≈ 5 times as large as Pyhop

● Open-source: pending
▸ (will post link when U of Md approves

open-source license)

s

c
a b

http://bitbucket.org/dananau/pyhop

15Nau – Lecture slides for Automated Planning and Acting

● apply_action(s, a, [t2,…,tk], π)
▸ if a is applicable in s:

• return seek_plan(γ(s,a), [t2,…,tk], π .a)
▸ else return failure

● find_task_method(s, t, [t2,…,tk], π)
▸ for every task method m such that name(t) matches

taskname(m) and m is applicable to t in s:
• π ← seek_plan(s, subtasks(m) . [t2,…,tk], π)
• if π ≠ failure then return π

▸ return failure

state s; T = [u1, …, uj , t2, …, tk]

state s, task t, T = [t2,…, tk]
method m

t = (name, arg1, arg2, …, argj)

state s, action a, T = [t2, …, tk]

state g(s,a) ; T = [t2, …, tk]

Pyhop 2 (tasks)
● find_plan(s0, T)

▸ return seek_plan(s0, T, [])

● seek_plan(s, T, π)
▸ if T = [] then return π
▸ let t1, t2, …, tk be the tasks/goals/multigoals in T
▸ if t1 is an action:

• return apply_action(s, t1, [t2,…,tk], π)
▸ else if t1 is a task:

• return find_task_method(s, t1, [t2,…,tk], π)
▸ else if t1 is a goal:

• return find_goal_method(s, t1, [t2,…,tk], π)
▸ else if t1 is a multigoal:

• return find_multigoal_method(s, t1, [t2,…,tk], π)
▸ else error

16Nau – Lecture slides for Automated Planning and Acting

Pyhop 2 (goals)

state s; T = [u1, …, uj , t2, …, tk]

state s, goal g, T = [t2,…, tk]
method m

● find_plan(s0, T)
▸ return seek_plan(s0, T, [])

● seek_plan(s, T, π)
▸ if T = [] then return π
▸ let t1, t2, …, tk be the tasks/goals/multigoals in T
▸ if t1 is an action:

• return apply_action(s, t1, [t2,…,tk], π)
▸ else if t1 is a task:

• return find_task_method(s, t1, [t2,…,tk], π)
▸ else if t1 is a goal:

• return find_goal_method(s, t1, [t2,…,tk], π)
▸ else if t1 is a multigoal:

• return find_multigoal_method(s, t1, [t2,…,tk], π)
▸ else error

● find_goal_method(s, g, T, π)
▸ if s ⊨ g then return π
▸ for every goal method m such that name(g) matches

goalname(m) and m is applicable to g in s:
• π ← seek_plan(s, subtasks(m) + verify(g) + T, π)
• if π ≠ failure then return π

▸ return failure

● find_multigoal_method(s, g, T, π)
▸ if s ⊨ g then return π
▸ for every multigoal method m that is

applicable to g in s:
• π ← seek_plan(s, subtasks(m) + verify(g) + T, π)
• if π ≠ failure then return π

▸ return failure

optional

g = (name, arg, value)

multigoal: a data structure that
represents a conjunction of goals

17Nau – Lecture slides for Automated Planning and Acting

Pyhop 2 version of the Simple Travel Problem
● Launch Python 3; load simple_tasks1.py

travel-by-foot(a, x, y)
Task: travel(a,x,y)
Pre: loc(a,x), distance(x,y) ≤ 4
Sub: walk(a,x,y)

travel-by-taxi(a,x,y)
Task: travel(a,x,y)
Pre: cash(a) ≥ 1.5 + 0.5*dist(x,y)
Sub: call-taxi (a,x),

ride-taxi (a,x,y),
pay-driver(a)

def travel_by_foot(state,a,x,y):
if state.dist[x][y] <= 4:

return [('walk',a,x,y)]

pyhop2.declare_task_methods('travel', travel_by_foot)

def travel_by_taxi(state,a,x,y):
if state.cash[a] >= 1.5 + 0.5*state.dist[x][y]:

return [('call_taxi',a,x),
('ride_taxi',a,x,y),
('pay_driver',a,x,y)]

pyhop2.declare_task_methods('travel', travel_by_taxi)

Pyhop 2 Methods

18Nau – Lecture slides for Automated Planning and Acting

walk (a,x,y)
Pre: loc(a) = x
Eff: loc(a) ← y

call-taxi (a,x)
Pre: —
Eff: loc(taxi) ← x, loc(a) ← taxi

ride-taxi (a,x,y)
Pre: loc(a) = taxi, loc(taxi) = x
Eff: loc(taxi) ← y,

owe(a) ← 1.50 + ½ dist(x,y)

pay-driver(a,y)
Pre: owe(a) ≤ cash(a)
Eff: cash(a) ← cash(a) – owe(a),

owe(a) ← 0,
loc(a) = y

def walk(state,a,x,y):
if state.loc[a] == x:

state.loc[a] = y
return state

def call_taxi(state,a,x):
state.loc['taxi'] = x
state.loc[a] = 'taxi'
return state

def ride_taxi(state,a,x,y):
if state.loc['taxi']==x and state.loc[a]=='taxi':

state.loc['taxi'] = y
state.loc[a] = y
state.owe[a] = 1.5 + 0.5*state.dist[x][y]
return state

def pay_driver(state,a,y):
if state.cash[a] >= state.owe[a]:

state.cash[a] = state.cash[a] – state.owe[a]
state.owe[a] = 0
state.loc[a] = y
return state

pyhop2.declare_actions(walk,call_taxi,ride_taxi,pay_driver)

