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Solving Sparse Linear Systems

Assumed background from Chapter 5:

e Gauss elimination and the LU decomposition
e (Partial) Pivoting for stability
e Cholesky decomposition of a symmetric positive definite matrix

e Forward and backward substitution for solving lower or upper triangular
systems



The plan:

e How to store a sparse matrix

e Sparse direct methods
— The difficulty with fill-in

— Some strategies to reduce fill-in
e |terative methods for solving linear systems:

— Basic (slow) iterations: Jacobi, Gauss-Seidel, SOR.
— Krylov subspace methods

— Preconditioning (where direct meets iterative)

e A special purpose method: Multigrid

Note: There are sparse direct and Krylov subspace methods for eigenvalue
problems, but we will just mention them in passing.



Contrasting direct and iterative methods

e Direct: Usually the method of choice for 2-d PDE problems.
e |terative: Usually the method of choice for 3-d PDE problems.

e Direct: Except for round-off errors, we produce an exact solution to our
problem.
lterative: We produce an approximate solution with a given tolerance.

e Direct: We usually require more storage (sometimes much more) than
the original
lterative: We only require a few extra vectors of storage.

@ Direct: The elements of the matrix A are modified by the algorithm.
lterative: We don't need to store the elements explicitly; we only need a
function that can form Ax for any given vector x.

e Direct: If a new b is given to us later, solving the new system is fast.
lterative: It is not as easy to solve the new system.



@ Direct: The technology is well developed and good software is standard.
lterative: Some software exists, but it is incomplete and rapidly evolving.

Reference for direct methods: Chapter 27.
Reference for iterative methods: Chapter 28.



Storing a sparse matrix

There are many possible schemes. MATLAB chooses a typical one: store
the indices and values of the nonzero elements in column order, so

is stored as

O = O N
o O Ot O
o O =1 O
co O O O

Therefore, storing a sparse matrix takes about 3nz storage locations, where
nz is the number of nonzeros.



Sparse direct methods

Recommended references:

e In MATLAB, type demo, and then choose "Matrices”, " Sparse
Matrices" .

e Also In MATLAB, type demo, and then choose "Matrices”, " Orderings
and Separators for a Finite Element Matrix” (but don't worry about the
trees that it produces).



The problem:

We want to solve
Ax = b.
For simplicity, we'll assume for now that
e A symmetric.

e A positive definite.

For a PDE, this is ok if the underlying operator A is self-adjoint and
coercive.



The difficulty with fill-in: A motivating example

Suppose we want to solve a system involving an n X n arrowhead matrix:

X X X X X X T by
x x 0 0 0 0 9 by
A — x 0 x 0 0 0 I3 B bg
x 0 0 x 0 0 Ty b4
x 0 0 0 x 0 X5 b5
_>< 0 0 0 O X_ | L6 _b6_

where X denotes a nonzero value (we don't care what it is) and 0 denotes
a zero. The number of nonzeros is 3n — 2.

Suppose we use Gauss-elimination (or the LU factorization, or the Cholesky
factorization — all of them have the same trouble).

Then in the first step, we add some multiple of the first row to every other
row. Disaster! The matrix is now fully dense with n? nonzeros!



A fix

Let's rewrite our problem by moving the first column and the first row to
the end:

x 0 0 0 0 x xTo bg
0 x 00 0 x I3 bg
A — 0 0 x 0 0 x Ty | b4
0 0 0 x 0 X X5 b5
0 0 0 0 x X g b6
| X X X X X X | |3 | D1 |

Now when we use Gauss-elimination (or the LU factorization, or the
Cholesky factorization) no new nonzeros are produced in A.

Reordering the variables and equations is a powerful tool for maintaining
sparsity during factorization.
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Strategies for overcoming fill-in

We reorder the rows and columns with a permutation matrix P and solve
PAP’(Px) = Pb
instead of Ax = b.

Note that A = PAP? s still symmetric and positive definite, so we can
use the Cholesky factorization A = LDL” where L is lower triangular with
ones on its diagonal and D is diagonal.
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How to reorder

e Finding the optimal reordering is generally too expensive: it is in general
an NP hard problem.

e Therefore, we rely on heuristics that give us an inexpensive algorithm to
find a reordering.

e As a consequence, usually the heuristics do well, but sometimes they
produce a very bad reordering.
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Important insights

Insight 1: If A is a band matrix, i.e.,

e tridiagonal,
e pentadiagonal,

then there is never any fill outside the band.
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Insight 2: Also, there is never any fill outside the profile of a matrix, where
the profile stretches from the first nonzero in each column to the main
diagonal element in the column, and from the first nonzero in each row to
the main diagonal element.

Example: Zeros within the profile marked with ®

x 0 x 0 0 0 x 0 x 0 0 0
0 x 0 0 x 0 0 x ® 0 x 0
0 0 x 0 x 0 . 0 0 x 0 x 0
A=l 00 xoo| PofillA)=1 oo xeol
0 0 x 0 x 0 0 0 x ® x 0
_O><OOO><_ _O><®®®><_

So some methods try to produce a reordered matrix with a small band or a
small profile.

