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You have just been given an assignment. As you work through it, you find several
terms you don’t know, and several assertions you don’t understand. What do you
do?

Your first instinct is probably to plug one or more of the terms into your fa-
vorite search engine and see if one of its suggested webpages answers your questions.
The ideal search engine has several properties:

• Retrieval is fast.

• Most of the documents listed at the top are actually relevant to your query.
(This is called good precision.)

• Few documents at the bottom of the list (which may be millions of documents
long) are more relevant than ones listed before them. (This is called good
recall.)

How do search engines select the documents (webpages) believed to be relevant
to your query? They do this using several types of matrix computations. For
example, the fundamental tool behind Google is the PageRank algorithm, used to
identify authoritative documents on the web. This algorithm is based on finding the
eigenvector corresponding to the largest eigenvalue of a matrix whose size equals
the number of indexed webpages (several billion!). Most search engines also use a
variant of latent semantic analysis (LSA) to choose relevant documents, and in this
case study, we’ll experiment with this algorithm and alternatives.

1 This case study is a supplement to Scientific Computing with Case Studies, Dianne P. O’Leary,
SIAM Press, Philadelphia, 2009.
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From Documents to Matrices
Old fashioned search engines used string matching to find relevant documents. Some
automated library catalogs2 still use this technology. If you search for ‘Mark Twain’,
the catalog might give you a list of records that literally contain the two words
’Mark’ and ’Twain’ in the document or (more likely) in its index entry. Using
string matching, a document is chosen based on testing each string of 4 characters
in its text record to see if it matches ‘Mark’, and each string of 5 characters to see
if it matches ‘Twain’. This is very slow, and it would miss all the records about
‘Samuel Clemens’, who is the same person.

So we need a better way to represent a document, rather than just using its
text. Let’s take all of the words in a dictionary3 and number them from 1 to m.
Then we can represent a document as a vector of length m whose ith entry indicates
the importance of word i in the document. Further, we can represent a document
collection by a matrix A whose jth column is the vector corresponding to document
j, for j = 1, . . . , n.

Importance is a concept subject to a lot of argument in the literature. For
example, is the word ‘the’ more important in one document than another, or should
we leave it out entirely? Should a document vector be normalized to length 1? (If
so, what norm should be used?) Should each row of the document matrix also be
normalized? The most popular measure of importance is called TF-IDF. In this
case study, we’ll assume someone else has made the decision about how to measure
importance and has presented us with the term-document matrix A.

Forming Queries and Scoring Documents
The matrix approach gives us a tremendous speed-up over string matching. If a
user asks for a term, we can find the term in the dictionary, get the index i of
the term, and decide that document j is relevant if the matrix entry aij is large.
Equivalently, we could compute the relevance of each document in the collection by
taking the product qTA, where the query vector q = ei is the ith column of the
identity matrix of size m. Similarly, if we are interested in term i and term `, then
our query vector is q = ei +e`. This approach is called the vector space method,
and the relevance evaluation is called the inner-product score.

In order to use this method, we need to form a query vector, so we need
to be able to find the index of a term in a collection of terms. The function
findtermslow.m, available on the website, does this, but (as you might guess)
it is slow, because it searches sequentially through the collection until it finds a
match. If the collection is sorted in alphabetical order, we could do better than
this. (When you look in the phone book, you don’t start on page 1 and look at
every name until you find the one you want!) Let’s consider doing the search by
bisection, a method you may have used previously for finding a zero of a function.
We start by asserting that if the word is present, its index must be between 1 and
p, where p is the number of words in the dictionary. We then test the word whose

2 e.g., http://www.press.uchicago.edu/AAUP/bk.searchguide.html
3For us, the ‘dictionary’ is a collection of words occurring in our documents.
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POINTER 1. Sparse matrices
In this case study we work with a sparse matrix, one that has so many zero elements
that it is worthwhile to take advantage of them. Matlab stores a sparse matrix
by remembering the row index, column index, and value of each nonzero entry,
so the total amount of storage is about 3nz, where nz is the number of nonzero
entries in the matrix. The Cranfield term-document matrix has 83302 nonzero
entries, so the storage for it in sparse format is about 250000 numbers, compared
to 4612 ∗ 1398 ≈ 6.4 million numbers for storage in full matrix format. More
information about sparse matrices is found in Unit VII.
Use svds to compute the SVD of the (sparse) Cranfield matrix. (The function svd
requires a full matrix.)

index i is closest to p/2. If our word comes after that word alphabetically, then if
present its index must be between i and p; otherwise its index must be between 1
and i. In either case, we have reduced the length of the list by a factor of 2, so we
repeat until we either find the term or reduce the list to zero length.

