
The Polynomial Complexity of Fully Materialized Coalesced
Cubes∗

Yannis Sismanis Nick Roussopoulos
Dept. of Computer Science Dept. of Computer Science

University of Maryland University of Maryland
isis@cs.umd.edu nick@cs.umd.edu

Abstract

The data cube operator encapsulates all possible
groupings of a data set and has proved to be an
invaluable tool in analyzing vast amounts of data.
However its apparent exponential complexity has
significantly limited its applicability to low di-
mensional datasets. Recently the idea of theco-
alesced cubewas introduced, and showed that
high-dimensional coalesced cubes are orders of
magnitudes smaller in size than the original data
cubes even when they calculate and store every
possible aggregation with 100% precision.

In this paper we present an analytical framework
for estimating the size of coalesced cubes. By us-
ing this framework on uniform coalesced cubes
we show that their size and the required computa-
tion time scalespolynomiallywith the dimension-
ality of the data set and, therefore, a full data cube
at 100% precision is not inherently cursed by high
dimensionality. Additionally, we show that such
coalesced cubes scale polynomially (and close to
linearly) with the number of tuples on the dataset.
We were also able to develop an efficient algo-
rithm for estimating the size of coalesced cubes
before actually computing them, based only on
metadata about the cubes. Finally, we comple-
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ment our analytical approach with an extensive
experimental evaluation using real and synthetic
data sets, and demonstrate that not only uniform
but also zipfian and real coalesced cubes scale
polynomially.

1 Introduction

The data cube operator is an analytical tool which pro-
vides the formulation for aggregate queries over categories,
rollup/drilldown operations and cross-tabulation. Concep-
tually the data cube operator encapsulates all possible mul-
tidimensional groupings and it is an invaluable tool to ap-
plications that need analysis on huge amounts of data like
decision support systems, business intelligence and data
mining. Such applications need very fast query response
on mostly ad-hoc queries that try to discover trends or pat-
terns in the data set.

However the number of views of the data cube increases
exponentiallywith the number of dimensions and most ap-
proaches are unable to compute and store but small low-
dimensional data cubes. After the introduction of the data
cube in [6] an abundance of research followed for deal-
ing with its exponential complexity. The main ideas can
be classified as either a cube sub-setting (partial materi-
alization) [7, 8, 18] or storing the full cube but with less
precision (approximation or lossy models) [1, 19]. How-
ever, all these techniques do not directly address the prob-
lem of exponential complexity. Furthermore, all problems
associated with the data cube itself appear to be quite dif-
ficult, from computing it [2, 4, 14, 21, 3, 12], storing it
[9, 5], querying and updating it[13]. Even the problem of
obtaining estimates on the cube size –that appears simpler
as a problem– is actually quite hard and needs exponential
memory and exponential processing per tuple with respect
to the dimensionality [15] in order to obtain accurate re-
sults.

Currently the most promising approaches for handling
large high-dimensional cubes lie in the context ofcoalesced
data cubes[17], where we demonstrate that the size and the
required computation of the dwarf data cube, even when
every possible aggregate is computed, stored and indexed,



is orders of magnitudes smaller than what expected. The
coalescing discovery [17], completely changed the percep-
tion of a data cube from a collection of distinct groupings
into a complex network of interleaved groupings that elim-
inates bothprefix andsuffix redundancies. It is these re-
dundancies and their elimination that fuse the exponential
growth of the size of high dimensional full cubes and dra-
matically condense their store without loss in precision.

To help clarify the basic concepts, let us consider a
cube with three dimensions. In Table 1 we present such
a toy dataset for the dimensionsStore, Customer, and
Product with one measurePrice.

Store Customer Product Price
S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

Table 1: Fact Table for Cube Sales

The size of the cube is defined as the number of the tu-
ples it contains, which essentially corresponds to the sum
of the tuples of all its 23 views. The size of the coalesced
cube is defined as the total number of tuples it contains,af-
ter coalescing. For example, for the fact table in Table 1
and the aggregate functionf = sumwe have a cube size
of 23 tuples, while the coalesced cube size is just 9 tu-
ples as depicted in Table 2. The redundancy of the cube
is eliminated by storing the coalesced areas just once. For
example, the aggregate $70 appears in total of five tuples,
(S1|ALL,C2,P2|ALL) and (S1,ALL,P2), in the cube and
it is coalesced in just one tuple. Although [11, 20] at-
tempt to exploit similar suffix redundancies, they are based
on a bottom-up computation[3] which requires exponen-
tial computation time; only Dwarf’s computation algorithm
eliminates these redundancies fromboth the required stor-
age and the required computation time.

no Coalesced f(Price)

1 (S1|ALL,C2,P2|ALL) (S1,ALL,P2) $70
2 (S1|ALL,C3,P1|ALL) (S1,ALL,P1) $40
3 (S1,ALL,ALL) $110
4 (S2|ALL,C1,P1) (S2,ALL,P1) $90
5 (S2|ALL,C1,P2) (S2,ALL,P2) $50
6 (S2|ALL,C1,ALL) $140
7 (ALL,ALL,P1) $130
8 (ALL,ALL,P2) $120
9 (ALL,ALL,ALL) $250

Table 2: Coalesced Cube Tuples forf = sum

In this paper we provide a framework for estimating the
size of a coalesced cube and show that for a uniform cube
the expected size and time complexity is:

O

(
T

dlogC T+1

(logC T)!

