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Supernovae are exploding stars. For a few weeks, they can be as bright as
or even brighter than their parent galaxies, as shown in Figure 1. Most types of
supernovae have irregular light emissions, but for one class, Type Ia, the light curves
display a very uniform and regular behavior. Because of this, a Type Ia supernova
is quite useful as a standard candle that can be used to estimate the distance
between earth and its galaxy.

Light curves from six Type Ia supernovae are shown in Figure 2. It is com-
monly believed that the light emissions are powered by the radioactive decay 56Ni →
56Co → 56Fe. One obstacle for this hypothesis is that the decay rates that best
fit the data are quite different from the decay rates observed on earth. Of course,
the supernovae environment is also quite different, and it was observed by Rust,
Leventhal and McCall (1976) that the decay rates for each supernova seem to be
accelerated by a common factor.

This acceleration hypothesis is still controversial, and much more complicated
models have been proposed. We investigate in this case study, following a paper by
Rust, O’Leary, and Mullen (2009), how well the acceleration hypothesis fits some
data accumulated in the more than 30 years since it was proposed. Some of the
text and the figures in this case study are taken from that 2009 paper.

The Model: Part 1

The model can be represented schematically as follows:

W (t;α1, α2, α3) −→ 56Ni
k1

−→ 56Co
k2

−→ 56Fe ,

where W (t;α1, α2, α3) is a pulse of 56Ni deposition (created by fusion of lighter
elements) and k1 and k2 are the nuclear decay rates of 56Ni and 56Co. We model
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Figure 1. Supernova 205ke in optical, ultraviolet, and X-ray wavelengths.
If each image is 4 × 4, then it is found 2.5 units from the top of the image and
1.0 units from the left, near the bottom-left of the bright part of the galaxy. “This
is the first X-ray image of a Type 1a, and it has provided observational evidence
that Type Ia are the explosion of a white dwarf orbiting a red giant star. Credit:
NASA/Swift/S. Immler” (See Acknowledgements pointer.)

the initial pulse by a Weibull probability density function

W (t;α1, α2, α3) =
α2

α3

(

t − α1

α3

)(α2−1)

exp

[

−

(

t − α1

α3

)α2
]

, (1)

where α1 is the starting time for the fusion pulse, α2 is a shape parameter, and α3

is a scale parameter. Formula (1) holds for t ≥ α1; otherwise W (t;α1, α2, α3) = 0.

CHALLENGE 0.1.

(a) Plot the Weibull function for α1 = 5.4, α2 = 2.4, and α3 = 19.3 and for α1 = 1,
α2 = 1, α3 = 1.

(b) Verify that it has unit area for any choice of the α parameters.

In a terrestrial setting, the decay rates k1 and k2 would be the inverses of the
average lifetimes 8.764 days and 111.42 days, but in the high density interior of the
star, the model allows these two rates to be accelerated by a common factor α4, so

k1 =
1

8.764α4
, k2 =

1

111.42α4
, (2)

and α4 becomes a fourth parameter for the model. If N1(t), N2(t), and N3(t)
represent the abundances of 56Ni, 56Co, and 56Fe, respectively, then the ordinary
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Figure 2. B-magnitude light curves for six Type Ia supernovae. The label
on each plot is the name assigned to the supernova, specifying the year of the explo-
sion and the order of discovery in that year. The time unit for the measurements
is Julian Days (JD), the number of days since Greenwich noon on January 1, 4713
BC. The brightness units are astronomical magnitudes measured in the B (blue)
wavelength passband.
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POINTER 0.1. Why use the differential equation model?

The model (3) is simple enough that formulas for Ni(t), i = 1, 2, 3, could be derived
in closed form. For this case study we will leave them in ode form, in order to get
experience with computing with such models.

