Last update: 2:45 PM, April 7, 2021

Section 2.7.7
HTN Planning

Dana S. Nau

: - of Marvland Automated Planning
University of Marylan and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

http://www.laas.fr/planning

Nau — Lecture slides for Automated Planning and Acting Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

http://www.laas.fr/planning
http://creativecommons.org/licenses/by-nc-sa/4.0/

Motivation

e For some planning problems, we may already have ideas for how to look
for solutions

e Example: travel to a destination that’s far away:
» Brute-force search:
* many combinations of vehicles and routes
> Experienced human: small number of “recipes”
e.g., flying:

1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

e How can we put such information into an actor?

Nau — Lecture slides for Automated Planning and Acting

Using Domain-Specific Information in an Actor

e Several ways to do it
» Domain-specific algorithm
» Refinement methods (RAE and SeRPE: Chapter 3)
» HTN planning (SHOP, PyHop 2: Section 2.7.7)
» Control rules (TLPlan: Section 2.7.8)

Nau — Lecture slides for Automated Planning and Acting

e Ingredients:
» states and actions

> tasks: activities to perform

> HTN methods: ways to perform tasks

e Method format:

method-name(args)
Task: task-name(args)
Pre: preconditions

Sub: [ist of subtasks
e Two kinds of tasks
» Primitive task: name of an action
» Compound task: need to
decompose (or refine) using methods
e HTN planning domain: a pair (£,M)
» X: state-variable planning domain
(states, actions)

» M: set of methods

AY))

Nau — Lecture slides for Automated Planning and Acting

task

\ 4

Total-Order HTN Planning

e Planning problem: P = (£, M, s,, 1)
> T: list of tasks (¢, 1, ..., £;)

e Solution: any executable plan that can be
generated by applying

> methods to nonprimitive tasks

> actions to primitive tasks

task

task

task

task

action) |s;

e Planning algorithm

> depth-first, left-to-
right search

» for each compound
task, apply a method
to decompose it into
subtasks

> for each primitive
task, apply the action

Simple Travel-Planning Problem

e Action templates: ﬁ —>

walk (a,x,y) ride-taxi (a,x,y) home e
Pre: loc(a) = x Pre: loc(a) = taxi,
Eff: loc(a) <« y loc(taxi) = x
Eff: loc(taxi) <y,
call-taxi (a,x) owe(a) «— 1.50 + % dist(x,)
Pre: —
Eff: loc(taxi) « x, pay-driver(a,y)
loc(a) « taxi Pre: owe(a) < cash(a)

Eff: cash(a) < cash(a) — owe(a),
owe(a) < 0,
e Action parameters loc(a) =y
> a € Agents
> x,y € Locations

Nau — Lecture slides for Automated Planning and Acting

Simple Travel-Planning Problem

| ==

home
park

e [nitial state:
> I’m at home,
> I have $20,
> there’s a park 8 miles away
e s5,= {loc(me)=home,
cash(me)=20,
dist(home,park)=8,
loc(taxi)=elsewhere}

e Task: travel to the park

> travel(me,home,park)

Nau — Lecture slides for Automated Planning and Acting

e Methods:

travel-by-foot(a,x,y)
Task: travel(a,x,y)
Pre: loc(a,x), distance(x, y) <4
Sub: walk(a,x,y)

travel-by-taxi(a,x,y)
Task: travel(a,x,y)

Pre: loc(a,x),
cash(a) > 1.50 + % dist(x,)

Sub: call-taxi (a,x),
ride-taxi (a,x,y),
pay-driver(a,y)

e Method parameters
> a € Agents
> X,y € Locations

Simple Travel-Planning Problem

e [eft-to-right backtracking search
| ==
travel(me,home,park) home
/ \ park
travel-by-foot(me,home,park) travel-by-taxi(me,home,park)
Pre; Pre:
loc(me,home) ‘/Ioc(me,home)
X dist(home,park) < 4 ‘/cash(me) > 1.5+0.5*dist(home,park)
Backtrack / / \
S0 call-taxi(me,home) ride-taxi(me,home,park) pay-driver(me,park) S3
Initial state , S | S | Final state
loc(me) = home Precond: ... = loc(me) = taxi Precond: ... | loc(me) = taxi Precond: ... @ loc(me) = park
cash(me) = 20 Effects: ... | cash(me) =20 Effects: ... | cash(me) =20 Effects: ... | cash(me)=14.5
dist(home,park) =8 dist(home,park) = 8 dist(home,park) =8 dist(home,park) = 8
loc(taxi) = station loc(taxi) = home loc(taxi) = park loc(taxi) = park
owe(me) = 5.50 owe(me) =0