)
= O

(
d ·T1+1/ logdC

)

whered is the number of dimensions,C is the cardinal-
ity of the dimensions andT is the number of tuples. This
result shows that, unlike the case of non-coalesced cubes
which grow -in terms of size and computation time- ex-
ponentially fast with the dimensionality, the 100% accu-
rate and complete (in the sense that it contains all possible
aggregates) coalesced representation only growspolynomi-
ally fast. In other words, if we keep the number of tuples
in the fact table constant and increase the dimensionality
of the fact table (by horizontally expanding each tuple with
new attributes) then the required storage and corresponding
computation time for the coalesced cube scales only poly-
nomially. The first form of the complexity shows that the
dimensionalityd is raised to logC T which does not depend
ond and is actually quite small for real datasets1.

The second form of the complexity shows that the coa-
lesced size and corresponding computation time is polyno-
mial w.r.t to the number of tuples of the data setT, which
is raised to 1+ 1/ logdC (and is very close to 1 for very
large real datasets2). In other words, if we keep the dimen-
sionality of the fact table constant and start appending new
tuples, then the coalesced cube scales polynomially (and
almost linearly). These results change the current state of
the art in data-warehousing because it allows to scale up
and be applicable to a much wider area of applications.

In addition we extend our analysis to cubes with vary-
ing cardinalities per dimension and we provide an effi-
cient polynomial –w.r.t to the dimensionality– algorithm
which can be used to provide close estimates for a coa-
lesced cube size based only on these cardinalities without
actually computing the cube. Such estimates are invalu-
able for data-warehouse/OLAP administrators who need
to preallocate the storage for the cube before initiating its
computation. Current approaches [15] cannot be applied
to high-dimensional data cubes, not only because they re-
quire an exponential amount of work per tuple and expo-
nential amount of memory but mostly because they cannot
be extended to handle coalesced cubes.

Although our algorithm is based on uniform and inde-
pendence assumptions, it provides very accurate results for
both zipfian and real datasets requiring as input only basic
metadata about the cube –it’s dimension cardinalities–.

In particular in this paper we make the following contri-
butions:

1. We formalize and categorize the redundancies found
in the structure of the data cube into sparsity and im-
plication redundancies

2. We provide an analytical framework for estimating the
size of the coalesced cube and show that for uniform
data sets it scales only polynomially w.r.t to the num-
ber of dimensions and number of tuples

1For example for a data set of 100 million tuples and a cardinality of
10,000, logC T = 2

2I.e., for a dimensionality of 30 and a cardinality of 5,000, 1+
1/ logdC≈ 1.4



3. We complement our analytical contributions with an
efficient algorithm and an experimental evaluation us-
ing both synthetic and real data sets and we show that
our framework not only provides accurate results for
zipfian distribution but most importantly that real co-
alesced cubes scaleeven betterthan polynomially due
to implication redundancies.

Our work provides thefirst analytical and experimen-
tal results showing that a full (i.e. containing all possible
groupings and aggregates) and 100% accurate (no approx-
imation) data cube is notinherently exponential–both in
terms of size and computation time– and that an effective
coalescing data cube model can reduce it to realistic values.
Therefore, we believe it has not only theoretical but also
very practical value for data warehousing applications.

The remainder of the paper is organized as follows: In
Section 2 we differentiate between prefix and suffix redun-
dancies and show that suffix redundancies are by far the
most dominant factor that affects coalesced cubes. Sec-
tion 3 categorizes suffix redundancies based on the spar-
sity of the fact table or the implications between values of
the dimensions. In Section 4 we introduce the basic par-
titioned node framework and we use it to analyze the coa-
lesced cube structure. In Section 5 we present an algorithm
that can be used to estimate the size of a coalesced cube
given only the cardinalities of each dimension. The related
work is presented in Section 6 and in Section 7 we show an
evaluation on both synthetic and real data sets. Finally the
conclusions are summarized in Section 8.

2 Redundancies
In this section we formalize the redundancies found in the
structure of the cube and explain their extend and signifi-
cance.

2.1 Prefix Redundancy

none

abc

ba c

acab bc

Figure 1: Lattice for the orderinga,b,c

This redundancy is the first that has been identified and
can be used to build indexes over the structure of the cube.
The idea is easily visualized in the lattice representation
of the cube. For example, in Figure 1, one can observe
that half the group-by’s share the prefixa. We can ex-
ploit this by just storing the corresponding values just once
and avoid replicating the same values over all views(prefix-
reduction). By generalizing this to other prefixes (like for

example to prefixb, which appears to one fourth of the
views) we can reduce the amount of storage required to
store the tuples of the cube.