14



Insight 3: The sparsity of a matrix can be encoded in a graph. For
example, a symmetric matrix

x 0 x 0 0 0
0 x 0 0 x X
X 0 x 0 x 0
A= 0 0 0 x 0 0
0 x x 0 x 0
_O><OOO><_

has upper-triangular nonzero off-diagonal elements a3, ass, asg, ass and

corresponds to a graph with 6 nodes, one per row/column, and edges
connecting nodes (1,3), (2,5), (2,6), and (3,5).

Unquiz: Draw the graph corresponding to the finite difference matrix for
Laplace's equation on a 5 x 5 grid. []
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Some reordering strategies
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Strategy 1: Cuthill-McKee

One of the oldest is Cuthill-McKee, which uses the graph to order the rows
and columns:

Find a starting node with minimum degree (degree = number of
neighbors). Until all nodes are ordered,

For each node that was ordered in the previous step, order all of
the unordered nodes that are connected to it, in order of their
degree.

Reverse Cuthill-McKee (doing a final reordering from last to first) often
works even better.
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Cholesky decomposition of S

spy(S)

(X J
[ X X J
o000
(X X X X ]
000000
(XX XX X ]
000000
000000
000000
[ X X XX X ]
(XX XX X ]
(XX XXX J
(XX XXX J
000000
000000
(XX XXX J
[ XX XX X ]
000000
000000
000000
o000O0O
o0 o000
[ X J [ X J
[ X J [ ]
Lo o Lo o Lo
— i N N
[ (X J
[ ] [ X X ]
[ ] [ X X J
[ ] [ XX J
® (X J
[ (X J (]
[ ] [ X X ] [ ]
[ J [ X X J [ ]
[ J [ X X J [ ]
[ ] (X J o
([ ] (X J [
([ ] [ X X ] [ ]
[ [ X X ] [ ]
[ ] [ X X ] [ ]
[ ] [ X J [ ]
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[ ] [ X X ] [
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chol(S(p,p)) after Cuthill-McKee ordering

S(p,p) after Cuthill-McKee ordering

(X J
[ X X J
[ X X J
(X X X ]
[ X X X ]
(XX X ]
(X X X X ]
(X X X X ]
(XX X X ]
(X X XX J
(XX XX X ]
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[ X J [ ] (X J
(X J [ [ X J
(X J [ ] [ X J
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o o (X J
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S(r,r) after minimum degree ordering chol(S(r,r)) after minimum degree ordering

0
[ X J [ ] [ ] [ ]
[ X ] [ ] [ X J [ X ]
e o [ J [ ] [ ]
o000 [ ]
5 (X X} E 5t (X X}
[ ] [ X ) o0 o000
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nz =105 nz=116

Strategy 2: Minimum Degree

Until all nodes are ordered,

Choose a node that has the smallest degree, and order that node
next, removing it from the graph. (If there is a tie, choose any of the
candidates.)
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Strategy 3: Nested Dissection

Try to break the graph into 2 pieces plus a separator, with

e approximately the same number of nodes in the two pieces,
e no edges between the two pieces,

e a small number of nodes in the separator.

Do this recursively until all pieces have a small number of nodes.

Then order the nodes piece by piece. Finally, order the nodes in the
separators.
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S(r,r) after nested dissection ordering
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chol(S(r,r)) after nested dissection ordering
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A comparison of the orderings

Demo: sparb0.m

23



Summary of sparse direct methods

e [ he idea is to reorder rows and columns of the matrix in order to reduce
fill-in during the factorization.

e \We have given examples of strategies useful for symmetric positive
definite matrices.

e For nonsymmetric matrices, and for symmetric indefinite matrices, there
is an additional critical complication: we need to reorder for stability as
well as sparsity preservation.

e For nonsymmetric matrices, strategies are similar, but the row
permutation is allowed to be different from the column permutation,
since there is no symmetry to preserve.

e [he most recent reordering strategies are based on partitioning the
matrix by spectral partitioning, using the elements of an eigenvector of a
matrix related to the graph. These methods are becoming more popular.
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Sparse direct methods for eigenproblems

The standard algorithm for finding eigenvalues and eigenvectors: the QR
algorithm.

In MATLAB, [V,D] = eig(A) puts the eigenvectors of A in the columns
of V and the eigenvalues along the main diagonal of D.

Strategy for sparse matrices:

e Use a reordering strategy to reduce the bandwidth of the matrix. We
replace A by PAP”, which has the same eigenvalues but eigenvectors
equal to P times the eigenvectors of A.

e Use the QR algorithm to find the eigenvalues of the resulting banded
matrix.

Actually, MATLAB's eig will not even attempt to find the eigenvectors of
a matrix stored in sparse format, because the matrix V is generally full, but
it will compute the eigenvalues.
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If we want (a few) eigenvalues and eigenvectors of a sparse matrix, we use
MATLAB's eigs function, which uses a Krylov subspace method based on
the Arnoldi basis, to be discussed later.
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