Solution plan: (call-taxi(me,home), ride-taxi(me,home,park), pay-driver(me))

Nau — Lecture slides for Automated Planning and Acting 7

Nondeterministic Planning Algorithm
e find-plan(sy, T)
> return seek-plan(sy, 7, ())

e seek-plan(s, 7T, m)
> 1if T'= () then return ©
»lett, 1,,t; bethetasksin T 1.e, T=(t, by, ..., t})
> 1f ¢, 1s primitive then
e if there is an action a such that
head(a) matches ¢, and a 1s applicable in s:

state s, task list 7=(|¢,|, t,, ..., t;)

> return seek-plan(y(s,a), {t,,...,t;), T.a) action|a

e else: return failure .
state(y(s,a)|, task list 7=(t,, ..., t;)

> else // t, 1s nonprimitive

e Candidates «<—{m € M | task(m) matches ¢, and m 1s applicable in s}
e if Candidates = @ then return failure

. , state s, task list 7=(|¢,|.z,,..., t
e nondeterministically choose any m € Candidates (it o

method instance|m

e return seek-plan(s, subtasks(m). (t,,...,t;), T)

state s, task list 7=(|uy, ..., uj|, t, ..., &)

Nau — Lecture slides for Automated Planning and Acting

Depth-first Search Implementation

e find-plan(sy, T)
> return Seek_plan(SOa Ta ())

e seek-plan(s, 7T, m)
> 1if T'= () then return ©
>lett, by, ..., bethetasks in T ie., T=(t, 15, ..., t;)
> 1f ¢, 1s primitive then

e if there is an action a such that .
head(a) matches #, and a is applicable in s;: State s, task list 7=(#|, 5, ..., &)

> return seek-plan(y(s,a), {t,,...,t;), T.a) action|a

e ¢clse: return failure

state(y(s,a)|, task list 7=(t,, ..., t;)

> else // t, 1s nonprimitive
e for each m € M:
> 1f task(m) matches ¢, and m 1s applicable in s then

state s, task list 7=(| ¢, |,,,..., ¢
e 11 «— seek-plan(s, subtasks(m).(t,,....,t;), m) itz o

method instance|m

o if m # failure then return ©

e return failure

state s, task list 7=(|uy, ..., uj|, t, ..., &)

Nau — Lecture slides for Automated Planning and Acting

Comparison to Forward and Backward Search

e More possibilities than just forward or backward

e A little like the choices to make in parsing algorithms

e SHOP, Pyhop, (total-order HTN planning),
SHOP?2 (partial-order HTN planning),
GDP, GoDeL (HGN planning),

RAE (refinement acting, Chap. 3):

» down, then forward /

>

task

/

e SIPE, O-Plan, UMCP
task task
> plan-space HTN planning / \ \
(down and backward)
v |task task task task

e AHA*

> search 1n layers: / \ \ / \

task|...|task| |task]...|task| [task]...|task| [task]...]|task

» forward A*, at the top level

» forward A*, one level down

>...

Nau — Lecture slides for Automated Planning and Acting 10

Bridge

e Ideal: game-tree search (all lines of play) to compute expected utilities

e Don’t know what cards other players have
» Many moves they might be able to make

e worst case about 6x10* leaf nodes

e average case about 10?4 leaf nodes

e About 1% minutes available

West

North

{Not enough time — need smaller tree J

® Bridge Baron
» 1997 world champion of computer bridge

e Special-purpose HTN planner that generates game trees

-

vg [¢

V7

¢5

43

*2

*8

oq]

South

» Branches < standard bridge card plays (finesse, ruff, cash out, ...)
» Much smaller game tree: can search the entire tree, compute expected utilities

e Why it worked:

» Special-purpose planner to generate trees rather than linear plans

> Lots of work to make the HTN methods as complete as possible

Nau — Lecture slides for Automated Planning and Acting

East

11

KILLZONE 2

e “First-person shooter” game, = 2009
e Special-purpose HTN planner for
planning at the squad level
» Method and operator syntax similar to SHOP’s and SHOP2’s
> Quickly generates a linear plan that would work if nothing interferes

» Replan several times per second as the world changes

e Why it worked:
> Very different objective from a bridge tournament
» Don’t want to look for the best possible play
» Need actions that appear believable and consistent to human users

> Need them very quickly

Nau — Lecture slides for Automated Planning and Acting

12

SHOP, SHOP2, SHOP3

e SHOP (released 1999)
> Uses the algorithm I showed you
> Instead of state variables, “classical, plus functions”

> Method and operator syntax based on Lisp

e SHOP?2 (released 2001)

> Allows partially-ordered tasks
> Won an award in the AIPS-2002 Planning Competition

e Freeware, open source
» As of Feb 2013, downloaded more than 20,000 times

> Has been used in many projects worldwide

e SHOP3 (developed at SIFT, LLC, released 2019)

Nau — Lecture slides for Automated Planning and Acting

13

Pyhop and Pyhop 2

e Pyhop: a simple HTN planner written in Python
> Released in 2013

e Planning algorithm is like the one in SHOP, except:

» HTN operators and methods are ordinary Python
functions

> The current state 1s a Python object that contains
variable bindings

e Operators and methods

. . S
refer to states explicitly]
e To say cis on a, 3
write s.loc['c'] = 'a'
: b
where s is the current state a_l_l_

» Easy to implement and understand
e 240 lines

e =95 excluding comments and docstrings

e Open-source: http://bitbucket.org/dananau/pyhop

Nau — Lecture slides for Automated Planning and Acting

e Pyhop 2: enhanced version of Pyhop

e Main differences:
> Can plan for both tasks and goals

» Can hold multiple planning domains in
memory at the same time

e (Give a different name to each one

> = 5 times as large as Pyhop

e Open-source: pending

> (will post link when U of Md approves
open-source license)

14

http://bitbucket.org/dananau/pyhop

Pyhop 2 (taSkS) state s, action a, T=[t,, ..., t;]

e find_plan(sy, 7) state‘y(s,a) s T=1[t, ..., 4]

> return seek_plan(sy, 7, [])

e seek_plan(s, T,) e apply_action(s, a, [t,,...,t;],)

+ if =[] then return > if a 1s applicable in s:

> let ¢, t,, ..., t, be the tasks/goals/multigoals in T’

. : > else return failure
» 1f ¢, 1s an action:

e return|apply_action(s, ¢, [£,...,t;], T)

> else if ¢, is a task: e find_task_method(s, ¢, [£,,....,4],)

e return|find_task_method(s, #,, [£,,...,l;], T)

> else1f ¢, is a goal:

e return find_goal_method(s, 7, [£,...,t;], T) . if# failure then return 1
> else 1f ¢, 1s a multigoal:

_ _ » return failure
e return find_multigoal_method(s, #,, [1,,....t;], T) state s, task{ 7, |T
> else error methOd m
N

e return seek_plan(y(s,a), [t,....t], T.q)

t = (name, arg,, arg,, ..., arg))

> for every task method m such that name(#) matches
taskname(m) and m 1s applicable to ¢ in s:

e 1« seek_plan(s, subtasks(m).[t,,...,t], T)

state s; T=[|uy, ...

Nau — Lecture slides for Automated Planning and Acting

15

PyhOp 2 (gOHIS) state s, goal|g,|T = [t,,...

e find_plan(s,, 7)

> return seek_plan(sy, 7, [])
e seek plan(s, T, m)
if 7'=[] then return w

let ¢, t,, ..., t; be the tasks/goals/multigoals in T

v

v

» 1f ¢, 1s an action:

e return apply_action(s, ¢, [£,...,t;], T)
> else if ¢, 1s a task:

e return find_task_method(s, #,, [£,,...,l;], T)
> else if ¢, 1s a goal:

e return|find_goal_method(s, ¢, [£,...,], T)