Lemma 1 The total number of tuples of the cube is not
affected by prefix redundancy, only the storage required to
store each tuple is reduced.

This lemma essentially says that the prefix-reduced cube
still suffers from the dimensionality curse, since we have to
deal with every single tuple of the cube. The benefits of the
prefix-reduction are therefore quickly rendered impractical
even for medium dimensional cubes.

2.2 Suffix Redundancy

In this section we formally define the suffix redundancy and
we give examples of different suffix redundancies.

DEFINITION 1 Suffix Redundancyoccurs when a set of
tuples of the fact table contributes the exact same aggre-
gates to different groupings. The operation that eliminates
suffix redundancies is calledcoalescing. The resulting cube
is calledcoalesced cubeand we refer to its tuples ascoa-
lesced tuples.

EXAMPLE 1 Suffix redundancy can occur for just a sin-
gle tuple: In the fact table of Table 1, we observe that the
tuple:

〈 S1 C2 P2 $70〉

contributes the same aggregate$70 to two group-bys:
(Store,Customer) and (Customer). The corresponding tu-
ples are:

(Store,Customer) (Customer)

〈 S1 C1 $70〉 〈C2 $70〉

EXAMPLE 2 We must point out that suffix redundancy
does not work only on a per-tuple basis, but most impor-
tantly it extends towholesub-cubes, for example the sub-
cube that corresponds to the tuples:

〈 S2 C1 P1 $90〉,〈 S2 C1 P2 $50〉

contributes the same aggregates to sub-cubes of
(Store,Product), (Customer,Product), (Store), (Customer) :

(Store,Product) (Customer,Product)

〈 S2 P1 $90〉 〈C1 P1 $90〉
〈 S2 P2 $50〉 〈C1 P2 $50〉

(Store) (Customer)

〈 S2 $140〉 〈C1 $140〉



The reason that whole sub-cubes can be coalesced is
the implication between values of the dimensions. In our
example,C1 implies S2, in the sense that customerC1
only buys products from storeS2. Dwarf is the only tech-
nique that manages to identify such whole sub-cubes as
redundant and coalesce the redundancy fromboth storage
and computation time,without calculating any redundant
sub-cubes. For comparison, the condensed cube[20] can
only identify redundant areas only tuple-by-tuple, and QC-
Trees[11] have to compute first all possible sub-cubes and
then check if coalescing can occur.

Such suffix redundancies demonstrate that there is sig-
nificant overlap over the aggregates of different groupings.
The number of tuples of the coalesced cube, where coa-
lesced areas are only store once is much smaller than the
size of the cube, which replicates such areas over different
groupings.

DEFINITION 2 The size of a cube is the sum of the tuples
of all its views. The size of a coalesced cube is the total
number of tuples after the coalescing operation.
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Figure 2: Compression vs. Dimensionality

Prefix redundancy works in harmony with suffix redun-
dancy by eliminating common prefixes of coalesced ar-
eas. A comparison between these redundancies is demon-
strated in Figure 2, where we depict the compression ratio
achieved by storing all the tuples of a cube exploiting in the
first case just the prefix redundancies and in the second both
prefix and suffix redundancies w.r.t to the dimensionality of
the dataset. We used a dataset with a varying number of di-
mensions, a cardinality of 10,000 for each dimension and
a uniform fact table of 200,000 tuples. It is obvious that
in high-dimensional datasets the amount of suffix redun-
dancies is many orders of magnitudes more important the
prefix redundancies.

3 Coalescing Categories

In this section we categorize suffix redundancies inspar-
sity and implication redundancies. We use the Dwarf
model[17] in order to ease the definition and visualization

of the redundancies. In the rest of the paper we will elabo-
rate using this visualization.

3.1 Sparsity Coalescing

’y y’y y

...

Path P

’z zz z’

Coalesced Tuples
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Figure 3: Sparsity Coalescings

In Figure 3 we depict two types of suffix redundancies
due to the sparsity of the dataset. Lets assume that a path
〈P〉 leads to a sparse area and that for the paths〈P x〉 and
〈P x′〉 there is only one tuple due to the sparsity of the cube.
We differentiate between two different types of coalescing
based on the nature of the pathP.

DEFINITION 3 Tail coalescinghappens on all group-
ings that have〈P x〉 as a prefix, where path〈P x〉 leads
to a sub-cube with only one fact tuple and path Pdoes not
follow any ALL pointers.

EXAMPLE 3 In Figure 3, since there is only one tuple in
the area〈P x. . .〉 then all the group-bys that have〈P x〉 as
a prefix (i.e.〈P x ALL z. . .〉, 〈P x y ALL. . .〉 etc.) share the
same aggregate.

DEFINITION 4 Left coalescingoccurs on all groupings
with prefix〈P ALL y〉, where path〈P ALL y〉 leads to a sub-
cube with only one tuple. In this case, P followsat least
oneALL pointer.