POINTER 0.2. Reading the Data

Three of Matlab’s input commands might be of use to you:

• The Matlab command fopen tells Matlab where the data file is. Example:
fid = fopen(’SN1990N-B.dat’,’r’)

• temp = fgetl(fid) reads an entire line (useful for skipping lines).

• fscanf is a formatted read. Example: A = fscanf(fid,’%f %f %f’ )

reads the next three data values in fid into an array A.

differential equations (odes) for the 56Ni deposition and subsequent decay processes
can be written

dN1

dt
= W (t;α1, α2, α3) −

1
8.764 α4

N1 , N1(α1) = 0 ,

dN2

dt
= 1

8.764 α4

N1 −
1

111.42 α4

N2 , N2(α1) = 0 ,

dN3

dt
= 1

111.42 α4

N2 , N3(α1) = 0 .

(3)

Since the Weibull pulse has unit area, it produces a unit amount of 56Ni, so N1(t),
N2(t) and N3(t) are relative abundances that are scaled up in the fit of the model
to the observed data.

In order to model well, we need to choose convenient units for the data.

CHALLENGE 0.2. In the light curves in Figure 2, astronomical magnitudes
are plotted versus Julian Days.

(a) Explain why Julian Day is not the best unit for time, and why we prefer
to set a zero point for time to be a few days before the first observation.

(b) The astronomical magnitude scale is logarithmic, with a difference of five
magnitudes corresponding to a change by a factor of 100 in apparent brightness. The
scale runs backward, with smaller magnitudes corresponding to brighter objects.
Instead of fitting astronomical magnitudes, consider fitting relative luminosities,
defined by

L(t) = 10−0.4 (B(t)−Bref ) , (4)
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Supernova JD (t = 0) Bref

SN1990N 2 448 050.0 12.0
SN1991T 2 448 350.0 11.0
SN1992bc 2 448 875.0 15.0
SN1998aq 2 450 900.0 12.0
SN1999dq 2 451 410.0 14.5
SN2003du 2 452 725.0 13.0

Table 1. Julian Day corresponding to time 0, and values of Bref , for the
six supernovae.

where Bref is a reference magnitude for the supernova. Give some advantages
and disadvantages of fitting data using L(t) instead of B(t).

(c) Solve for B(t) in terms of L(t).
(d) Plot the SN1990N data in luminosity units.

Table 1 sets the reference magnitudes and the zero points for time.

The Derivatives

To fit our model (3) to data, we will need derivatives of Nk with respect to αj , for
k = 1, 2, j = 1, 2, 3, 4.

Notice that, for well-behaved functions,

d

dt

(

∂N1

∂αj

)

=
∂

∂αj

(

dN1

dt

)

. (5)

Define

N̆1j(t) =
∂N1

∂αj

(t).

Then, we can obtain the partial derivatives of N̆1j , for j = 1, 2, 3, from (3):

d

dt

(

N̆1j

)

=
∂

∂αj

W (t;α1, α2, α3) −
1

8.764α4

(

N̆1j

)

, j = 1, 2, 3 . (6)

Using the initial conditions
∂N1(α1)

∂αj

= 0 , (7)

these three equations can be integrated numerically along with the odes in (3). To
get a valid equation for j = 4, we need to differentiate the first relation in (3) with
respect to α4, which gives

d

dα4

dN1

dt
=

d

dα4
W (t;α1, α2, α3) −

d

dα4

(

1

8.764α4
N1

)

.
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Use the “product rule for differentiation” on the 2nd term (since N1 also depends
on α4) to get the final expression.

A similar derivation gives a way to calculate

N̆2j(t) =
∂N2

∂αj

(t). (8)

To use the ode-solver this way, it is necessary to find expressions for the
three partial derivatives of W (t;α1, α2, α3) defined by (1). You can use Matlab’s
Symbolic Math Toolbox with the program

syms a1 a2 a3 t

w = a2/a3*(t-a1)^(a2-1)/a3^(a2-1) * exp(-((t-a1)/a3)^a2)

dw_da1 = diff(w,a1)

dw_da2 = diff(w,a2)

dw_da3 = diff(w,a3)

to generate these derivatives.