> else 1f ¢, 1s a multigoal:

e return|find_multigoal_method(s, #,, [1,,....t;], T)

> else error
multigoal: a data structure that

represents a conjunction of goals

Nau — Lecture slides for Automated Planning and Acting

method|m

state s; T=|[uy, ..., uy, ty, ..., t]

e find_goal_method(s, g, T,)
> if s E g then return ©t

g = (name, arg, value)

> for every goal method m such that name(g) matches
goalname(m) and m 1s applicable to g in s:

e 1« seek_plan(s, subtasks(m)
o 1f t # failure then return ©
> return failure

e find_multigoal_method(s, g, T, m)
> if s E g then return ©

+ verify(g)

\

+ 7, m)

optional

> for every multigoal method m that 1s

applicable to g in s:
e 1« seek_plan(s, subtasks(m)
o 1f t # failure then return ©
> return failure

+ verify(g)

+ T, m)

16

Pyhop 2 version of the Simple Travel Problem

e Launch Python 3; load simple tasksl.py

travel-by-foot(q, x,)
Task: travel(a,x,y)
Pre: loc(a,x), distance(x,y) < 4
Sub: walk(a,x,))

travel-by-taxi(a,x,y)
Task: travel(a,x,y)
Pre: cash(a) > 1.5 + 0.5*dist(x,y)
Sub: call-taxi (a,x),
ride-taxi (a,x,y),
pay-driver(a)

Nau — Lecture slides for Automated Planning and Acting

Pyhop 2 Methods

def travel by foot(state,a,x,y):
if state.dist[x][y] <= 4:
return [('walk',a,x,y)]

pyhop2.declare task methods('travel', travel by foot)

def travel by taxi(state,a,x,y):
if state.cash[a] >= 1.5 + 0.5*state.dist[x][Y]:
return [('call taxi',a,x),
('ride taxi',a,x,y),
('pay_driver',a,x,y)]

pyhop2.declare task methods('travel', travel by taxi)

17

walk (a,x,y)
Pre: loc(a) = x
Eff: loc(a) «— y

call-taxi (a,x)
Pre: —
Eff: loc(taxi) <« x, loc(a) < taxi

ride-taxi (a,x,y)
Pre: loc(a) = taxi, loc(taxi) = x
Eff: loc(taxi) « y,
owe(a) «— 1.50 + % dist(x,p)

pay-driver(a,y)
Pre: owe(a) < cash(a)
Eff: cash(a) < cash(a) — owe(a),
owe(a) « 0,

loc(a) =y

Nau — Lecture slides for Automated Planning and Acting

Pyhop 2 Actions

def walk(state,a,x,y):
if state.loc[a] =
state.loc[a]

return state

X
y

def call taxi(state,a,x):
state.loc['taxi'] = x
state.loc[a] = 'taxi'
return state

def ride taxi(state,a,x,y):

if state.loc['taxi']==x and state.loc[a]=='taxi':
state.loc['taxi'] = vy
state.loc[a] = vy
state.owe[a] = 1.5 + 0.5*state.dist[x][V]

return state

def pay driver(state,a,y):
if state.cash[a] >= state.owe[a]:
state.cash[a] = state.cash[a] — state.owe[a]
state.owe[a] = 0
state.loc[a] =y
return state

pyhop2.declare actions(walk,call taxi,ride taxi,pay driver)
18

Travel Planning Problem

Initial state:

loc(me) = home, cash(me) = 20, dist(home,park) = 8 why not this instead?
"’—’——’—”’__,———”” statel.loc['me'] = 'home'
statel = pyhop2.State('statel')
statel.loc = {'me': ' 'home'}
statel.cash = {'me':20}
statel.owe = {'me':0}

statel.dist = {'home':{'park':8}, 'park':{'home':8}}

travel(me,home,park) —>

home
pyhop2.find plan(statel,[('travel',6 'me', 'home', 'park')]) park

Solution plan:

call-taxi(me,home), ride-taxi(me,park), pay-driver(me)
To run this example in Pyhop 2:

import simple tasksl.py

1]

[('call taxi', 'me', 'home’),
('ride taxi', 'me', 'home', 'park’),
('pay driver', 'me')]