EXAMPLE 4 Left coalescing complements tail coalesc-
ing and in Figure 3 we depict the case where〈P ALL y. . .〉
is redundant and corresponds to〈P x y. . .〉. The same is
observed for〈P ALL ALL z〉 and〈P ALL ALL z′〉.

Areas with just one tuple (like〈P x〉 and〈P x′〉) therefore
produce a large number of redundancies in the structure of
the cube. The difference between tail and left coalescing is
two-fold:

• Paths that tail coalesce have a prefix thatdoes not fol-
low any ALL pointers while paths that left coalesce
have a prefix that follows at least oneALL pointer -
the one immediately above the point where coalescing
happens-.



• Tail coalescing introduces one coalesced tuple in the
coalesced cube, while left introduces no coalesced tu-
ples.

In our analysis we consider these two types of coalesc-
ing (tail and left) and we show that their effect is so over-
whelming that the exponential nature of the cube reduces
into polynomial.

3.2 Implication Coalescing

The sparsity-coalescing types defined in Section 3.1 work
only in sparse areas of the cube where a single tuple exists.
The implication-coalescingcomplements these redundan-
cies by coalescingwhole sub-cubes. For example, for the
fact table in Table 1 we observe thatC1 impliesS2 -in the
sense that customerC1 only buys products fromS2. This
fact means thateverygrouping that involvesC1 andS2 is
essentially exactly the same with the groupings that involve
C1. This redundancy can be depicted in Figure 4.

...

...S2

...

... C1

P1P2

C1

Path P

Figure 4: Implication Coalescing, whereC1→ S2

The implication coalescing is the generalization of left-
coalescing when implications between the values of di-
mension occur. Such implications are very apparent in
real datasets and –since we do not consider those in our
analysis– they are the reason that in the experiments sec-
tion weoverestimatethe size of the coalesced cube for real
data sets.

4 Basic Partitioned Node Framework
In this section we formulate the coalesced cube structure
by first introducing thebasic partitioned nodeand then by
building the rest of the coalesced cube around it –by taking
into account both tail and left coalescing–. Although in this
paper we focus on uniform datasets our framework is ap-
plicable to more general distributions by properly adjusting
the probability that is used in lemma 2.

Assume a uniform fact table withd dimensions, where
each dimension has a cardinality ofC and that there are
T = C tuples. For ease of analysis and without loss of
generality we assume that:∃L : C = L!. The root node of
the corresponding coalesced cube is depicted in Figure 5,
where the node has been partitioned3 into L groups. We re-
fer to such a node as thebasic partitioned node. GroupG0

3for this analysis we relax the property of the dwarf, where the cells
inside a node are lexicographically sorted

contains cells that get no tuples at all, groupG1 contains
cells that get exactly one tuple, groupG2 contains cells that
each one gets exactly two tuples, etc.

G1G0 G2

�������������
�������������
�������������

�������������
�������������
�������������

...... ...

...

G

L−1

L−1

Figure 5: Node partitioned in groups where each cell in
groupGz gets exactlyz tuples

Lemma 2 From a collection of C items, if we uniformly
pick an item and repeat T times, then the probability that
we pick one item exactly z times is:

Pz(C,T) =

(T
z

)
(C−1)ze−T/C

[Proof: The probability that we will pick one item exactly
z times is:

Pz(C,T) =
(

T
z

)
1/Cz(1−1/C)T−z =

=
(

T
z

)
1/Cz(C−1)−z/C−z(1−1/C)T

where the quantity(1− 1/C)T can be approximated by
e−T/C and the binomial

(T
z

)
corresponds to the number of

different ways the product 1/Cz(1−1/C)T−z can be writ-
ten. ]

By applying lemma 2 to the basic partitioned node we
get by substitutingT = C:

Lemma 3 A group Gz of a basic partitioned node, where
z= 0. . .L−1, contains≈ C

z! e
−1 cells that get exactly z tu-

ples each

[Proof: The expected number of cells inside a groupGz is:

C ·Pz(C,C) = C

(C
z

)
(C−1)ze−1≈ C

z!
e−1

becausez�C (z is at mostL−1, and by definitionC = L!)
andC−1≈C. ]

Lemma 4 The expected number of duplicate keys in a node
pointed by a cell in group Gz is zero.

[Proof: From lemma 3 we know that exactlyz tuples are
associated with each cell of groupGz and from the inde-
pendence assumption we have that the probability that a
key is duplicated for these tuples is 1/C2 with an expected
number of duplicated keysz/C2. Even forz = L− 1, we
expect(L−1)/(L!)2≈ 0 duplicate cells. ]
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Figure 6: Left-Coalesced partitioned node withT = C

4.1 Left Coalesced Areas

In this section we deal with areas of the coalesced cube
that are reachable through paths that follow ALL pointers.
These areas have the possibility of left coalescing and as
we’ll show they are dominated by such redundancies.