Pyhop 2 Actions

19Nau – Lecture slides for Automated Planning and Acting

[('call_taxi', 'me', 'home’),  
('ride_taxi', 'me', 'home', 'park’),
('pay_driver', 'me')]

Travel Planning Problem
Initial state:

loc(me) = home, cash(me) = 20, dist(home,park) = 8

Task:
travel(me,home,park)

Solution plan:
call-taxi(me,home), ride-taxi(me,park), pay-driver(me)

pyhop2.find_plan(state1,[('travel','me','home','park')])

state1 = pyhop2.State('state1')
state1.loc = {'me':'home'}
state1.cash = {'me':20}
state1.owe = {'me':0}
state1.dist = {'home':{'park':8}, 'park':{'home':8}}

why not this instead?
state1.loc['me'] = 'home'

home
park

To run this example in Pyhop 2:
import simple_tasks1.py

20Nau – Lecture slides for Automated Planning and Acting

s1
s0

Initial state
call_taxi(me,home)

Precond: …
Effects: …

ride_taxi(me,home,park)

Precond: …
Effects: …

loc(me) = taxi
cash(me) = 20
dist(home,park) = 8
loc(taxi) = home

loc(me) = home
cash(me) = 20
dist(home,park) = 8
loc(taxi) = station

loc(me) = taxi
cash(me) = 20
dist(home,park) = 8
loc(taxi) = park
owe(me) = 5.50

loc(me) = park
cash(me) = 14.5
dist(home,park) = 8
loc(taxi) = park
owe(me) = 0

s3
Final state

travel_by_foot(me,home,park)
Pre:
ü loc(me,home)
×dist(home,park) ≤ 4

Precond: …
Effects: …

pay_driver(me,park)

travel_by_taxi(me,home,park)
Pre:
ü loc(me,home)
ücash(me) ≥ 1.5+0.5*dist(home,park)

Backtrack

Travel-Planning Problem
● Left-to-right backtracking search

(travel,me,home,park) home
park

s2

[(call_taxi,me,home), (ride_taxi,me,home,park), (pay_driver,me)]Solution plan:

21Nau – Lecture slides for Automated Planning and Acting

● run_lazy_lookahead(state, todo_list)
▸ loop:

• plan = find_plan(state, todo_list)
• if plan = []:
▸ return state // the new current state

• for each action in plan:
▸ execute the corresponding command
▸ if the command fails:

• continue the outer loop

● Simple Travel Problem:
▸ run_lazy_lookahead calls

• find_plan(s0, [(travel,me,home,park)])
▸ find_plan returns

• [(call_taxi,me,home),
(ride_taxi,me,home,park),
(pay_driver,me)]

▸ run_lazy_lookahead executes
• c_call_taxi(me,home)
• c_ride_taxi(me,home,park)
• c_pay_driver(me)

● If everything executes correctly, I get to the park
▸ But suppose the taxi breaks down …

Acting and Planning

22Nau – Lecture slides for Automated Planning and Acting

Acting and Planning
● run_lazy_lookahead calls find_plan(s0, [travel(me,home,park)])

● find_plan returns
▸ [(call_taxi,me,home), (ride_taxi,me,home,park), (pay_driver,me)]

● run_lazy_lookahead executes
▸ c_call_taxi(me,home)
▸ c_ride_taxi(me,home,park)

● Suppose c_ride_taxi(me,home,park) fails:

● Next, run_lazy_lookahead calls
▸ find_plan(s1,[(travel,me,home,park)])

● To run this example in Pyhop 2:
▸ import simple_tasks2.py

● For planning and acting, need to write
HTN methods that can recover from
unexpected problems

s1
s0

Initial state
c_call_taxi(me,home)

Code: …

c_ride_taxi(me,home,park)

Code: …loc(me) = taxi
cash(me) = 20
owe(me) = 0
dist(home,park) = 8
loc(taxi) = home

loc(me) = home
cash(me) = 20
owe(me) = 0
dist(home,park) = 8
loc(taxi) = station

Command
failure, state s1
unchanged

(travel_by_foot,me,home,park)
Pre:
ü loc(me,taxi)
×dist(taxi,park) undefined

(travel,me,home,park)