Nau — Lecture slides for Automated Planning and Acting 19

Travel-Planning Problem

e [eft-to-right backtracking search
| ==
(travel,me,home,park) home
/ \ park
travel by foot(me,home,park) travel by taxi(me,home,park)
Pre; Pre:
loc(me,home) ‘/Ioc(me,home)
X dist(home,park) < 4 ‘/cash(me) > 1.5+0.5*dist(home,park)
Backtrack / / \
S0 call_taxi(me,home) ride_taxi(me,home,park) pay_driver(me,park) S3
Initial state , S | S | Final state
loc(me) = home Precond: ... = loc(me) = taxi Precond: ... | loc(me) = taxi Precond: ... @ loc(me) = park
cash(me) = 20 Effects: ... | cash(me) =20 Effects: ... | cash(me) =20 Effects: ... | cash(me)=14.5
dist(home,park) =8 dist(home,park) = 8 dist(home,park) =8 dist(home,park) = 8
loc(taxi) = station loc(taxi) = home loc(taxi) = park loc(taxi) = park
owe(me) = 5.50 owe(me) =0

Solution plan: [(call_taxi,me,home), (ride_taxi,me,home,park), (pay_driver,me)]

Nau — Lecture slides for Automated Planning and Acting 20

Acting and Planning

e run_lazy _lookahead(state, todo list)
> loop:

e plan = find_plan(state, todo list)

e if plan=11]:
> return state // the new current state

e for each action in plan:
> execute the corresponding command
> 1f the command fails:

e continue the outer loop

Nau — Lecture slides for Automated Planning and Acting

e Simple Travel Problem:
» run_lazy_lookahead calls
e find_plan(s,, [(travel,me,home,park)])
» find_plan returns

e [(call _taxi,me,home),
(ride_taxi,me,home,park),
(pay_driver,me)]

> run_lazy lookahead executes
e c_call_taxi(me,home)
e c_ride_taxi(me,home,park)
e c_pay_driver(me)
e [f everything executes correctly, I get to the park

> But suppose the taxi breaks down ...

21

Acting and Planning

e run_lazy_lookahead calls find_plan(s,, [travel(me,home,park)]) e Next, run_lazy lookahead calls

e find_plan returns > find_plan(sy,[(travel,me,home,park)])

> [(call _taxi,me,home), (ride_taxi,me,home,park), (pay_driver,me)] (travel me,home,park]
e run_lazy lookahead executes /
> c_call_taxi(me,home) (travel_by_foot,me,home,park)
» c_ride_taxi(me,home,park) Pre;
) loc(me,taxi
e Suppose c_ride_taxi(me,home,park) fails: X dis’E(taxi paik) undefined
50 c_call_taxi(me,home) c_ride_taxi(me,home,park) Program error
Initial state | S |
loc(me) = home Todles loc(me) = taxi Code: . e To run this example in Pyhop 2:
cash(me) = 20 cash(me) = 20 Command » import simple tasks2.py
ol = owe(me) =0 failure, state s,
dist(home,park) = 8 dist(home,park) = 8 unchanged e For planning and acting, need to write
locftaxi) = station loc{taxi) = home HTN methods that can recover from

unexpected problems

Nau — Lecture slides for Automated Planning and Acting 22

Motivation

e Sometimes we can write highly efficient
planning algorithms for a specific domain

» Use special properties of the domain

e Example: the “blocks world”

pickup(x)
pre: loc(x)=table, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x

putdown(x)
pre: holding=x
eff: holding=nil, loc(x)=table, clear(x)=T

stack(x,))
pre: holding=x, clear(y)=T
eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T

unstack(x,y)
pre: loc(x)=y, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x, clear(y)=T

Nau — Lecture slides for Automated Planning and Acting

clear(a)=F, clear(b)=T, clear(c)=T, clear(d)=F, clear(e)=T,
loc(a)=table, loc(b)=table, loc(c)=a, loc(d)=table, loc(e)=d,

holding=nil

clear(a)=T, clear(b)=F, clear(c)=T, clear(d)=F, clear(e)=T,
loc(a)=b, loc(b)=table, loc(c)=d, loc(d)=table, loc(e)=table,
holding=nil

23

The Blocks World

e For block-stacking problems with n blocks,
easy to get a solution of length O(n)