In Figure 6 we show a basic partitioned node for a path
P that follows at least one ALL pointer and corresponds to
a subset of the fact table withT = C tuples. We refer to the
corresponding sub-cube asleft-coalesced sub-cubeand we
show that it introduces a “small” number of new coalesced
tuples. For the purposes of this section we refer to the root
of the left-coalesced sub-cube as root. Since cells in group
G0 get no tuples, they offer no aggregates at all. Cells in
groupG1 that get only a single tuple, left-coalesce to other
tuples in the structure and offer no aggregation. This is the
reason we differentiate between paths that follow at least
one ALL pointer and those which do not. Cells in groups
G2,G3, . . . ,GL−1 introduce only a single aggregate per cell.

To help clarify this, consider a cell in groupG2. Since
there are two fact tuples associated with this cell (by def-
inition) there are two paths〈P x 〉 and 〈P x′ 〉 that corre-
spond to these two tuples. Additionally, the pathP follows
at least one ALL pointer, therefore theexact same tuples
appear with another pathQ that does not follow any ALL
pointer, and therefore paths〈P x 〉 and〈P x′ 〉 coalesce to
〈Q x〉 and〈Q x′ 〉. The only aggregate that this sub-cube in-
troduces is the aggregate of these two tuples (located at the
leaf nodes). The same holds for all groupsG2,G3, . . . ,GL−1
and therefore the number of new coalesced tuples that a
left-coalesced sub-cube withd dimensions andT = C fact
tuples introduces is (by using lemma 3):

NLe f t(T = C,d,C) = a0 ·C ·d+1

wherea0 = (e−2)/e.
[Proof: As depicted in Figure 6 a left-coalesced parti-

tioned node introduces:

d(C/2!e−1 +C/3!e−1 + . . .)+1 =

= Cd/e(1/2!+1/3!+ . . .)+1 =
= a0 ·C ·d+1

]

Left Coalesced
area

Left Coalesced
area

Tuples: C
k−1

#Dims: d−1

...

Left Coalesced
area

Left Coalesced
area

...

...

Tuples: C
k−1

#Dims: d−2

Figure 7: Left-Coalesced partitioned node withT = Ck

We can extend our analysis to the general case where
T = Ck, k = logC T in the way that is depicted in Figure 7.
By induction we prove that:

Lemma 5 The number of new coalesced tuples that a left-
coalesced area introduces is:

NLe f t(T = Ck,d,C) =

= C ·
d−1

∑
i=1

NLe f t(T = Ck−1,d− i,C)+1 =

= a0C
k
(

d
k

)
+

k−1

∑
i=1

Ck−i
(

d
k− i

)
+1

4.2 Tail Coalesced Areas

In this section we deal with areas that are reachable through
paths that do not follow any ALL pointers. These areas
have less chances for left-coalescing but as will show the
amount of coalescing is still very significant.
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Figure 8: Tail-Coalesced partitioned node withT = C

In Figure 8 we show a basic partitioned node which cor-
responds to a pathP thatdoes notfollow any ALL pointers
and that it corresponds to a subset of the fact table with
T = C tuples. We refer to the corresponding sub-cube as
tail-coalesced sub-cubeand we count the number of coa-
lesced tuples it introduces. As in the left-coalesced case,
cells in groupG0 that get no tuples offer no tuples at all.
Cells in groupG1 that get only a single tuple, offer just
a single aggregate, due to tail coalescing. Cells in groups
Gz, wherez= 2, . . . ,L−1 introducez+1 coalesced tuples,
the z tuples of the fact table plus their aggregation. The
number of coalesced tuples a tail-coalesced sub-cube with
d dimensions andT = C fact tuples introduces is:

NTail(T = C,d,C) = b0C+a0C(d−1)+1

wherea0 = (e−2)/eandb0 = (2e−2)/e.
[ Proof: The new tuples under the root tail-coalesced

node (ignoring the all cell) are:

C/1!/e+C/3!/e+C/4!/e+ . . . = b0C

while the all cell points to a left-coalesced node with:
a0C(d−1)+1 new tuples (as explained in Section 4.1) ]

We can extend our analysis to the general case where
T = Ck, k = logC T in the way that is depicted in Figure 9.
Using induction we prove that:

Lemma 6 The number of new coalesced tuples that a left-
coalesced area introduces is:

NTail(T = Ck,d,C) =

= C ·NTail(Ck−1,d−1,C)+
d−1

∑
i=2

NLe f t(Ck−1,d− i,C) =

= a0C
k
[(

d
k

)
−1

]
+

k

∑
i=1

ck−i
[(

d
k− i

)
−1

]
+b0C

k

Tuples: C
k−1

#Dims: d−1

...

Left Coalesced
area

Left Coalesced
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area area
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Figure 9: Tail-Coalesced partitioned node withT = Ck

4.3 Coalesced Size and Time Complexity

The analysis for the tail coalesced areas gives the total num-
ber of coalesced tuples for the full coalesced cube withd
dimensions, cardinalityC per dimension andT fact table
tuples4. Lemma 6 gives that:

#CoalescedTuples= O

(
T

dlogC T

(logC T)!

