# AMSC 660 – Scientific Computing I

Prof. O'Leary

## Term Project – The Assignment

"Modeling of a Seat Suspension System"

Gregory J. Hiemenz Dec. 13, 2006 Figure 1 depicts a lumped parameter system that may be used to model the response of a seated human body in a seat suspension system [1,2,3]. In this model, the seat, denoted by mass  $M_I$ , is fixed to the floor through a damper (or energy absorber) that provides a force,  $F_{MR}$ , and through a spring,  $K_I$ . In addition, an end-stop buffer is implemented, which produces a nonlinear spring reaction force,  $F_{st}$ , when the suspension stroke exceeds its free-suspension travel. The soft seat cushion is simply represented as a stiffness and damping ( $K_{2c}$  and  $C_{2c}$ , respectively). This lumped parameter model assumes the human is seated and that 29% of the body weight is supported by the feet [1, 2]. The body is divided into four parts: pelvis, upper torso, viscera, and head, represented by mass  $M_i$ , stiffness  $K_i$ , and damping  $C_i$ , where i = 2, 3, 4, and 5, respectively. The displacement of the floor is given by  $z_0$  and  $z_1$  through  $z_5$  are the absolute displacements of masses 1-5, respectively.



Figure 1 – Mechanical Model of Seat Suspension System Coupled with a Human Body in Seated Posture

The equations of motion for this system are obtained by summing the inertial, stiffness, and damping related vertical forces on each mass. The inertial force acting on a given mass is given by the mass times absolute acceleration ( $M_i \ddot{z}_i$  - the dot denoting derivative with respect to time). The stiffness/spring force is given by the stiffness times the relative displacement between the two masses between which the springs are connected ( $K_i(z_{i+1} - z_i)$ ). Similarly, the damping force is given by the damping coefficient times the relative velocity between the two masses between which the springs are connected ( $C_i(\dot{z}_{i+1} - \dot{z}_i)$ ). Lastly, gravitational force on each mass must be included,  $M_ig$ , where g is the gravitational acceleration (9.81 m/s<sup>2</sup>). The motion of these masses is then given by the following system of differential equations [1]:

$$M_1 \ddot{z}_1 = -K_1 (z_1 - z_0) + K_{2t} (z_2 - z_1) + C_{2t} (\dot{z}_2 - \dot{z}_1) + F_{MR} + F_{st} - M_1 g$$
(1)

$$M_{2}\ddot{z}_{2} = -K_{2t}(z_{2} - z_{1}) - C_{2t}(\dot{z}_{2} - \dot{z}_{1}) + K_{3}(z_{3} - z_{2}) + C_{3}(\dot{z}_{3} - \dot{z}_{2}) - M_{2}g$$
(2)

$$M_{3}\ddot{z}_{3} = -K_{3}(z_{3} - z_{2}) - C_{3}(\dot{z}_{3} - \dot{z}_{2}) - K_{4}(z_{3} - z_{4}) - C_{4}(\dot{z}_{3} - \dot{z}_{4}) + K_{5}(z_{5} - z_{3}) + C_{5}(\dot{z}_{5} - \dot{z}_{3}) - M_{3}g$$
(3)

$$M_4 \ddot{z}_4 = K_4 (z_3 - z_4) + C_4 (\dot{z}_3 - \dot{z}_4) - M_4 g \tag{4}$$

$$M_{5}\ddot{z}_{5} = -K_{5}(z_{5} - z_{3}) - C_{5}(\dot{z}_{5} - \dot{z}_{3}) - M_{5}g, \qquad (5)$$

where,

$$K_{2t} = \frac{K_2 K_{2c}}{K_2 + K_{2c}}$$
, and  $C_{2t} = \frac{C_2 C_{2c}}{C_2 + C_{2c}}$  (6, 7).

#### **Problem 1:**

Arrange this set of ODEs into standard form. In doing so, simplify to matrix form and identify all matrices used.

Now, to complicate matters, the cushion and biodynamic stiffnesses tend to be nonlinear. The cushion stiffness is given by:

$$K_{2c} = 3380.65 \frac{e^{23.622(z_1 - z_2)} - 1}{z_1 - z_2}.$$
(8)

The stiffness of the pelvis,  $K_2$ , is modeled by the nonlinear function [3]:

$$K_{2} = \begin{cases} 8.1075e7(z_{1} - z_{2})^{2}, & \text{if } (z_{1} - z_{2}) \ge 0\\ 0, & \text{if } (z_{1} - z_{2}) < 0 \end{cases}$$
(9)

The stiffness of the upper torso is also nonlinear [3]:

$$K_{3} = \begin{cases} 3.78e6 + 1.09e7(z_{2} - z_{3}) - 2.69e7(z_{2} - z_{3})^{2}, \text{if}(z_{2} - z_{3}) \ge 0.04\\ 77044, \quad \text{if}(z_{2} - z_{3}) < 0.04 \end{cases}$$
(10)