» Move all blocks to the table, then build up stacks
from the bottom

e With more domain knowledge, can do even better

pickup(x)
pre: loc(x)=table, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x

putdown(x)
pre: holding=x
eff: holding=nil, loc(x)=table, clear(x)=T

stack(x,))
pre: holding=x, clear(y)=T
eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T

unstack(x,y)
pre: loc(x)=y, clear(x)=T, holding=nil
eff: loc(x)=hand, clear(x)=F, holding=x, clear(y)=T

Nau — Lecture slides for Automated Planning and Acting

Block-Stacking Algorithm

e (ases in which ¢ needs to be moved:

loop
if 3 a clear block ¢ that needs moving » s contains loc(c)=d and
& we can move ¢ to a position d g contains loc(c)=e, where d # e
where 1t won’t need to be moved again > s contains loc(c)=d and
then move ¢ to d g contains loc(b)=d,
else if 3 a clear block ¢ that needs to be moved where b # ¢ and d # table

then move c to the table
else 1f the goal 1s satisfied
then return success
else return failure

> s contains loc(c)=d and
d needs to be moved

repeat
P - | 3
So.
0 el|c g: b d
2l b C e

(unstack(e,a), putdown(e), unstack(d,c), stack(d,e), unstack(c,b),
putdown(c), pickup(b), stack(b,c), pickup(a), stack(a,b))

Nau — Lecture slides for Automated Planning and Acting

Properties of the Algorithm

e Sound, complete, guaranteed to terminate on all block-stacking problems

e Runs in time O(n?)
> Can be modified (Slaney & Thiébaux) to run in time O(n)

e Often finds optimal (shortest) solutions, but sometimes only near-optimal
> For block-stacking problems, the question
“does there exist a solution of length < £?”
1s NP-complete
e Some ways to implement it:
> As a domain-specific algorithm
» Using HTN planning (SHOP, PyHop - Section 2.7.7)
> Using refinement methods (RAE and SeRPE - Chapter 3)

» Using control rules (Section 2.7.8)

e To run it in Pyhop 2:

> import blocks tasks

Nau — Lecture slides for Automated Planning and Acting

26

Pyhop 2 Implementation

e task (move_blocks,g) e Cases in which ¢ needs to be moved:

> s contains loc(c)=d and

o thod m moveb(s, .
method m_moveb(s,g) g contains loc(c)=e, where d # e

» 1f 3 a clear block c that needs moving,
and we can move c to a location d
where 1t won’t need to be moved again

> s contains loc(c)=d and
g contains loc(b)=d,
where b # ¢ and d # table

> s contains loc(c)=d and
d needs to be moved

> then return [(move_one,c,d), (move_blocks,g)]
» else i1f 3 a clear block ¢ that needs to be moved
» then return [(move_one,c,table), (move_blocks,g)]

> else if s satisfies g then return [|

» else return False d |—L| a
e task (move_one,c,d) o el|c g: b d
» methods that reduce it to allb < 5
e pickup(c) or unstack(c,d)
followed by [(unstack,e,a), (putdown,e), (unstack,d,c), (stack,d,e), (unstack,c,b),
putdown(c) or stack(c,d)

(putdownc), (pickup,b), (stack,b,c), (pickup,a), (stack,a,b)]

Nau — Lecture slides for Automated Planning and Acting 27

Summary

e Total-order HTN planning
» Planning problem: initial state, list of fasks
» Apply HTN methods to tasks to get subtasks (smaller tasks)
e Do this recursively to get smaller and smaller subtasks
> At the bottom: primitive tasks that correspond to actions

» Search goes down and forward

e Unlike most HTN planners, Pyhop and Pyhop 2 use state-variable representation
» Makes it easier to integrate them into ordinary programming
> Written in Python
» Open source

* Pyhop at http://bitbucket.org/dananau/pyhop
yhop

* Pyhop 2 at https://github.com/patras91l/pyhop?2
yhop

e Examples: simple travel, blocks world

e To integrate planning and acting, need to make sure the HTN methods can handle
unexpected events

Nau — Lecture slides for Automated Planning and Acting

28

http://bitbucket.org/dananau/pyhop
https://github.com/patras91/pyhop2