)
= O

(
T1+1/ logdC

)
with the surprising result that even if we consider only two
out the three coalesces, the size of the coalesced cube is
only polynomial w.r.t to the dimensionality of the fact ta-
ble and polynomial (and very close to linear) w.r.t to the
number of tuples in the fact table.

Additionally, if we consider the number of nodes or
cells, that are introduced in the coalesced structure, the ex-
pected complexity is multiplied byd (i.e. the polynomial
power increases by one), since we needat most dnodes
and cellsignoring any prefix reductionin order to repre-
sent each tuple. Therefore the expected complexity for the

4When we start creating the root node of the coalesced cube there is
no chance of left-coalescing, since nothing has been created



number of cells (or the full size of the structure) is:

#TotalCells= O

(
T

dlogC T+1

(logC T)!

)
It is very important to point out that from the current

algorithms that eliminate such suffix redundancies like [17,
11, 20], only the suffix coalescing algorithm of Dwarf visits
the cells of the structurejust onceand therefore the time
complexity for constructing dwarfs is:

Dwarf ComputationTime= O

(
T

dlogC T+1

(logC T)!

)
On the contrary, the algorithms in [11, 20] are based on
a bottom-up computation[3], which requires exponential
computation time on the number of dimensions.

5 Algorithm for Coalesced Cube Size Esti-
mation

In this section we extend our analytical contribution to the
general case of varying cardinalities per dimensionality.
Algorithm 1 can be used to estimate the number of coa-
lesced tuples for sparse uniform data sets given the cardi-
nalities of each dimension.

Algorithm 1 NCT Algorithm - Num of Coalesced Tuples
Input: d: Number of Dimensions

Card: array of dimension cardinalities
FactT: current no of fact tuples
nc: tail coalesce flag(0 or 1)

1: if FactT=0then
2: return 0
3: else ifFactT=1then
4: return nc{here tail or left-coalescing happens}
5: else ifd=0 then
6: return 1
7: end if
8: coalescedT← 0
9: mC← Card[d]

10: zeroT← mC·e−FactT/mC

11: oneT← FactT/(mC−1) ·zeroT
12: if oneT≥ 1 then
13: x← 1
14: while there are still fact tuplesdo
15: xT←

(FactT
x

)
/(mC−1)x ·zeroT

16: coalescedT += NCT(d-1,Card,xTuples,nc){tail or left-
coalescing may happen here}

17: FactT -= xT
18: x++
19: end while
20: else
21: coalescedT += NCT(d-1,Card,FactT/mC,nc){drill-down

traversal}
22: end if
23: coalescedT += NCT(d-1,Card,FactT,0){roll-up traversal

with left-coalescing}
24: return coalescedT

Initially the algorithm is called with the tail coalescing
flag set to 1, since there is no chance for left-coalescing
(there are no tuples to coalesce to). In line 4 we check if
there is just one tuple in the subcube where tail or suffix
coalescing happens depending on the tail coalescing flag.
In lines 12- 19 we traverse the basic partitioned node by
checking iteratively how many cells get one, two, three,
etc. tuples until all the available tuples for the subcube are
exhausted. The quantity:(FactT

x
)

(mC−1)x
·mC·e−FactT/mC

where FactT is the number of fact tuples for the current sub-
dwarf and mC is the cardinality of the current dimension,
returns the number of cells that get exactly x tuples

The algorithm works in a depth-first manner over the
lattice and estimates recursively the number of coalesced
tuples that its sub-dwarf generates. For example, for a
three-dimensional cubeabc, the algorithm in line 21 starts
thedrill-down to all subcubes with prefixa and recursively
it proceeds to those with prefixab and finally reaches pre-
fixesabc, by estimating appropriately the number of tuples
that each subdwarf gets. When (lines 1-7) there are no more
dimensions to drill-down (or a tail or left coalescing can be
identified), the drill-down over the subdwarfs with prefixes
in abc stops and the algorithmrolls-up to the subdwarfs
with prefixesab in line 23 by setting the nC flag to 0 -since
now there is possibility of left-coalescing with the subcubes
in abc-. The process continues recursively to all the views
of the lattice.

The running complexity of the algorithm is derived from
the basic partitioned node framework and is polynomial on
the number of dimensions. It also requires memoryO(d)
to accommodate the stack for performing a DFS tod di-
mensions deep.

6 Related Work

The data cube operator is introduced in [6] and its potential
has generated a flurry of research on a wide-variety of top-
ics. Its exponential complexity on almost every aspect first
guided to the rediscovery of materialized views and their
adaptation. For example view selection algorithms can be
found in [7, 8, 18]. However the general problem is shown
to be NP-Complete [10] and even greedy algorithms are
polynomial in the number of views that need to consider
which is actually exponential in the dimensionality of the
datasets, rendering these approaches to a certain degree im-
practical for high-dimensional datasets.