The damping coefficient  $C_i$  is given by

$$C_i = 2\zeta_i \sqrt{M_i K_i}$$
 if  $i = 2, 3, 4, 5$  (11)

where  $\zeta_i$  is the damping ratio of each part of the human body. Because  $K_2$  and  $K_3$  are nonlinear functions,  $C_2$  and  $C_3$  are also nonlinear. Lastly, the nonlinear spring reaction force,  $F_{st}$ , due to the end-stop buffer is given by [1]:

$$F_{st} = \begin{cases} 0, & \text{if} |z_0 - z_1| < 0.025\\ 8.0e4[z_0 - z_1 - z_{st} \operatorname{sgn}(z_0 - z_1)] + 3.4e8[z_0 - z_1 - z_{st} \operatorname{sgn}(z_0 - z_1)]^3, & \text{if} |z_0 - z_1| \ge 0.025 \end{cases}$$
(12)

Finally, the damper should be modeled using a Bingham-Plastic force model, which includes a viscous component and a friction component:

$$F_{MR} = C_1 (\dot{z}_0 - \dot{z}_1) + F_f \cdot \text{sgn}(\dot{z}_0 - \dot{z}_1) \quad , \tag{13}$$

where  $C_1$  is the post-yield viscous damping coefficient,  $F_f$  is the friction force, and "sgn"

represents the Signum function.

#### **Problem 2:**

- a) Using the parameters listed in Table 1 [1, 2, 3], write a Matlab function  $xdot=seat\_system\_ode(t,x)$  representing this system of nonlinear ODEs. Pass other necessary parameters through as global variables.
- b) Solve this system using ode45 for 20 cycles of a 0.2g amplitude sinusoid floor acceleration. Record the time to complete this solution and plot the relative displacement & velocity between the seat and the floor and the absolute pelvis & head accelerations vs. time.

*Note: The initial velocities are all zero. The initial displacements are the* static 1g displacements ( i.e.,  $x_1(0) = (M_1 + M_2 + M_3 + M_4 + M_5) \cdot g / K_1$  ). Assume only the initial cushion stiffness ( $K_{2c} = 37.7e3$ ) for  $K_{2t}$  $(i.e. x_2(0) = (M_2 + M_3 + M_4 + M_5) \cdot g / K_{2c})$ . Also, for simplicity assume  $x_3(0) = x_4(0) = x_5(0) = x_2(0).$ 

c) Repeat part b using ode23, ode113, ode15s, ode23s, ode23t, &ode23tb. Use default options for each case. Explain why some solution methods fail and/or have longer solution times than others.

| Quantity                       | Symbol         | Value | Units |
|--------------------------------|----------------|-------|-------|
| Mass of seat                   | $M_1$          | 11.5  | kg    |
| Mass of pelvis                 | $M_{2}$        | 29    | kg    |
| Mass of upper torso            | $M_{3}$        | 21.8  | kg    |
| Mass of viscera                | $M_{_4}$       | 6.8   | kg    |
| Mass of head                   | $M_5$          | 5.5   | kg    |
| Stiffness of coil spring       | $K_1$          | 50.0  | kN/m  |
| Stiffness of viscera           | $K_4$          | 2.84  | kN/m  |
| Stiffness of head              | $K_5$          | 202.3 | kN/m  |
| Post-Yield Damping Coefficient | $C_1$          | 750   | N∙s/m |
| Cushion Damping                | $C_{2c}$       | 159   | N∙s/m |
| Pelvis Damping                 | $\zeta_2$      | 0.25  | -     |
| Torso Damping                  | ζ <sub>3</sub> | 0.11  | -     |
| Viscera Damping                | $\zeta_4$      | 0.5   | -     |
| Head Damping                   | $\zeta_5$      | 0.1   | -     |
| Damper Friction Force          | $F_{f}$        | 75    | Ν     |

1. 1.1.

The Bingham-plastic force model (Eq. 13) for the damper may be approximated using a hypertangent function below as depicted in Figure 2:



$$F_{MR} = C_1 (\dot{z}_1 - \dot{z}_o) + F_f \cdot \tanh\left(\frac{\dot{z}_1 - \dot{z}_o}{\varepsilon}\right), \tag{14}$$

Figure 2 - Approximating the Bingham-Plastic Force Model

#### Problem 3:

- a) Repeat Problem 2b & 2c using this hypertangent model for the damper with  $\epsilon$ =0.005. How have the results changed? Why? Do you recommend this approximation?
- b) Repeat with a 20g amplitude floor acceleration. How have the time results changed? Why?

### Problem 4:

- a) Write a Matlab function [t,x]=rk(f,T,X0) to perform a fixed step integration using 4<sup>th</sup> order Runge-Kutta algorithm. Here, f is the ode function, T is a time vector, and X0 are the initial conditions.
- b) Rerun problem 3a using rk instead of ode45. How do the resulting plots and solution time compare with Matlab's ODE solvers? Give a benefit and a pitfall to using this routine over Matlab's ODE solvers.

#### References

- 1. Choi, Y.T. and Wereley, N.M., Biodynamic response mitigation to shock loads using magnetorheological helicopter crew seat suspensions, Journal of Aircraft, Vol. 42, No. 5, 2005, pp. 1288-1295.
- 2. Zong, Z. and Lam, K.Y., Biodynamic response of shipboard sitting subject to ship shock motion, Journal of Biomechanics, Vol. 35, 2002, pp. 35-43.
- 3. Liu, X.X., Shi, J., Li, G.H., et al., Biodynamic response and injury estimation of ship personnel to ship shock motion induced by underwater explosion, Proceedings of the 69<sup>th</sup> Shock and Vibration Symposium, St. Paul, Vol. 18, 1998, pp. 1-18.