CHALLENGE 0.3. Apply one of Matlab’s ode solvers to our model, (3), (6),
(8). with α = [14, 2, 15, .6]. Plot N1, N2, and N3 for 300 days. On two separate
figures (k = 1, 2), plot ∂Nk(t)/∂αj , j = 1, 2, 3, 4.

The Model: Part 2: Fitting the Luminosity Data

We now convert our model to luminosities. Define

Φ1(t;α) =
1

8.764α4
N1(t) , Φ2(t;α) =

1

111.42α4
N2(t) , (9)

where Φ1 and Φ2 are the relative contributions to the total luminosity by the decays
of 56Ni and 56Co, respectively. The total observed luminosity can then be written

L(t,α, c) = c1Φ1(t;α) + c2Φ2(t;α) , (10)

where c1 and c2 are linear adjustable parameters that convert the relative lumi-
nosities to observed luminosities. So our model has 6 free parameters: 4 nonlinear
parameters α1, α2, α3, and α4 that specify the properties of the central engine
generating the gamma rays that power the luminosity, and 2 linear parameters c1
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and c2 that specify how the gamma rays interact with the expanding atmosphere
and/or the surrounding planetary nebula to generate the observed luminosity.

We now have the set up to do a (nonlinear) least squares fit of the luminosity
data for each supernova to the model (10) to determine the 6 parameters:

min
α,c

m
∑

ℓ=1

ωℓ|L
meas
ℓ − (c1Φ1(tℓ;α) + c2Φ2(tℓ;α))|2,

where ωℓ are given weights. We have several computational options:

• Use lsqnonlin to find the 6 parameters, without a Jacobian matrix.

• Use lsqnonlin to find the 6 parameters, providing a finite-difference approxi-
mation to the Jacobian matrix. The fact that noisy derivatives cause difficulty
in optimization settings has been previously documented.

• Use lsqnonlin to find the 6 parameters, providing the closed-form formulas
for the Jacobian matrix.

• Use lsqnonlin to find the nonlinear parameters, determining the optimal
linear parameters in the function evaluation for each iteration of lsqnonlin.

• Use varpro, which has now been programmed in Matlab and is available on
the website.

CHALLENGE 0.4. Use your code from the previous challenge and lsqnonlin

and varpro, with Jacobian matrices, to find values of α and c for each of the
6 datasets on the website so that the 2-norm (Euclidean norm) of the difference
between the predicted luminosities and the measured luminosities is minimized.
Use the weights ωℓ = (1/Lmeas

ℓ )2.
Make a table of parameter values α that you found and the times (tic/toc)

that the two algorithms used.
Plot the data points and the model predictions (B-magnitude) for each super-

nova.

Validating the Model

How can we decide whether we have a good fit to the data?

• First, we want to be sure that the model fits the data well, so we should plot
the data points and the model predictions in a single figure and check that
the predictions are within the error bars for the data.
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POINTER 0.3. Acknowledgements

The light curves were found using two very helpful websites:

Jet Propulsion Laboratory NASA/IPAC Extragalactic Database (NED)
http://nedwww.ipac.caltech.edu/.

Nickolay Pavlyuk and the SAI Supernovae Research Group, “SAI Super-
nova Light Curve Online,” http://virtual.sai.msu.ru/~pavlyuk/

snlcurve/.

Figure 1 is taken from http://www.nasa.gov/centers/goddard/news/topstory/

2006/supernova_mugshot.html

This case study would not have been possible without the help of Bert Rust.

• Second, we should check the residuals, the differences between the values pre-
dicted by the model and the data points. If we believe, for example, that
the error in the data is uncorrelated from data point to data point and nor-
mally distributed with mean 0 and constant standard deviation (a reasonable
assumption for this problem), then

– A plot of the residuals should zig-zag rather evenly.