Estimating the size of the data cube given its fact table
is only addressed in [15] by using probabilistic techniques,
however that approach cannot be extended to work with
coalesced cubes.

The problem of just computing the data cube appears
especially interesting. Various techniques that try to bene-
fit from commonalities between partitions or sorts, partial
sorts and intermediate results are proposed in [2, 4, 14].



Other techniques that use multidimensional array represen-
tations [21] suffer as well from the dimensionality curse.
Techniques that try to exploit the inherent sparsity of the
cube like [3, 12] seem to perform better.

Several indexing techniques have been devised for stor-
ing data cubes. Cube Forests [9], exploit prefix redundancy
when storing the cube. In the Statistics Tree [5] prefix re-
dundancy is partially exploited. Unique prefixes are stored
just once, but the tree contains all possible paths (even non-
existing paths) making it inappropriate for sparse datasets.
Cubetrees[13] use packed R-trees to store individual views
and exhibit very good update performance.

Recently compressed cubes are introduced which try to
exploit the inherent redundancies in the structure of the
cube. In [20] the notion of abase single tupleis intro-
duced. Such a tuple is “shared” between different group-
bys and is similar to the coalesced tuples discussed in this
paper. However its applicability is limited since such tuples
are discovered one at a time. QC-trees[11] use a bottom-
up approach in discovering redundancies which checks if
every grouping is redundant or not with every other group-
ing that it is possible to coalesce with. Both Condensed
Cubes[20] and QC-Trees are based on BUC[3] which re-
quires exponential computation time.

Dwarf[17] provides a much more efficient method for
the automatic discovery of all types of suffix redundan-
cies, since whole sub-cubes can be coalescedbefore any
re-computationand is therefore the only method where the
computation time is also fused by the coalescing proper-
ties and is polynomial to the number of dimensions as this
paper demonstrates. Dwarf additionally not only indexes
the produced cube but is designed to work in secondary
memory and is the only method that provides for partial
materialization and hierarchies[16].

7 Experiments

In this section we provide an extensive experimental evalu-
ation of our approach based on synthetic and real data sets.
We compare the results of our analytical approach with
actual results taken from our implementation of Dwarf.
The experiments were executed on a Pentium 4, clocked
at 1.8GHz with 1GB memory. The buffer manager of our
implementation was set to 256MB.

7.1 Synthetic Datasets

In this section we use the following formalism. The graph
entitled “Actual” in the legend corresponds to numbers
taken from our implementation, while the graph entitled
“Estim” corresponds to the estimates our analytical frame-
work and algorithm provides. We use the symbold to refer
to the number of dimensions,C to the cardinality anda to
the zipfian parameter (skewness).

7.1.1 Scalability vs dimensionality

Uniform Distributions In Figure 10 we demonstrate how
the number of coalesced tuples scales w.r.t to the dimen-

sionality, for a uniform dataset. The number of fact table
tuples was set to 100,000. We used two different cardi-
nalities of 1,000 and 10,000. We see that our analytical
approach provides extremely accurate results for large car-
dinalities. The reason that the error decreases as the cardi-
nality increases is the approximation in lemma 3, where we
assume thatC−1≈C. The second observation has to do
with the scalability w.r.t. to the dimensionality. The quan-
tity logC T which determines the exponent ofd is much
smaller in the case ofC = 10,000 and therefore this data
set scales better.
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Figure 10: Size Scalability v.s. dimensionality for varying
cardinalities

In Figure 11 we depict the time scalability –w.r.t to
the dimensionality– required to compute and store the co-
alesced cubes using the Dwarf approach for the uniform
datasets. We must point that the y-axis are logarithmic and
that the graphs –for both #coalesced tuples and computa-
tion time– correspond to a polynomial scaling.
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Figure 11: Computation Time Scalability v.s. dimension-
ality for varying cardinalities

Zipfian Distributions In Figure 12 we depict the size
scalability w.r.t to the dimensionality for zipfian datasets
for various values for the zipfian parametera that con-
trols the skew. The number of fact table tuples was set to



100,000. The cardinalities were again 1,000 and 10,000
respectively. We observe that our estimation algorithm ap-
proximates better the zipfian coalesced cube size for large
values of cardinalities than it does for smaller values of car-
dinalities5. On the other side, we observe that the skew
parameter affects more the dataset withC = 1,000 than the
dataset withC= 10,000. The reason for these two observa-
tions is that the zipfian parameter directly affects the spar-
sity of the cube. For lower values of cardinalities the per-
centage of sparsity coalesces is significantly less than the
case of higher cardinality values. However it is evident that
the zipfian distribution scales polynomially and that our es-
timation algorithm can be used to get good estimates about
zipfian coalesced cubes. We must point out that from the
graphs it can be derived that the zipfian distribution affects
the scalability –w.r.t to the dimensionality– in a multiplica-
tive way. In other words, it increases the complexity factor
but not the polynomial power.