CHALLENGE 1. Write a Matlab function findterm to use bisection to find
the index of a term in an alphabetized dictionary list. (The function Strcmp.m,
available at Matlab Central, might be helpful, although it is very slow, so you may
want to improve it.) Your function should be specified as index = findterm(desired term,
termlist, istart, ifinish), where the parameters have the same meaning they
do in findtermslow. Test your function on a random selection of terms from the dic-
tionary in cranterms.mat. Generate 500 random indices by taking floor(rand(500,1)*p)+1,
where p is the number of entries in the dictionary. Compare the time that your
function takes to the time that findtermslow takes. (Matlab’s tic and toc can
be used.)

Your function should be well designed, well documented, reasonably efficient,
and correct. See Chapter 4 for guiding principles on software design and documen-
tation, and use findtermslow.m as a model.

Now that we can form query vectors, we are ready to score our documents
using the inner-product computation. If q is the query vector, then the largest
entries in qTA identify the documents that are relevant.

But how can we measure how good this method is?

• The good documents are those that are retrieved and also relevant to the
query.

• The precision P (`) is the ratio of the number of good documents to the
number ` of retrieved documents. (It is low if a lot of irrelevant documents
are retrieved.)
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• The recall R(`) is the ratio of the number of good documents to the number
of relevant documents. (It is low if a lot of relevant documents are missed.)

A plot of P (`) and R(`) as a function of ` tells us how successful our retrieval is.
As an example, suppose that we have 5 documents, and documents 2, 3, and 5

are relevant to the query. Suppose that your scoring produces qTA = [5, 3, 1, 2, 10]T .
Then if asked to retrieve 1 document, you would return the highest scoring doc-
ument, number 5 (since it has a score of 10). Document 5 is indeed relevant. So
P (1) = 1 and R(1) = 1/3. If asked to retrieve 2 documents, you would return
documents 5 and 1, and 1 is not on the relevant list, so P (2) = 1/2 and R(2) = 1/3.

We’ll try this method on a dataset for which the set of documents relevant to
each query is known.

CHALLENGE 2. We’ll work with the Cranfield collection, 1398 aerospace engi-
neering abstracts.4 Score the documents for each of the queries in cranquerydata.mat
and plot the average values of P (`) and R(`). (The average is taken over all of the
queries, so for each value of `, compute the average value of P (`) and R(`) and then
plot these values vs. `.)

From Term Matching to Concept Matching
By using the term-document matrix, we have made good progress on the speed issue
in document retrieval. But we haven’t solved the Mark Twain vs. Samuel Clemens
problem. This terminology problem is ubiquitous: documents can be in a variety of
languages (English, Spanish, etc.), or contain different jargon (‘myocardial infarct’
vs. ‘heart attack’).

We could have a person make a list of all synonyms and word relations for
words in the dictionary, but this is expensive and time-consuming. Instead we will
try to let the documents define their own relations. For example, if there are several
documents that contain the four words ‘Mark’, ‘Twain’, ‘Samuel’, and ‘Clemens’,
then we might conclude that these four words have a relationship. How can we use
matrix computations to reveal this?

Consider this tiny example of a term-document matrix:

4 The data is available at http://www.cs.utk.edu/~lsi/ under “Corpora”. The ma-
trix and term list are found toward the bottom of the page, and and software to
let Matlab read a datafile in Harwell-Boeing sparse matrix format is available at
http://people.scs.fsu.edu/~burkardt/m_src/hb_io/hb_exact_read.m. It is much easier,
though, to download the data from the book’s website.
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Term D1 D2 D3 D4 D5
mark 20 31 0 5 2
twain 53 65 0 30 1
samuel 5 4 6 10 0
clemens 10 20 40 43 0
europe 30 10 25 52 70

We can see that documents D1 and D2 indicate that ‘Mark Twain’ and ‘Samuel
Clemens’ are related in some way, so we might conclude that D3 is also about Mark
Twain. In particular, D1, D2, D3, and D4 are relevant for the query ‘Mark Twain
Europe’ and for the query ‘Samuel Clemens Europe’. If we just use the vector space
method, the inner-product scores for the ‘Mark Twain Europe’ query are 103, 106,
25, 87, 73, so it seems that D5 is more relevant than D3.

One approach to fix this problem is to replace A by an optimal approximation
Ak of the same size as A but of rank k << min(m,n). We know from Chapter 5
that the optimal approximation is formed by taking Ak equal to the the truncated
SVD. In fact, A = Ak + E where ‖E‖ = σk+1, the largest singular value that we
threw away. So forming qTAk just gives us an error of qTE, which is small. The
effect of the approximation is to add noise to the matrix to make the columns look
more alike, so that there will be no more than k linearly independent columns in
any selection of columns. Intuitively, the smallest amount of noise is added when
columns that are related to each other are made even more dependent, so truncating
the matrix reveals relationships that are latent in the documents. This approach
is called latent semantic analysis (LSA). The size of k is determined based on
two criteria:

• We don’t want k too small, because in that case document vectors will look
too much alike and have too much noise.