Program error

23Nau – Lecture slides for Automated Planning and Acting

Motivation
● Sometimes we can write highly efficient

planning algorithms for a specific domain
▸Use special properties of the domain

● Example: the “blocks world”

pickup(x)
pre: loc(x)=table, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x

putdown(x)
pre: holding=x
eff: holding=nil, loc(x)=table, clear(x)=T

stack(x,y)
pre: holding=x, clear(y)=T
eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T

unstack(x,y)
pre: loc(x)=y, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x, clear(y)=T

clear(a)=T, clear(b)=F, clear(c)=T, clear(d)=F, clear(e)=T,
loc(a)=b, loc(b)=table, loc(c)=d, loc(d)=table, loc(e)=table,
holding=nil

clear(a)=F, clear(b)=T, clear(c)=T, clear(d)=F, clear(e)=T,
loc(a)=table, loc(b)=table, loc(c)=a, loc(d)=table, loc(e)=d,
holding=nil

c

a bd

e

c

d eb

a

24Nau – Lecture slides for Automated Planning and Acting

pickup(x)
pre: loc(x)=table, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x

putdown(x)
pre: holding=x
eff: holding=nil, loc(x)=table, clear(x)=T

stack(x,y)
pre: holding=x, clear(y)=T
eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T

unstack(x,y)
pre: loc(x)=y, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x, clear(y)=T

The Blocks World

c

a bd

e

c

d eb

a

eb ca d

● For block-stacking problems with n blocks,
easy to get a solution of length O(n)
▸Move all blocks to the table, then build up stacks

from the bottom

● With more domain knowledge, can do even better

25Nau – Lecture slides for Automated Planning and Acting

⟨unstack(e,a), putdown(e), unstack(d,c), stack(d,e), unstack(c,b),
putdown(c), pickup(b), stack(b,c), pickup(a), stack(a,b)⟩

Block-Stacking Algorithm
loop

if ∃ a clear block c that needs moving
& we can move c to a position d

where it won’t need to be moved again
then move c to d

else if ∃ a clear block c that needs to be moved
then move c to the table

else if the goal is satisfied
then return success

else return failure
repeat

● Cases in which c needs to be moved:
▸ s contains loc(c)=d and

g contains loc(c)=e, where d ≠ e
▸ s contains loc(c)=d and

g contains loc(b)=d,
where b ≠ c and d ≠ table

▸ s contains loc(c)=d and
d needs to be moved

s0: c

b

d

a

e b

c

a

e

dg:

26Nau – Lecture slides for Automated Planning and Acting

Properties of the Algorithm
● Sound, complete, guaranteed to terminate on all block-stacking problems

● Runs in time O(n3)
▸Can be modified (Slaney & Thiébaux) to run in time O(n)

● Often finds optimal (shortest) solutions, but sometimes only near-optimal
▸For block-stacking problems, the question

“does there exist a solution of length ≤ k?”
is NP-complete

● Some ways to implement it:
▸As a domain-specific algorithm
▸Using HTN planning (SHOP, PyHop - Section 2.7.7)
▸Using refinement methods (RAE and SeRPE - Chapter 3)
▸Using control rules (Section 2.7.8)

● To run it in Pyhop 2:
▸import blocks_tasks

27Nau – Lecture slides for Automated Planning and Acting

Pyhop 2 Implementation
● Cases in which c needs to be moved:

▸ s contains loc(c)=d and
g contains loc(c)=e, where d ≠ e

▸ s contains loc(c)=d and
g contains loc(b)=d,
where b ≠ c and d ≠ table

▸ s contains loc(c)=d and
d needs to be moved

s0: c

b

d

a

e b

c

a

e

dg:

● task (move_blocks,g)

● method m_moveb(s,g)
▸ if ∃ a clear block c that needs moving,

and we can move c to a location d
where it won’t need to be moved again

▸ then return [(move_one,c,d), (move_blocks,g)]
▸ else if ∃ a clear block c that needs to be moved
▸ then return [(move_one,c,table), (move_blocks,g)]
▸ else if s satisfies g then return []
▸ else return False

● task (move_one,c,d)
▸ methods that reduce it to

• pickup(c) or unstack(c,d)
followed by
putdown(c) or stack(c,d)

[(unstack,e,a), (putdown,e), (unstack,d,c), (stack,d,e), (unstack,c,b),
(putdownc), (pickup,b), (stack,b,c), (pickup,a), (stack,a,b)]

28Nau – Lecture slides for Automated Planning and Acting

Summary
● Total-order HTN planning

▸Planning problem: initial state, list of tasks
▸Apply HTN methods to tasks to get subtasks (smaller tasks)

• Do this recursively to get smaller and smaller subtasks
▸At the bottom: primitive tasks that correspond to actions

▸Search goes down and forward

● Unlike most HTN planners, Pyhop and Pyhop 2 use state-variable representation
▸Makes it easier to integrate them into ordinary programming
▸Written in Python
▸Open source

• Pyhop at http://bitbucket.org/dananau/pyhop
• Pyhop 2 at https://github.com/patras91/pyhop2

● Examples: simple travel, blocks world

● To integrate planning and acting, need to make sure the HTN methods can handle
unexpected events

http://bitbucket.org/dananau/pyhop
https://github.com/patras91/pyhop2