5 10 15 20
10 k

100 k

1 M

#C
oa

le
sc

ed
 T

up
le

s

Actual (C=1,000 a=0.4)
Actual (C=1,000 a=0.2)
Estimated (C=1,000)
Actual (C=10,000 a=0.4)
Actual (C=10,000 a=0.2) 
Estimated (C=10,000)

Zipfian Distribution

Figure 12: Size Scalability v.s. dimensionality for varying
cardinalities and zipf parameters

In Figure 13 we depict that the scalability of the required
computation time for varying dimensionalities, cardinali-
ties and skew parameters is again polynomial. We observe
that the skew parameter affects proportionally the compu-
tation time as it affects the coalesced cube size.

Scalability vs #TuplesIn Figures 14, 15 and 16 we de-
pict the coalesced size scalability w.r.t to the number of tu-
ples for uniform and Zipfian datasets for a variable num-
ber of dimensions, cardinalities and skew. We observe that
in all cases both the number of coalesced tuples and the
computation time scale almost linearly w.r.t to the num-
ber of tuples in the fact table. We must point that a value
C = 10,000 for the cardinality offers more chances for
sparsity coalescing and therefore the required storage and
time is lower than the case ofC = 1,000. The skewness of
the zipfian distributions affects sparsity coalescing in a neg-
ative way and increases the corresponding coalesced cube
size and computation time. For completeness we also de-
pict the required computation time for the same cubes in

5This behavior is observed (to a lesser degree) for uniform datasets as
well
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Figure 13: Computation Time Scalability v.s. dimension-
ality for varying cardinalities and zipf parameters

Figures 14 and 15.
In this series of experiments our estimation algorithm,

although based on a uniform assumption, provides very ac-
curate results over all the range of the parameters (cardinal-
ity, number of dimensions, skewness) that we experimented
on.
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Figure 14: Size Scalability v.s. #Tuples for varying cardi-
nalities

7.2 Real Datasets

For this experiment we use a real eight-dimensional data set
given to us by an OLAP company. The data set has vary-
ing cardinalities per dimension. We used various projec-
tions on the data set in order to decrease the dimensionality
and study its effect on the accuracy. For this experiment
the fact table had 672,771 tuples and two measures. Table
3 summarizes the parameters of each projection. Column
“Projection” denotes the name of the data set, columnd the
number of dimensions and column “Cardinalities” the car-
dinalities of each dimension. In Figure 19 we depict the es-
timates of our approach compared with the actual numbers
taken, when the dwarf is computed and stored. In Figure 20
we depict –for completeness– the time scalability w.r.t the
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Figure 15: Size Scalability v.s. #Tuples for varying cardi-
nalities and zipf parameters
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Figure 16: Size Scalability v.s. #Tuples for varying cardi-
nalities and zipf parameters

dimensionality of the real datasets.

Projection d Cardinalities

A 5 1300,2307,2,2,3098
B 6 1300,2307,3098,130,561,693
C 7 1300,2307,2,3098,130,561,693
D 8 1300,2307,2,2,3098,130,561,693

Table 3: Real data set parameters

We observe a very interesting pattern. As the dimen-
sionality increases our approachoverestimatesincreasingly
more the coalesced size. The reason is that our approach
currently handlesonly sparsity coalescingand ignores
the implication coalescingthat is very apparent in high-
dimensional data sets. As the dimensionality increases
such implications increase and complement the sparsity
implications reducing even further the coalesced size. This
observation is in contrast to what happens with zipfian
datasets, which affect the sparsity of the coalesced cube in
a negative waywithout creating any implications between
the dimensions. However real datasets are not only skewed
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Figure 17: Computation Time Scalability v.s. #Tuples for
varying cardinalities (uniform)
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Figure 18: Computation Time Scalability v.s. #Tuples for
varying cardinalities and zipf parameters

but present a large number of implications between values
of their dimensions.

8 Conclusions

We have presented an analytical and algorithmic frame-
work for estimating the size of coalesced cubes, where suf-
fix redundancies diminish the number of aggregates that
need to be stored and calculated. Our analytical framework
although it uses only sparsity coalescing, derives the sur-
prising result, that a uniform coalesced cube grows –both
the required storage and the computation time– polynomi-
ally w.r.t to the dimensionality. This result changes the es-
tablished state that the cube is inherently exponential on the
number of dimensions and extend the applicability of data
warehousing methods to a much wider area. We were also
able to device an efficient algorithm for estimating the size
of a coalesced cube based only its dimensions’ cardinali-
ties and demonstrated that it provides accurate results for a
wide range of distributions. In addition we have demon-
strated –using real data– that real coalesced cubes scale
even betterthan our analysis derives. The reason is that the
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Figure 19: Size Scalability v.s. dimensionality for real data
set

Figure 20: Time Scalability v.s. dimensionality for real
data set

effects of implication coalescing complement the results of
sparsity coalescing that we have presented here.
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