– A histogram of the residuals should look like a bell curve.

– The periodogram of the residuals should look like a well-mown lawn.
The periodogram fr of a vector r is formed using the following state-
ments:

n = length(r);

fr = fft(r);

fr = fr .* conj(fr)*2/n;

m = ceil((n-1)/2);

fr = fr(1:m);

– The cumulative periodogram of the residuals should look like a straight
line. The cumulative periodogram is the sequence formed from 0, then
the 1st component of fr, then the sum of the 1st two components, then
the sum of the 1st three components, etc. We could quantify agreement
with the straight line by computing the length of the cumulative peri-
odogram, or 95% confidence intervals for it, but we will not do that in
this case study.

We have a rather small number of data points, but let’s check how well our model
fits the data.
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POINTER 0.4. Some Tips

• Define the Weibull function to be zero when t is less than α1.

• Use symbolic arithmetic once, to get the formulas used in the program that
the ODE solver calls. Don’t use it every time the ODE solver needs a function
value; that is too slow.

• Graphs are only useful if they convey information. They are useless if they
don’t have labels on the axes, or don’t indicate the units, or are printed so
small that the information is not clear, or have several gray-colored curves
that can’t be distinguished. Use xlabel, ylabel, title, and legend when
appropriate. Use different line styles (solid, dashed, dotted, etc.) even if you
use color plots, because an estimated 10% of the population is color blind.

• Use an ODE solver appropriate for stiff systems unless you are sure that the
system is not stiff.

• Real data files are messy. When you have a set of them, they very often have
small differences in formatting. It is a bad idea to retype data (too much
chance for error). Instead, write a program that handles format variations.

• Some of the datafiles have multiple observations at a given time. It is impor-
tant to use this data properly:

– It is not OK to average the values. This changes the standard deviation
of the error for those observations, so the weighting is bad.

– It is not OK to shift the times by a small number (although I admit that
this works). This changes the data, and, scientifically, it is wrong.

– It is not OK to delete data. Each of the data values should produce an
entry in the “observed - model” vector.

• Studying residuals with histograms and periodograms is a good check, but it
relies on having enough data points. 52 is a rather low number, so I wouldn’t
expect ideal-looking results.

CHALLENGE 0.5. For the SN1998aq supernova, plot the residual (in lumi-
nosity units), the histogram of the residual, the periodogram, and the cumulative
periodogram. Discuss the four plots and your conclusion.
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POINTER 0.5. Further Reading

This case study is closely related to Chapter 13. The paper we build upon is:

B. W. Rust, M. Leventhal, S. L. McCall is “Evidence for a radioactive
decay hypothesis for supernova luminosity,” Nature 262 (July 1976),
pp. 118–120.

The more recent paper, from which much of the material in this case study is
extracted verbatim, is:

“Modelling Type Ia supernova light curves,” Bert W. Rust, Dianne
P. O’Leary, and Katharine M. Mullen, in Exponential Data Fitting and
Its Applications, V. Pereyra and G. Scherer, eds., Bentham Science Pub-
lishers Ltd. 2010, pp. 169-186. http://www.bentham.org/ebooks/

9781608050482/

As an example of the difficulties in using numeric derivatives in optimization, see:

Ralf Leidenberger and Karsten Urban, “Automatic differentiation for
the optimization of a ship propulsion and steering system,” University of
Ulm, Germany, 2008. http://www.mathematik.uni-ulm.de/numerik/
staff/urban/html/veroeff.html

An example of a model for supernovae that involves spatial dependence is:

W. Schmidt, J. C. Niemeyer, W. Hillebrandt, and F. K. Röpke, “A
localised subgrid scale model for fluid dynamical simulations in astro-
physics II. Application to type Ia supernovae,” Astronomy and Astro-
physics 450 (2006), pp. 283-294. DOI: 10.1051/0004-6361:20053618