• We don’t want k too large, because m and n are generally large, so storage
is at a premium. If we store Uk, Vk, and Σk, we need (m + n)k + k storage
locations, so the smaller we can keep k, the better off we are. In fact, A is
probably sparse, but the factors are generally dense, so a small k is essential.
A small k also makes document scoring cheaper.

Let’s see how well this works.

CHALLENGE 3. Replace A by Ak and recompute the average precision and
recall curves. Be sure that you implement the method so that the time to compute
qTAk is proportional to (m + n)k + k, not mn. Use values k = 100, k = 500,
and others of your choosing. Compare your results to those using the vector space
method. Write a clear paragraph of advice about how to choose k.

There are other (cheaper) ways to compute a low-rank approximations to a
matrix. Can they also be used for document retrieval?
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POINTER 2. Quirks in Data and Software
For query 222 in this dataset, some of the documents labeled relevant are not within
the valid range of document indices. One of the “features” of working with real data
is that it is never perfect, and programs need to allow for that.
Software also has its quirks. If you compute [Q,R,P] = qr(A) for a sparse matrix
A, Matlab will report “too many output arguments”. Matlab’s qr requires a
dense matrix if a pivoted QR factorization is computed, so if you need to do it, use
[Q,R,P] = qr(full(A)).

CHALLENGE 4. Choose another algorithm for computing a low-rank ap-
proximation to A and repeat the experiment of the previous challenge using this
algorithm. Compare the results and write a clear paragraph of advice about how
to choose k and what method you recommend.

Even though we understand low-rank matrix approximation, the reason that
LSA works (and sometimes doesn’t work) is a bit mysterious. Working with our
tiny example might yield insight.

CHALLENGE 5. Consider the Mark Twain term-document matrix given above.
It would be ideal to have a low-rank approximation that for the sample query scores
D1, D2, D3, and D4 high but not D5. Discuss what properties of the low-rank SVD
prevent this, and illustrate your discussion with some examples of other small term-
document matrices for which the partitioning is more clear.

Related Methods and Open Questions
The LSA approach has truly revolutionized information retrieval, but there is much
unfinished work. SVD and other low-rank approximation methods from Chapter 5
are powerful tools, but they have some disadvantages for this application:

• Matrix entries in Ak can be negative, and it is hard to interpret a negative
importance.

• Factors that are as sparse as A would be more economical.
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POINTER 3. Further Reading.
To learn more about the uses of matrices and matrix factorizations in document
retrieval and data mining, see [2]. The semi-discrete decomposition is considered in
[3]. An example of a complete document retrieval system based on matrix compu-
tations and optimization is given in [1].

[1] Daniel M. Dunlavy, Dianne P. O’Leary, John M. Conroy, and Judith
D. Schlesinger, “QCS: A System for Querying, Clustering, and Summarizing
Documents,” Information Processing and Management 43:6 (2007), 1588–1605.
DOI:10.1016/j.ipm.2007.01.003.

[2] Lars Eldén, Matrix Methods in Data Mining and Pattern Recognition, SIAM
Press, Philadelphia, PA, 2007.

[3] Tamara G. Kolda and Dianne P. O’Leary, “Computation and Uses of the Semidis-
crete Matrix Decomposition,” ACM Transactions on Mathematical Software, 26
(2000) 415-435. http://portal.acm.org/citation.cfm?DOId=358407.358424.

• Computing the SVD (or even the rr-QR factors) of a matrix with billions of
rows is expensive!

So alternative approaches are also used, such as the semi-discrete decomposition,
non-negative matrix approximations and approximations consisting of a subset of
the rows or columns of A.

In our query vectors, we gave each term a weight of 1. Better results would
be obtained by setting the importance of each term in a better way, but there is no
consensus on how this should be done.

An alternative to the inner product score is the cosine score. We compute
the cosine score for a document vector aj as qTaj/(‖q‖ ‖aj‖). This is the cosine
of the angle between the vectors aj and q, and it avoids giving long documents an
unreasonably large score.

Conclusions
By now you have seen some of the issues that arise in computational science col-
laborations.

• Each field has its own jargon (and cultural issues) that must be mastered.

• In contrast to textbook problems that give you an equation to solve, a great
deal of effort is devoted to figuring out what the problem actually is and
deciding what equations and techniques are appropriate.

• The measure of “success” is also different for each field (e.g., precision and
recall).
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• Finding test data and learning to work with it takes a lot of time. This is
especially true if the data is obtained from the internet sites listed here, rather
than from our own website. It took several hours to make the .mat files for
this project. First, it took a while to find the appropriate software to convert
the matrix from Harwell-Boeing format to Matlab format. (As usual, advice
from a colleague was helpful.) Then, there were two inconsistencies in the file
format. I fixed one by changing the datafile and one by removing an if
statement in a conversion routine. Data issues always cause big headaches in
collaborative projects.

• It is impossible to be an expert on every aspect of the problem, and you must
rely on other members of the team to judge correctness and importance.

Once you understand these facts, you are well on your way to understanding the
job of a computational scientist! There is always something new to learn, and it is
never boring.


